1
|
Cheng X, Yang Q, Zhang Y, Zhang M, Yu H, Ni P, Li X, Li M, Li T. The impact of the CACNB2 Rs11013860 polymorphism on grey matter volume and brain function in bipolar disorder. BMC Psychiatry 2025; 25:183. [PMID: 40016690 PMCID: PMC11866725 DOI: 10.1186/s12888-025-06611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/14/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Recent genome-wide association studies have linked voltage-gated calcium channel genes to bipolar disorder (BD), in which CACNB2 gene rs11013860 is respectively reported. Less is known, though, about how precisely its polymorphism affects both the structure and function of the brain. METHODS 173 BD patients and 207 healthy controls (HCs) were underwent structural and functional magnetic resonance imaging scan and genotyped for CACNB2 rs11013860. Grey matter volume (GMV), regional homogeneity (ReHo) and degree centrality (DC) were used to examine the brain structure, functional activity and connectivity of these participants. RESULTS The emotional circuits in BD patients, such as cerebellum, insula, cingulate gyrus, fusiform gyrus, superior frontal gyrus, superior / middle temporal gyrus, middle occipital gyrus, lingual gyrus, precuneus, putamen, hippocampus and parahippocampal gyrus, were the main areas where GMV, ReHo, and DC differed from HCs. And the right anterior and posterior cerebellar lobes, parahippocampal gyrus as well as lingual gyrus showed an interaction between CACNB2 rs11013860 genotypes and diagnoses in GMV. In addition, there was a significant step-wise increase of GMV with decreased dosage of the A risk allele in HCs, but this pattern of relationship was absent in BD patients. No interaction between BD and CACNB2 rs11013860 was found in ReHo and DC. CONCLUSIONS These results suggest that the polymorphism of CACNB2 rs11013860 in BD patients may be associated with brain structural abnormalities in cerebellar, limbic system and other brain regions, perhaps contributing to the disease.
Collapse
Affiliation(s)
- Xiaofei Cheng
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Yang
- The Fourth People's Hospital of Haining, Jiaxing, China
| | - Yamin Zhang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengmeng Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peiyan Ni
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojing Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mingli Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Jia X, Li M, Wang C, Antwi CO, Darko AP, Zhang B, Ren J. Local brain abnormalities in emotional disorders: Evidence from resting state fMRI studies. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024; 15:e1694. [PMID: 39284783 DOI: 10.1002/wcs.1694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/28/2024] [Accepted: 08/19/2024] [Indexed: 11/05/2024]
Abstract
Emotional disorders inflict an enormous burden on society. Research on brain abnormalities implicated in emotional disorders has witnessed great progress over the past decades. Using cross-sectional and longitudinal designs, resting state functional magnetic resonance imaging (rs-fMRI) and its analytic approaches have been applied to characterize the local properties of patients with emotional disorders. Additionally, brain activity alterations of emotional disorders have shown frequency-specific. Despite the gains in understanding the roles of brain abnormalities in emotional disorders, the limitation of the small sample size needs to be highlighted. Lastly, we proposed that evidence from the positive psychology research stream presents it as a viable discipline, whose suggestions could be developed in future emotional disorders research. Such interdisciplinary research may produce novel treatments and intervention options. This article is categorized under: Psychology > Brain Function and Dysfunction.
Collapse
Affiliation(s)
- Xize Jia
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Mengting Li
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Chunjie Wang
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | | | | | - Baojing Zhang
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jun Ren
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
3
|
Yang J, Li B, Dong W, Gao X, Lin Y. Time-varying EEG networks of major depressive disorder during facial emotion tasks. Cogn Neurodyn 2024; 18:2605-2619. [PMID: 39555301 PMCID: PMC11564606 DOI: 10.1007/s11571-024-10111-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 11/19/2024] Open
Abstract
Depression is a mental disease involved in emotional and cognitive impairments. Neuroimaging studies have found abnormalities in the structure and functional network of brain for major depressive disorder (MDD).However, neural mechanism of the dynamic connectivity for emotional attention of MDD is currently insufficient. In this study, event-related potentials (ERP) and time-varying network were analyzed to investigate attention bias and corresponding neural mechanisms induced by emotional facial stimuli. In the ERP results, N100 components in MDD had shorter latencies and smaller amplitudes than those in healthy controls (HC) for sad and fear faces. The P200 amplitudes induced by sad faces in MDD were significantly higher than those induced by happy and fear faces in MDD, and those induced by sad faces in HC. It was indicated that MDD patients had attention bias towards sad faces. For the time-varying network analysis, adaptive directed transfer function was explored to construct dynamic network connectivity. MDD patients had stronger information outflow from the right frontal region and weaker information outflow from parieto-occipital regions for sad faces. In addition, the network properties of sad faces were significantly correlated with PHQ-9 scores for MDD group. These findings may provide further explanation for understanding the MDD's neural mechanism of attention bias during facial emotional tasks.
