1
|
Wolf A, Ueda K, Hirano Y. Recent updates of eye movement abnormalities in patients with schizophrenia: A scoping review. Psychiatry Clin Neurosci 2021; 75:82-100. [PMID: 33314465 PMCID: PMC7986125 DOI: 10.1111/pcn.13188] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022]
Abstract
AIM Although eye-tracking technology expands beyond capturing eye data just for the sole purpose of ensuring participants maintain their gaze at the presented fixation cross, gaze technology remains of less importance in clinical research. Recently, impairments in visual information encoding processes indexed by novel gaze metrics have been frequently reported in patients with schizophrenia. This work undertakes a scoping review of research on saccadic dysfunctions and exploratory eye movement deficits among patients with schizophrenia. It gathers promising pieces of evidence of eye movement abnormalities in attention-demanding tasks on the schizophrenia spectrum that have mounted in recent years and their outcomes as potential biological markers. METHODS The protocol was drafted based on PRISMA for scoping review guidelines. Electronic databases were systematically searched to identify articles published between 2010 and 2020 that examined visual processing in patients with schizophrenia and reported eye movement characteristics as potential biomarkers for this mental illness. RESULTS The use of modern eye-tracking instrumentation has been reported by numerous neuroscientific studies to successfully and non-invasively improve the detection of visual information processing impairments among the screened population at risk of and identified with schizophrenia. CONCLUSIONS Eye-tracking technology has the potential to contribute to the process of early intervention and more apparent separation of the diagnostic entities, being put together by the syndrome-based approach to the diagnosis of schizophrenia. However, context-processing paradigms should be conducted and reported in equally accessible publications to build comprehensive models.
Collapse
Affiliation(s)
- Alexandra Wolf
- International Research Fellow of Japan Society for the Promotion of ScienceFukuokaJapan
- Department of Human Science, Research Center for Applied Perceptual ScienceKyushu UniversityFukuokaJapan
| | - Kazuo Ueda
- Department of Human Science, Research Center for Applied Perceptual ScienceKyushu UniversityFukuokaJapan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
2
|
Carment L, Dupin L, Guedj L, Térémetz M, Krebs MO, Cuenca M, Maier MA, Amado I, Lindberg PG. Impaired attentional modulation of sensorimotor control and cortical excitability in schizophrenia. Brain 2020; 142:2149-2164. [PMID: 31099820 PMCID: PMC6598624 DOI: 10.1093/brain/awz127] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/29/2019] [Accepted: 03/10/2019] [Indexed: 11/14/2022] Open
Abstract
Impairments in attentional, working memory and sensorimotor processing have been consistently reported in schizophrenia. However, the interaction between cognitive and sensorimotor impairments and the underlying neural mechanisms remains largely uncharted. We hypothesized that altered attentional processing in patients with schizophrenia, probed through saccadic inhibition, would partly explain impaired sensorimotor control and would be reflected as altered task-dependent modulation of cortical excitability and inhibition. Twenty-five stabilized patients with schizophrenia, 17 unaffected siblings and 25 healthy control subjects were recruited. Subjects performed visuomotor grip force-tracking alone (single-task condition) and with increased cognitive load (dual-task condition). In the dual-task condition, two types of trials were randomly presented: trials with visual distractors (requiring inhibition of saccades) or trials with addition of numbers (requiring saccades and addition). Both dual-task trial types required divided visual attention to the force-tracking target and to the distractor or number. Gaze was measured during force-tracking tasks, and task-dependent modulation of cortical excitability and inhibition were assessed using transcranial magnetic stimulation. In the single-task, patients with schizophrenia showed increased force-tracking error. In dual-task distraction trials, force-tracking error increased further in patients, but not in the other two groups. Patients inhibited fewer saccades to distractors, and the capacity to inhibit saccades explained group differences in force-tracking performance. Cortical excitability at rest was not different between groups and increased for all groups during single-task force-tracking, although, to a greater extent in patients (80%) compared to controls (40%). Compared to single-task force-tracking, the dual-task increased cortical excitability in control subjects, whereas patients showed decreased excitability. Again, the group differences in cortical excitability were no longer significant when failure to inhibit saccades was included as a covariate. Cortical inhibition was reduced in patients in all conditions, and only healthy controls increased inhibition in the dual-task. Siblings had similar force-tracking and gaze performance as controls but showed altered task-related modulation of cortical excitability and inhibition in dual-task conditions. In patients, neuropsychological scores of attention correlated with visuomotor performance and with task-dependant modulation of cortical excitability. Disorganization symptoms were greatest in patients with weakest task-dependent modulation of cortical excitability. This study provides insights into neurobiological mechanisms of impaired sensorimotor control in schizophrenia showing that deficient divided visual attention contributes to impaired visuomotor performance and is reflected in impaired modulation of cortical excitability and inhibition. In siblings, altered modulation of cortical excitability and inhibition is consistent with a genetic risk for cortical abnormality.
