1
|
Kunze M, Malfatti F. Towards a Conceptual Framework to Better Understand the Advantages and Limitations of Model Organisms. Eur J Neurosci 2025; 61:e70071. [PMID: 40165014 DOI: 10.1111/ejn.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
Model organisms (MO) are widely used in neuroscience to study brain processes, behavior, and the biological foundation of human diseases. However, the use of MO has also been criticized for low reliability and insufficient success rate in the development of therapeutic approaches, because the success of MO use also led to overoptimistic and simplistic applications, which sometimes resulted in wrong conclusions. Here, we develop a conceptual framework of MO to support scientists in their practical work and to foster discussions about their power and limitations. For this purpose, we take advantage of concepts developed in the philosophy of science and adjust them for practical application by neuroscientists. We suggest that MO can be best understood as tools that are used to gain information about a group of species or a phenomenon in a species of interest. These learning processes are made possible by some properties of MO, which facilitate the process of acquisition of understanding or provide practical advantages, and the possibility to transfer information between species. However, residual uncertainty in the reliability of information transfer remains, and incorrect generalizations can be side-effects of epistemic benefits, which we consider as representational and epistemic risks. This suggests that to use MO most effectively, scientists should analyze the similarity relation between the involved species, weigh advantages and risks of certain epistemic benefits, and invest in carefully designed validation experiments. Altogether, our analysis illustrates how scientists can benefit from philosophical concepts for their research practice.
Collapse
Affiliation(s)
- Markus Kunze
- Center for Brain Research, Department of Pathobiology of the Nervous System, Medical University of Vienna, Vienna, Austria
| | - Federica Malfatti
- Institut für Christliche Philosophie, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Hodova V, Maresova V, Radic R, Kubikova L. A daily rhythm of cell proliferation in a songbird brain. Sci Rep 2025; 15:4685. [PMID: 39920170 PMCID: PMC11806105 DOI: 10.1038/s41598-025-88957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
Neurogenesis is an active process of creating new neurons in the neurogenic zone. It is influenced by many factors, including the circadian system, which is synchronized by light. Neurogenesis in laboratory rodents peaks at night, and the rodents are nocturnal, contrary to humans that are active during the day. Here, we studied whether proliferation and apoptosis exhibit a daily rhythm in the brain of the diurnal songbird zebra finch (Taeniopygia guttata) and whether the cell proliferation peaks during the dark phase of the day, as in rodents. We injected the birds with the cell proliferation marker 5-ethynyl-2´-deoxyuridine (EdU; thymidine analog), quantified the number of dividing cells in the neurogenic ventricular zone (VZ), and measured mRNA expression of clock genes as well as genes indicating cell proliferation or apoptosis. First, we confirmed the daily rhythms of the clock genes. Next we found that proliferation along the whole VZ did not exhibit a daily rhythm. However, proliferation in the central ventral part of the VZ, i.e. "the hot-spot" area, showed a daily rhythm of proliferation. The highest number of newborn cells was detected in the dark phase of the day. The relative expression of the apoptotic genes caspase 3, Bcl-2, and Bax as well as the proliferating cell nuclear antigen (PCNA) did not show any rhythm. In summary, our results show that cell proliferation in the "hot-spot" region of the VZ in diurnal songbirds shows rhythmic activity over a period of 24 h and that the maximum cell proliferation occurs in the passive phase. This study may have implications for understanding the mechanisms underlying the daily regulation of brain cell proliferation in different species.
Collapse
Affiliation(s)
- Vladimira Hodova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005, Bratislava, Slovakia
| | - Valentina Maresova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005, Bratislava, Slovakia
| | - Rebecca Radic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005, Bratislava, Slovakia
| | - Lubica Kubikova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005, Bratislava, Slovakia.
| |
Collapse
|
3
|
Rolland M, Zai AT, Hahnloser RHR, Del Negro C, Giret N. Visually-guided compensation of deafening-induced song deterioration. Front Psychol 2025; 16:1521407. [PMID: 39981385 PMCID: PMC11839652 DOI: 10.3389/fpsyg.2025.1521407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Human language learning and maintenance depend primarily on auditory feedback but are also shaped by other sensory modalities. Individuals who become deaf after learning to speak (post-lingual deafness) experience a gradual decline in their language abilities. A similar process occurs in songbirds, where deafness leads to progressive song deterioration. However, songbirds can modify their songs using non-auditory cues, challenging the prevailing assumption that auditory feedback is essential for vocal control. In this study, we investigated whether deafened birds could use visual cues to prevent or limit song deterioration. We developed a new metric for assessing syllable deterioration called the spectrogram divergence score. We then trained deafened birds in a behavioral task where the spectrogram divergence score of a target syllable was computed in real-time, triggering a contingent visual stimulus based on the score. Birds exposed to the contingent visual stimulus-a brief light extinction-showed more stable song syllables than birds that received either no light extinction or randomly triggered light extinction. Notably, this effect was specific to the targeted syllable and did not influence other syllables. This study demonstrates that deafness-induced song deterioration in birds can be partially mitigated with visual cues.