Collapse
Affiliation(s)
- Jingru Yang
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081 People’s Republic of China
| | - Bowen Li
- School of Medicine, Tsinghua University, Beijing, 100084 People’s Republic of China
| | - Wanqing Dong
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081 People’s Republic of China
| | - Xiaorong Gao
- School of Medicine, Tsinghua University, Beijing, 100084 People’s Republic of China
| | - Yanfei Lin
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081 People’s Republic of China
| |
Collapse
|
4
|
Li Y, Yin Y, Yu Y, Hu X, Liu X, Wu S. The potential predictors for treatment-resistance depression after selective serotonin reuptake inhibitors therapy in Han Chinese: A resting-state functional magnetic resonance imaging study. Early Interv Psychiatry 2024; 18:698-709. [PMID: 38320861 DOI: 10.1111/eip.13509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/26/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
AIM Selective serotonin reuptake inhibitors (SSRIs) are among the most important antidepressants. However, there is limited research on predicting the occurrence of treatment-resistant depression (TRD) after 5 years. Examining the predictive effect of TRD occurrence using resting-state fMRI in patients initiating SSRIs treatment at the onset of major depressive disorder (MDD) could potentially enhance TRD management. METHODS A total of 60 first-episode drug-naive MDD patients who met the criteria, along with 41 healthy controls of Han Chinese ethnicity, were recruited. All MDD patients received SSRIs as the initial treatment for relieving depressive symptoms. Resting-state fMRI scans were conducted for all subjects. Follow-up assessments were conducted over a period of five years, during which MDD patients were categorized into treatment-resistant depression (TRD) and non-treatment-resistant depression (NRD) groups based on disease progression. Amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), and Regional Homogeneity (ReHo) values were calculated and compared among the three groups. Additionally, receiver operating characteristic (ROC) curves were employed to identify potential predictors. RESULTS After 5 years of follow-up, it was found that 43 MDD patients were classified as NRD, while 17 were classified as TRD. In comparison to TRD, NRD exhibited decreased ALFF in the left middle cingulum gyrus (MCG.L) and in the right middle frontal gyrus (MFG.R), as well as decreased ReHo in MCG.L. Furthermore, NRD showed increased fALFF in the left precuneus (PCUN.L). The area under the curve (AUC) values were as follows: 0.724 (MCG.L by ALFF), 0.732 (MFG.R), 0.767 (PCUN.L), 0.774 (MCG.L by ReHo), 0.878 (combined), 0.547 (HAMD), and 0.408 (HAMA) respectively. CONCLUSION The findings suggest that PCUN.L, MFG.R, MCG.L, and the combined measures may indicate the possibility of developing TRD after 5 years when SSRIs are used as the initial therapy for relieving depressive symptoms in MDD patients.