Collapse
Affiliation(s)
- Loïc Carment
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Institut de Psychiatrie, CNRS GDR3557, Paris, France
| | - Lucile Dupin
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Institut de Psychiatrie, CNRS GDR3557, Paris, France
| | - Laura Guedj
- SHU, Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, Université Paris Descartes, Hôpital Sainte-Anne, Paris, France
| | - Maxime Térémetz
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Institut de Psychiatrie, CNRS GDR3557, Paris, France
| | - Marie-Odile Krebs
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Institut de Psychiatrie, CNRS GDR3557, Paris, France.,SHU, Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, Université Paris Descartes, Hôpital Sainte-Anne, Paris, France
| | - Macarena Cuenca
- SHU, Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, Université Paris Descartes, Hôpital Sainte-Anne, Paris, France.,Centre de Recherche Clinique, Hôpital Sainte-Anne, Paris, France.,Integrative Neuroscience and Cognition Center, UMR 8002, CNRS / Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc A Maier
- Institut de Psychiatrie, CNRS GDR3557, Paris, France.,Integrative Neuroscience and Cognition Center, UMR 8002, CNRS / Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Life Sciences, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Isabelle Amado
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Institut de Psychiatrie, CNRS GDR3557, Paris, France.,SHU, Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, Université Paris Descartes, Hôpital Sainte-Anne, Paris, France
| | - Påvel G Lindberg
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Institut de Psychiatrie, CNRS GDR3557, Paris, France
| |
Collapse
|
3
|
Moussa-Tooks AB, Kim DJ, Bartolomeo LA, Purcell JR, Bolbecker AR, Newman SD, O’Donnell BF, Hetrick WP. Impaired Effective Connectivity During a Cerebellar-Mediated Sensorimotor Synchronization Task in Schizophrenia. Schizophr Bull 2019; 45:531-541. [PMID: 29800417 PMCID: PMC6483568 DOI: 10.1093/schbul/sby064] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prominent conceptual models characterize schizophrenia as a dysconnectivity syndrome, with recent research focusing on the contributions of the cerebellum in this framework. The present study examined the role of the cerebellum and its effective connectivity to the cerebrum during sensorimotor synchronization in schizophrenia. Specifically, the role of the cerebellum in temporally coordinating cerebral motor activity was examined through path analysis. Thirty-one individuals diagnosed with schizophrenia and 40 healthy controls completed a finger-tapping fMRI task including tone-paced synchronization and self-paced continuation tapping at a 500 ms intertap interval (ITI). Behavioral data revealed shorter and more variable ITIs during self-paced continuation, greater clock (vs motor) variance, and greater force of tapping in the schizophrenia group. In a whole-brain analysis, groups showed robust activation of the cerebellum during self-paced continuation but not during tone-paced synchronization. However, effective connectivity analysis revealed decreased connectivity in individuals with schizophrenia between the cerebellum and primary motor cortex but increased connectivity between cerebellum and thalamus during self-paced continuation compared with healthy controls. These findings in schizophrenia indicate diminished temporal coordination of cerebral motor activity by cerebellum during the continuation tapping portion of sensorimotor synchronization. Taken together with the behavioral finding of greater temporal variability in schizophrenia, these effective connectivity results are consistent with structural and temporal models of dysconnectivity in the disorder.