Collapse
Affiliation(s)
- Manon Rolland
- Institut des Neurosciences Paris Saclay, CNRS, Université Paris Saclay, Saclay, France
| | - Anja T. Zai
- Institute of Neuroinformatics, ETH Zurich and UZH, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Richard H. R. Hahnloser
- Institute of Neuroinformatics, ETH Zurich and UZH, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Catherine Del Negro
- Institut des Neurosciences Paris Saclay, CNRS, Université Paris Saclay, Saclay, France
| | - Nicolas Giret
- Institut des Neurosciences Paris Saclay, CNRS, Université Paris Saclay, Saclay, France
| |
Collapse
|
4
|
Li X, Zhu K, Zhen Y. A versatile pipeline to identify convergently lost ancestral conserved fragments associated with convergent evolution of vocal learning. Brief Bioinform 2024; 26:bbae614. [PMID: 39581870 PMCID: PMC11586126 DOI: 10.1093/bib/bbae614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Molecular convergence in convergently evolved lineages provides valuable insights into the shared genetic basis of converged phenotypes. However, most methods are limited to coding regions, overlooking the potential contribution of regulatory regions. We focused on the independently evolved vocal learning ability in multiple avian lineages, and developed a whole-genome-alignment-free approach to identify genome-wide Convergently Lost Ancestral Conserved fragments (CLACs) in these lineages, encompassing noncoding regions. We discovered 2711 CLACs that are overrepresented in noncoding regions. Proximal genes of these CLACs exhibit significant enrichment in neurological pathways, including glutamate receptor signaling pathway and axon guidance pathway. Moreover, their expression is highly enriched in brain tissues associated with speech formation. Notably, several have known functions in speech and language learning, including ROBO family, SLIT2, GRIN1, and GRIN2B. Additionally, we found significantly enriched motifs in noncoding CLACs, which match binding motifs of transcriptional factors involved in neurogenesis and gene expression regulation in brain. Furthermore, we discovered 19 candidate genes that harbor CLACs in both human and multiple avian vocal learning lineages, suggesting their potential contribution to the independent evolution of vocal learning in both birds and humans.
Collapse
Affiliation(s)
- Xiaoyi Li
- School of Life Sciences, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200433, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
| | - Kangli Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
| | - Ying Zhen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
5
|
Amaral-Silva L, Santin J. Neural Processing without O 2 and Glucose Delivery: Lessons from the Pond to the Clinic. Physiology (Bethesda) 2024; 39:0. [PMID: 38624246 PMCID: PMC11573265 DOI: 10.1152/physiol.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024] Open
Abstract
Neuronal activity requires a large amount of ATP, leading to a rapid collapse of brain function when aerobic respiration fails. Here, we summarize how rhythmic motor circuits in the brain stem of adult frogs, which normally have high metabolic demands, transform to produce proper output during severe hypoxia associated with emergence from hibernation. We suggest that general principles underlying plasticity in brain bioenergetics may be uncovered by studying nonmammalian models that face extreme environments, yielding new insights to combat neurological disorders involving dysfunctional energy metabolism.
Collapse
Affiliation(s)
- Lara Amaral-Silva
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States
- Division of Biology, University of Missouri, Columbia, Missouri, United States
| | - Joseph Santin
- Division of Biology, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
6
|
Frank SY, Hunt JL, Bae AJ, Chirathivat N, Lotfi S, Raja SC, Gobes SMH. Hemispheric dominance in HVC is experience-dependent in juvenile male zebra finches. Sci Rep 2024; 14:5781. [PMID: 38461197 PMCID: PMC10924951 DOI: 10.1038/s41598-024-55987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024] Open
Abstract
Juvenile male zebra finches (Taeniopygia guttata) must be exposed to an adult tutor during a sensitive period to develop normal adult song. The pre-motor nucleus HVC (acronym used as a proper name), plays a critical role in song learning and production (cf. Broca's area in humans). In the human brain, left-side hemispheric dominance in some language regions is positively correlated with proficiency in linguistic skills. However, it is unclear whether this pattern depends upon language learning, develops with normal maturation of the brain, or is the result of pre-existing functional asymmetries. In juvenile zebra finches, even though both left and right HVC contribute to song production, baseline molecular activity in HVC is left-dominant. To test if HVC exhibits hemispheric dominance prior to song learning, we raised juvenile males in isolation from adult song and measured neuronal activity in the left and right HVC upon first exposure to an auditory stimulus. Activity in the HVC was measured using the immediate early gene (IEG) zenk (acronym for zif-268, egr-1, NGFI-a, and krox-24) as a marker for neuronal activity. We found that neuronal activity in the HVC of juvenile male zebra finches is not lateralized when raised in the absence of adult song, while normally-reared juvenile birds are left-dominant. These findings show that there is no pre-existing asymmetry in the HVC prior to song exposure, suggesting that lateralization of the song system depends on learning through early exposure to adult song and subsequent song-imitation practice.
Collapse
Affiliation(s)
- Sophia Y Frank
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Jesse L Hunt
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Andrea J Bae
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Napim Chirathivat
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Sima Lotfi
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Sahitya C Raja
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Sharon M H Gobes
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA.
| |
Collapse
|