Collapse
Affiliation(s)
- Yi Li
- Department of Radiology, Zhejiang University School of Medicine Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Yan Yin
- Department of Psychosomatic, Zhejiang University School of Medicine Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Yingyi Yu
- Department of Radiology, Zhejiang University School of Medicine Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Xiwen Hu
- The sixth ward of Psychiatry Department, Zhejiang University School of Medicine Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Hangzhou, China
| | - XiaoYan Liu
- The fifth ward of Psychiatry Department, Zhejiang University School of Medicine Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Sha Wu
- Department of intensive care unit, Zhejiang University School of Medicine Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Hangzhou, China
| |
Collapse
|
5
|
Teng CL, Cong L, Wang W, Cheng S, Wu M, Dang WT, Jia M, Ma J, Xu J, Hu WD. Disrupted properties of functional brain networks in major depressive disorder during emotional face recognition: an EEG study via graph theory analysis. Front Hum Neurosci 2024; 18:1338765. [PMID: 38415279 PMCID: PMC10897049 DOI: 10.3389/fnhum.2024.1338765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
Previous neuroimaging studies have revealed abnormal brain networks in patients with major depressive disorder (MDD) in emotional processing. While any cognitive task consists of a series of stages, little is yet known about the topology of functional brain networks in MDD for these stages during emotional face recognition. To address this problem, electroencephalography (EEG)-based functional brain networks of MDD patients at different stages of facial information processing were investigated in this study. First, EEG signals were collected from 16 patients with MDD and 18 age-, gender-, and education-matched normal subjects when performing an emotional face recognition task. Second, the global field power (GFP) method was employed to divide group-averaged event-related potentials into different stages. Third, using the phase transfer entropy (PTE) approach, the brain networks of MDD patients and normal individuals were constructed for each stage in negative and positive face processing, respectively. Finally, we compared the topological properties of brain networks of each stage between the two groups using graph theory approaches. The results showed that the analyzed three stages of emotional face processing corresponded to specific neurophysiological phases, namely, visual perception, face recognition, and emotional decision-making. It was also demonstrated that depressed patients showed abnormally decreased characteristic path length at the visual perception stage of negative face recognition and normalized characteristic path length in the stage of emotional decision-making during positive face processing compared to healthy subjects. Furthermore, while both the MDD and normal groups' brain networks were found to exhibit small-world network characteristics, the brain network of patients with depression tended to be randomized. Moreover, for patients with MDD, the centro-parietal region may lose its status as a hub in the process of facial expression identification. Together, our findings suggested that altered emotional function in MDD patients might be associated with disruptions in the topological organization of functional brain networks during emotional face recognition, which further deepened our understanding of the emotion processing dysfunction underlying MDD.
Collapse
Affiliation(s)
- Chao-Lin Teng
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Lin Cong
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wei Wang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shan Cheng
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Min Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei-Tao Dang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Min Jia
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jin Ma
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jin Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wen-Dong Hu
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Zhang C, Cai Y, Yu H, Wu N, Liu J, Liang S, Zhang C, Duan Z, Zhang Z, Cai G. Comparison of the effects of peritoneal dialysis and hemodialysis on spontaneous brain activity in CKD patients: an rs-fMRI study. Cereb Cortex 2024; 34:bhad377. [PMID: 37948670 DOI: 10.1093/cercor/bhad377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE To compare the effects of peritoneal dialysis and hemodialysis on spontaneous brain activity in patients with end-stage renal disease. METHODS A total of 52 dialysis patients with end-stage renal disease, including 25 patients with chronic kidney disease undergoing hemodialysis (HD-CKD) and 27 patients with chronic kidney disease undergoing peritoneal dialysis (PD-CKD), and 49 healthy controls (normal control) were included. All participants underwent neuropsychological testing (Mini-Mental State Examination and Montreal cognitive assessment) and resting-state functional magnetic resonance imaging. Fractional amplitude of low frequency fluctuations and Regional Homogeneity algorithms were employed to evaluate spontaneous brain activity. Statistical analysis was performed to discern differences between the groups. RESULTS When compared with the normal control group, the PD-CKD group exhibited significant alterations in fractional amplitude of low frequency fluctuations in various cerebellum regions and other brain areas, while the HD-CKD group showed decreased fractional amplitude of low frequency fluctuations in the bilateral pericalcarine cortex. The Regional Homogeneity values in the PD-CKD group were notably different than those in the normal control group, particularly in regions such as the bilateral caudate nucleus and the right putamen. CONCLUSION Both peritoneal dialysis and hemodialysis modalities impact brain activity, but manifest differently in end-stage renal disease patients. Understanding these differences is crucial for optimizing patient care.