Collapse
Affiliation(s)
| | - Dae-Jin Kim
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN
| | | | - John R Purcell
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN
| | - Amanda R Bolbecker
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN,Larue D. Carter Memorial Hospital, Indianapolis, IN,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN
| | - Sharlene D Newman
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN,Imaging Research Facility, Indiana University College of Arts and Sciences, Bloomington, IN
| | - Brian F O’Donnell
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN,Larue D. Carter Memorial Hospital, Indianapolis, IN,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN
| | - William P Hetrick
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN,Larue D. Carter Memorial Hospital, Indianapolis, IN,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN,To whom correspondence should be addressed; Department of Psychological & Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405; tel: 812-855-2620, fax: 812-855-4691, e-mail:
| |
Collapse
|
4
|
Wilquin H, Delevoye-Turrell Y, Dione M, Giersch A. Motor Synchronization in Patients With Schizophrenia: Preserved Time Representation With Abnormalities in Predictive Timing. Front Hum Neurosci 2018; 12:193. [PMID: 29867416 PMCID: PMC5965021 DOI: 10.3389/fnhum.2018.00193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
Objective: Basic temporal dysfunctions have been described in patients with schizophrenia, which may impact their ability to connect and synchronize with the outer world. The present study was conducted with the aim to distinguish between interval timing and synchronization difficulties and more generally the spatial-temporal organization disturbances for voluntary actions. A new sensorimotor synchronization task was developed to test these abilities. Method: Twenty-four chronic schizophrenia patients matched with 27 controls performed a spatial-tapping task in which finger taps were to be produced in synchrony with a regular metronome to six visual targets presented around a virtual circle on a tactile screen. Isochronous (time intervals of 500 ms) and non-isochronous auditory sequences (alternated time intervals of 300/600 ms) were presented. The capacity to produce time intervals accurately versus the ability to synchronize own actions (tap) with external events (tone) were measured. Results: Patients with schizophrenia were able to produce the tapping patterns of both isochronous and non-isochronous auditory sequences as accurately as controls producing inter-response intervals close to the expected interval of 500 and 900 ms, respectively. However, the synchronization performances revealed significantly more positive asynchrony means (but similar variances) in the patient group than in the control group for both types of auditory sequences. Conclusion: The patterns of results suggest that patients with schizophrenia are able to perceive and produce both simple and complex sequences of time intervals but are impaired in the ability to synchronize their actions with external events. These findings suggest a specific deficit in predictive timing, which may be at the core of early symptoms previously described in schizophrenia.
Collapse
Affiliation(s)
- Hélène Wilquin
- Aix Marseille Univ, Laboratory of Clinical Psychology, Psychopathology and Psychoanalysis, Aix-en-Provence, France
| | - Yvonne Delevoye-Turrell
- SCALab, UMR 9193 – National Center for Scientific Research, University of Lille, Villeneuve d’Ascq, France
| | - Mariama Dione
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne Giersch
- INSERM U1114, Department of Psychiatry, Federation of Translational Medicine of Strasbourg, Strasbourg University Hospital, Strasbourg, France
| |
Collapse
|
5
|
Térémetz M, Carment L, Brénugat-Herne L, Croca M, Bleton JP, Krebs MO, Maier MA, Amado I, Lindberg PG. Manual Dexterity in Schizophrenia-A Neglected Clinical Marker? Front Psychiatry 2017; 8:120. [PMID: 28740470 PMCID: PMC5502278 DOI: 10.3389/fpsyt.2017.00120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/23/2017] [Indexed: 01/30/2023] Open
Abstract
Impaired manual dexterity is commonly observed in schizophrenia. However, a quantitative description of key sensorimotor components contributing to impaired dexterity is lacking. Whether the key components of dexterity are differentially affected and how they relate to clinical characteristics also remains unclear. We quantified the degree of dexterity in 35 stabilized patients with schizophrenia and in 20 age-matched control subjects using four visuomotor tasks: (i) force tracking to quantify visuomotor precision, (ii) sequential finger tapping to measure motor sequence recall, (iii) single-finger tapping to assess temporal regularity, and (iv) multi-finger tapping to measure independence of finger movements. Diverse clinical and neuropsychological tests were also applied. A patient subgroup (N = 15) participated in a 14-week cognitive remediation protocol and was assessed before and after remediation. Compared to control subjects, patients with schizophrenia showed greater error in force tracking, poorer recall of tapping sequences, decreased tapping regularity, and reduced degree of finger individuation. A composite performance measure discriminated patients from controls with sensitivity = 0.79 and specificity = 0.9. Aside from force-tracking error, no other dexterity components correlated with antipsychotic medication. In patients, some dexterity components correlated with neurological soft signs, Positive and Negative Syndrome Scale (PANSS), or neuropsychological scores. This suggests differential cognitive contributions to these components. Cognitive remediation lead to significant improvement in PANSS, tracking error, and sequence recall (without change in medication). These findings show that multiple aspects of sensorimotor control contribute to impaired manual dexterity in schizophrenia. Only visuomotor precision was related to antipsychotic medication. Good diagnostic accuracy and responsiveness to treatment suggest that manual dexterity may represent a useful clinical marker in schizophrenia.