Collapse
Affiliation(s)
- Chaoyang Zhang
- Medical School of Chinese PLA, Beijing 100853, China
- First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Yan Cai
- Department of Nephrology, The Affiliated Hospital of Yangzhou University, Yangzhou 225001, China
| | - Huan Yu
- Department of Radiology, Liangxiang Hospital, Fangshan District, Beijing 102488, China
| | - Ning Wu
- Department of Medical Imaging, Yanjing Medical College, Capital Medical University, Beijing 100069, China
| | - Jiexi Liu
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Shuang Liang
- Medical School of Chinese PLA, Beijing 100853, China
- First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Chun Zhang
- Medical School of Chinese PLA, Beijing 100853, China
- First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Zhiyu Duan
- Medical School of Chinese PLA, Beijing 100853, China
- First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Zhou Zhang
- Medical School of Chinese PLA, Beijing 100853, China
- First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Guangyan Cai
- Medical School of Chinese PLA, Beijing 100853, China
- First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| |
Collapse
|
7
|
Cai LN, Yue J, Cao DN, Wang P, Zhang Q, Li A, Zhao WW, Yang G, Wang Y, Peng CL, Han SW, Hou Y, Li XL. Structural and functional activities of brain in patients with vascular cognitive impairment: A case-controlled magnetic resonance imaging study. Medicine (Baltimore) 2023; 102:e33534. [PMID: 37058059 PMCID: PMC10101273 DOI: 10.1097/md.0000000000033534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
This study aimed to identify abnormal brain regions and imaging indices of vascular cognitive impairment (VCI) and explore specific imaging diagnostic markers of VCI. In this study, 24 patients with VCI were allocated to the VCI group and 25 healthy subjects were assigned to the healthy control (HC) group. Demographic data and neuropsychological test scores were compared using SPSS 25.0. The structural and functional imaging data were post-processed and statistically analyzed using CAT12, DPARSF and SPM12 software, based on the MATLAB platform. The structural and functional indices of gray matter volume (GMV) and regional homogeneity (ReHo) were obtained, and inter-group data were analyzed using an independent-sample t test. Sex, age, years of education, and total brain volume were used as covariates. Compared to the HC group, the GMV of VCI in the VCI group decreased significantly in the rectus muscles of the bilateral gyrus, left superior temporal gyrus, left supplementary motor area (SMA), right insula, right superior temporal gyrus, right anterior cuneiform lobe, and right anterior central gyrus (PRECG) (P < .05, FWE correction), without GMV enlargement in the brain area. ReHo decreased in the right inferior temporal gyrus (ITG), right parahippocampal gyrus, and left temporal pole (middle temporal gyrus, right lingual gyrus, left posterior central gyrus, and right middle temporal gyrus), the areas of increased ReHo were the left caudate nucleus, left rectus gyrus, right anterior cingulate gyrus and lateral cingulate gyrus (P < .05, FWE correction). Correlation analysis showed that the GMV of the left superior temporal gyrus was positively correlated with the Montreal Cognitive Assessment (MoCA) score (P < .05), and the GMV of the right insula was positively correlated with the MESE and long delayed memory scores (P < .05). There was a significant positive correlation between the ReHo and short-term delayed memory scores in the middle temporal gyrus of the left temporal pole (P < .05). The volume of GMV and ReHo decreased in VCI patients, suggesting that impairment of brain structure and function in specific regions is the central mechanism of cognitive impairment in these patients. Meanwhile, the functional indices of some brain regions were increased, which may be a compensatory mechanism for the cognitive impairment associated with VCI.
Collapse
Affiliation(s)
- Li-Na Cai
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinhuan Yue
- Shenzhen Frontier in Chinese Medicine Research Co., Ltd., Shenzhen, China
- Department of Tuina, Acupuncture and Moxibustion, Shenzhen Jiuwei Chinese Medicine Clinic, Shenzhen, China
| | - Dan-Na Cao
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Peng Wang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Oncology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qinhong Zhang
- Shenzhen Frontier in Chinese Medicine Research Co., Ltd., Shenzhen, China
- Department of Tuina, Acupuncture and Moxibustion, Shenzhen Jiuwei Chinese Medicine Clinic, Shenzhen, China
| | - Ang Li
- Sanofi-Aventis China Investment Co., Ltd., Beijing, China
| | | | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH
| | - Yang Wang
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Cai-Liang Peng
- Department of Third Cardiovascular, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Sheng-Wang Han
- Department of Third Cardiovascular, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Third Rehabilitation Medicine, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Hou
- Department of Gynecology, Harbin Traditional Chinese Medicine Hospital, Harbin, China
| | - Xiao-Ling Li
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Wang Y, Li X, Yan H, Zhang Q, Ou Y, Wu W, Shangguan W, Chen W, Yu Y, Liang J, Wu W, Liao H, Liu Z, Mai X, Xie G, Guo W. Multiple examinations indicated associations between abnormal regional homogeneity and cognitive dysfunction in major depressive disorder. Front Psychol 2023; 13:1090181. [PMID: 36778176 PMCID: PMC9909210 DOI: 10.3389/fpsyg.2022.1090181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023] Open
Abstract
Background This study aimed to investigate the relationships between regional neural activity and multiple related indicators in patients with major depressive disorder (MDD). Methods Forty-two patients and 42 healthy controls (HCs) were enrolled. Pearson/Spearman correlation analyses were applied to examine the associations between abnormal regional homogeneity (ReHo) and different indicators in the patients. Results Compared with HCs, patients with MDD had increased ReHo in the left inferior temporal gyrus (ITG) and decreased ReHo values in the left putamen, anterior cingulate cortex (ACC), and precentral gyrus. The ReHo of the left putamen was positively correlated with the PR interval, Repeatable Battery for the Assessment of Neuropsychological Status 4A, and Discriminant analysis (D), and negatively correlated with Ae (block) and Ae (total) in the patients. The ReHo value of the left ACC was positively correlated with the severity of depression, Stroop Color Word Test of C - 2B + 100 in reaction time, and negatively correlated with Ce (Missay) and Perseverative Responses in the patients. The ReHo of the left ITG was positively correlated with the Neuroticism scores and negatively correlated with the Lie scores in the patients. Conclusion These results suggested that the decreased ReHo of the salience network might be the underpinning of cognitive impairments in patients with MDD.
Collapse
Affiliation(s)
- Yun Wang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qinqin Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Weibin Wu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Webo Shangguan
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Wensheng Chen
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yang Yu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Wanting Wu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Hairong Liao
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Zishan Liu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xiancong Mai
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China,*Correspondence: Guojun Xie, ✉
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Wenbin Guo, ✉
| |
Collapse
|
9
|
Yi X, Fu Y, Zhang Z, Jiang F, Xiao Q, Chen BT. Altered regional homogeneity and its association with cognitive function in adolescents with borderline personality disorder. J Psychiatry Neurosci 2023; 48:E1-E10. [PMID: 36596589 PMCID: PMC9829058 DOI: 10.1503/jpn.220144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Adolescents with borderline personality disorder often have cognitive impairment, but the underlying mechanism for this is not clear. This study was aimed at assessing alterations in regional homogeneity using resting-state functional MRI (fMRI) in adolescents with borderline personality disorder, and evaluating the associations between regional homogeneity and cognitive testing scores. METHODS We enrolled 50 adolescents with borderline personality disorder (age 12-17 years) and 21 age- and sex-matched healthy controls. We performed regional homogeneity and seed-based functional connectivity analysis for both groups. We also performed correlative analysis for regional homogeneity and cognitive testing scores. RESULTS Compared with healthy controls, adolescents with borderline personality disorder had reduced regional homogeneity values in the frontal cortex (including the left inferior orbitofrontal cortex and the bilateral superior frontal cortex) as well as in the left precuneus in the default mode network. Adolescents with borderline personality disorder also had higher regional homogeneity values in several cortical regions: the right middle temporal gyrus, the right cuneus, the right precentral gyrus and the left middle occipital gyrus. Regional homogeneity values in the left middle occipital gyrus, left inferior orbitofrontal cortex and right superior frontal gyrus were associated with cognitive testing scores in adolescents with borderline personality disorder. We also found increased functional connectivity between the left middle occipital gyrus and right superior frontal gyrus in adolescents with borderline personality disorder. LIMITATIONS This study had a modest sample size, with a possible case selection bias for patients with more severe illness. This cohort also included patients with comorbidities or taking psychotropic medications, which may have confounded study results. CONCLUSION Alterations in regional homogeneity and functional connectivity in brain regions that involve the limbic-cortical circuit could be neural correlates for cognitive impairment in adolescents with borderline personality disorder.