Collapse
Affiliation(s)
- Maxime Térémetz
- FR3636, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Loïc Carment
- FR3636, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Lindsay Brénugat-Herne
- SHU, Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, Université Paris Descartes, Hôpital Sainte-Anne, Paris, France.,INSERM U894, GDR3557 Psychiatrie, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marta Croca
- SHU, Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, Université Paris Descartes, Hôpital Sainte-Anne, Paris, France.,INSERM U894, GDR3557 Psychiatrie, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Marie-Odile Krebs
- SHU, Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, Université Paris Descartes, Hôpital Sainte-Anne, Paris, France.,INSERM U894, GDR3557 Psychiatrie, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc A Maier
- FR3636, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Isabelle Amado
- SHU, Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, Université Paris Descartes, Hôpital Sainte-Anne, Paris, France.,INSERM U894, GDR3557 Psychiatrie, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Påvel G Lindberg
- FR3636, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U894, GDR3557 Psychiatrie, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
6
|
Dissociation of explicit and implicit responses during a change blindness task in schizophrenia. Neuropsychologia 2015; 71:11-7. [DOI: 10.1016/j.neuropsychologia.2015.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/21/2022]
|
7
|
Silverstein S, Keane BP, Blake R, Giersch A, Green M, Kéri S. Vision in schizophrenia: why it matters. Front Psychol 2015; 6:41. [PMID: 25698992 PMCID: PMC4318337 DOI: 10.3389/fpsyg.2015.00041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/09/2015] [Indexed: 01/14/2023] Open
Affiliation(s)
- Steven Silverstein
- Department of Psychiatry, Robert Wood Johnson Medical School, and University Behavioral Health Care, Rutgers, The State University of New Jersey Piscataway, NJ, USA
| | - Brian P Keane
- Department of Psychiatry, Robert Wood Johnson Medical School, and University Behavioral Health Care, Rutgers, The State University of New Jersey Piscataway, NJ, USA
| | - Randolph Blake
- Department of Psychology, Vanderbilt University Nashville, TN, USA
| | - Anne Giersch
- Department of Psychiatry, University of Strasbourg Strasbourg, France
| | - Michael Green
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles Los Angeles, CA, USA
| | - Szabolcs Kéri
- Department of Physiology, University of Szeged Szeged, Hungary
| |
Collapse
|
8
|
Deficient grip force control in schizophrenia: behavioral and modeling evidence for altered motor inhibition and motor noise. PLoS One 2014; 9:e111853. [PMID: 25369465 PMCID: PMC4219790 DOI: 10.1371/journal.pone.0111853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/08/2014] [Indexed: 11/19/2022] Open
Abstract
Whether upper limb sensorimotor control is affected in schizophrenia and how underlying pathological mechanisms may potentially intervene in these deficits is still being debated. We tested voluntary force control in schizophrenia patients and used a computational model in order to elucidate potential cerebral mechanisms underlying sensorimotor deficits in schizophrenia. A visuomotor grip force-tracking task was performed by 17 medicated and 6 non-medicated patients with schizophrenia (DSM-IV) and by 15 healthy controls. Target forces in the ramp-hold-and-release paradigm were set to 5N and to 10% maximal voluntary grip force. Force trajectory was analyzed by performance measures and Principal Component Analysis (PCA). A computational model incorporating neural control signals was used to replicate the empirically observed motor behavior and to explore underlying neural mechanisms. Grip task performance was significantly lower in medicated and non-medicated schizophrenia patients compared to controls. Three behavioral variables were significantly higher in both patient groups: tracking error (by 50%), coefficient of variation of force (by 57%) and duration of force release (up by 37%). Behavioral performance did not differ between patient groups. Computational simulation successfully replicated these findings and predicted that decreased motor inhibition, together with an increased signal-dependent motor noise, are sufficient to explain the observed motor deficits in patients. PCA also suggested altered motor inhibition as a key factor differentiating patients from control subjects: the principal component representing inhibition correlated with clinical severity. These findings show that schizophrenia affects voluntary sensorimotor control of the hand independent of medication, and suggest that reduced motor inhibition and increased signal-dependent motor noise likely reflect key pathological mechanisms of the sensorimotor deficit.
Collapse
|