Collapse
Affiliation(s)
| | | | | | | | - Qian Xiao
- From the Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China (Yi, Fu); the National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Changsha, Hunan, P.R. China (Yi, Fu); the National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China (Yi); the Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China (Zhang); the Mental Health Center of Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China (Jiang, Xiao); the Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, Calif., USA (Chen)
| | | |
Collapse
|
10
|
Zhou Y, Song Y, Chen C, Yan S, Chen M, Liu T. Abnormal amplitude of low-frequency fluctuation values as a neuroimaging biomarker for major depressive disorder with suicidal attempts in adolescents: A resting-state fMRI and support vector machine analysis. Front Psychol 2023; 14:1146944. [PMID: 36910742 PMCID: PMC9998935 DOI: 10.3389/fpsyg.2023.1146944] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
Objective Major depressive disorder (MDD) is associated with suicidal attempts (SAs) among adolescents, with suicide being the most common cause of mortality in this age group. This study explored the predictive utility of support vector machine (SVM)-based analyses of amplitude of low-frequency fluctuation (ALFF) results as a neuroimaging biomarker for aiding the diagnosis of MDD with SA in adolescents. Methods Resting-state functional magnetic resonance imaging (rs-fMRI) analyses of 71 first-episode, drug-naive adolescent MDD patients with SA and 54 healthy control individuals were conducted. ALFF and SVM methods were used to analyze the imaging data. Results Relative to healthy control individuals, adolescent MDD patients with a history of SAs showed reduced ALFF values in the bilateral medial superior frontal gyrus (mSFG) and bilateral precuneus. These lower ALFF values were also negatively correlated with child depression inventory (CDI) scores while reduced bilateral precuneus ALFF values were negatively correlated with Suicidal Ideation Questionnaire Junior (SIQ-JR) scores. SVM analyses showed that reduced ALFF values in the bilateral mSFG and bilateral precuneus had diagnostic accuracy levels of 76.8% (96/125) and 82.4% (103/125), respectively. Conclusion Adolescent MDD patients with a history of SA exhibited abnormal ALFF. The identified abnormalities in specific brain regions may be involved in the pathogenesis of this condition and may help identify at-risk adolescents. Specifically, reductions in the ALFF in the bilateral mSFG and bilateral precuneus may be indicative of MDD and SA in adolescent patients.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei, China.,Department of Psychiatry, Wuhan Hospital for Psychotherapy, Wuhan, Hubei, China
| | - Yu Song
- Psychiatric Rehabilitation Department, Wuhan Mental Health Center, Wuhan, Hubei, China.,Psychiatric Rehabilitation Department, Wuhan Hospital for Psychotherapy, Wuhan, Hubei, China
| | - Cheng Chen
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei, China.,Department of Psychiatry, Wuhan Hospital for Psychotherapy, Wuhan, Hubei, China
| | - Shu Yan
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei, China.,Department of Psychiatry, Wuhan Hospital for Psychotherapy, Wuhan, Hubei, China
| | - Mo Chen
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei, China.,Department of Psychiatry, Wuhan Hospital for Psychotherapy, Wuhan, Hubei, China
| | - Tao Liu
- Department of Psychiatry, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| |
Collapse
|
11
|
Wang W, Jia S, Zhao Q, Yang L. Diagnosis of Neural Activity among Abnormal Brain Regions in Patients with Major Depressive Disorder by Magnetic Resonance Imaging Features. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3044010. [PMID: 35799635 PMCID: PMC9256329 DOI: 10.1155/2022/3044010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
In order to explore the diagnostic value of magnetic resonance imaging (MRI) for neural activity among abnormal brain regions in patients with major depressive disorder (MDD), thirty patients with MDD (observation group) were selected for comparison with 30 healthy people without MDD (control group). The included subjects were examined by MRI to compare the MRI features and were analyzed for regional homogeneity (ReHo) and amplitude low-frequency fluctuations (ALFF). The results showed that compared with the control group, the brain regions with increased ReHo and ALFF in the observation group were medial frontal gyrus (right), middle temporal lobe (left), inferior parietal lobe (left), and posterior cerebellar lobe (right); the brain region with increased ReHo and ALFF in the observation group was the middle temporal gyrus (right). Compared with the control group, there were significant differences in ReHo and ALFF in the observation group. It was found that the brain function of patients with MDD was abnormal compared with that of the normal subjects, and the brain network activity was also abnormal. MRI features can be used to explore abnormal brain regions in patients with MDD and have positive guiding value.
Collapse
Affiliation(s)
- Weicheng Wang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Shuang Jia
- Department of Radiology, Nanchong Hospital of Traditional Chinese Medicine, Nanchong 637000, China
| | - Qionghui Zhao
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Lin Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| |
Collapse
|
12
|
Sun J, Chen L, He J, Du Z, Ma Y, Wang Z, Guo C, Luo Y, Gao D, Hong Y, Zhang L, Xu F, Cao J, Hou X, Xiao X, Tian J, Fang J, Yu X. Altered Brain Function in First-Episode and Recurrent Depression: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2022; 16:876121. [PMID: 35546875 PMCID: PMC9083329 DOI: 10.3389/fnins.2022.876121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 01/10/2023] Open
Abstract
Background Studies on differences in brain function activity between the first depressive episode (FDE) and recurrent depressive episodes (RDE) are scarce. In this study, we used regional homogeneity (ReHo) and amplitude of low-frequency fluctuations (ALFF) as indices of abnormal brain function activity. We aimed to determine the differences in these indices between patients with FDE and those with RDE, and to investigate the correlation between areas of abnormal brain function and clinical symptoms. Methods A total of 29 patients with RDE, 28 patients with FDE, and 29 healthy controls (HCs) who underwent resting-state functional magnetic resonance imaging were included in this study. The ReHo and ALFF measurements were used for image analysis and further analysis of the correlation between different brain regions and clinical symptoms. Results Analysis of variance showed significant differences among the three groups in ReHo and ALFF in the frontal, parietal, temporal, and occipital lobes. ReHo was higher in the right inferior frontal triangular gyrus and lower in the left inferior temporal gyrus in the RDE group than in the FDE group. Meanwhile, ALFF was higher in the right inferior frontal triangular gyrus, left anterior cingulate gyrus, orbital part of the left middle frontal gyrus, orbital part of the left superior frontal gyrus, and right angular gyrus, but was lower in the right lingual gyrus in the RDE group than in the FDE group. ReHo and ALFF were lower in the left angular gyrus in the RDE and FDE groups than in the HC group. Pearson correlation analysis showed a positive correlation between the ReHo and ALFF values in these abnormal areas in the frontal lobe and the severity of depressive symptoms (P < 0.05). Abnormal areas in the temporal and occipital lobes were negatively correlated with the severity of depressive symptoms (P < 0.05). Conclusion The RDE and FDE groups had abnormal neural function activity in some of the same brain regions. ReHo and ALFF were more widely distributed in different brain regions and had more complex neuropathological mechanisms in the RDE group than in the FDE group, especially in the right inferior frontal triangular gyrus of the frontal lobe.
Collapse
Affiliation(s)
- Jifei Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limei Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiakai He
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongming Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhi Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunlei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Deqiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Hong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengquan Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiudong Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaobing Hou
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Jing Tian
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| |
Collapse
|
13
|
Liu L, Fan J, Zhan H, Huang J, Cao R, Xiang X, Tian S, Ren H, Tong M, Li Q. Abnormal regional signal in the left cerebellum as a potential neuroimaging biomarker of sudden sensorineural hearing loss. Front Psychiatry 2022; 13:967391. [PMID: 35935421 PMCID: PMC9354585 DOI: 10.3389/fpsyt.2022.967391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE While prior reports have characterized visible changes in neuroimaging findings in individuals suffering from sudden sensorineural hearing loss (SSNHL), the utility of regional homogeneity (ReHo) as a means of diagnosing SSNHL has yet to be established. The present study was thus conducted to assess ReHo abnormalities in SSNHL patients and to establish whether these abnormalities offer value as a diagnostic neuroimaging biomarker of SSNHL through a support vector machine (SVM) analysis approach. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) analyses of 27 SSNHL patients and 27 normal controls were conducted, with the resultant imaging data then being analyzed based on a combination of ReHo and SVM approaches. RESULTS Relative to normal control individuals, patients diagnosed with SSNHL exhibited significant reductions in ReHo values in the left cerebellum, bilateral inferior temporal gyrus (ITG), left superior temporal pole (STP), right parahippocampal gyrus (PHG), left posterior cingulum cortex (PCC), and right superior frontal gyrus (SFG). SVM analyses suggested that reduced ReHo values in the left cerebellum were associated with high levels of diagnostic accuracy (96.30%, 52/54), sensitivity (92.59%, 25/27), and specificity (100.00%, 27/27) when distinguishing between SSNHL patients and control individuals. CONCLUSION These data suggest that SSNHL patients exhibit abnormal resting-state neurological activity, with changes in the ReHo of the left cerebellum offering value as a diagnostic neuroimaging biomarker associated with this condition.
Collapse
Affiliation(s)
- Lei Liu
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jun Fan
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hui Zhan
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Junli Huang
- Department of Medical Imaging, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Rui Cao
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoran Xiang
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Shuai Tian
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hongwei Ren
- Department of Medical Imaging, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Miao Tong
- Department of Stomatology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|