1
|
Carrascosa AJ, Navarrete F, Saldaña R, García-Gutiérrez MS, Montalbán B, Navarro D, Gómez-Guijarro FM, Gasparyan A, Murcia-Sánchez E, Torregrosa AB, Pérez-Doblado P, Gutiérrez L, Manzanares J. Cannabinoid Analgesia in Postoperative Pain Management: From Molecular Mechanisms to Clinical Reality. Int J Mol Sci 2024; 25:6268. [PMID: 38892456 PMCID: PMC11172912 DOI: 10.3390/ijms25116268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Postoperative pain (POP) is a challenging clinical phenomenon that affects the majority of surgical patients and demands effective management to mitigate adverse outcomes such as persistent pain. The primary goal of POP management is to alleviate suffering and facilitate a seamless return to normal function for the patient. Despite compelling evidence of its drawbacks, opioid analgesia remains the basis of POP treatment. Novel therapeutic approaches rely on multimodal analgesia, integrating different pharmacological strategies to optimize efficacy while minimizing adverse effects. The recognition of the imperative role of the endocannabinoid system in pain regulation has prompted the investigation of cannabinoid compounds as a new therapeutic avenue. Cannabinoids may serve as adjuvants, enhancing the analgesic effects of other drugs and potentially replacing or at least reducing the dependence on other long-term analgesics in pain management. This narrative review succinctly summarizes pertinent information on the molecular mechanisms, clinical therapeutic benefits, and considerations associated with the plausible use of various cannabinoid compounds in treating POP. According to the available evidence, cannabinoid compounds modulate specific molecular mechanisms intimately involved in POP. However, only two of the eleven clinical trials that evaluated the efficacy of different cannabinoid interventions showed positive results.
Collapse
Affiliation(s)
- Antonio J. Carrascosa
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Raquel Saldaña
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Belinda Montalbán
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Fernando M. Gómez-Guijarro
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Elena Murcia-Sánchez
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Paloma Pérez-Doblado
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Luisa Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
2
|
al'Absi M, DeAngelis BN, Nakajima M, Hodges JS, Budney A, Hatsukami D, Allen S. Biobehavioral and affective stress responses during nicotine withdrawal: Influence of regular cannabis co-use. Psychopharmacology (Berl) 2024; 241:253-262. [PMID: 37897498 DOI: 10.1007/s00213-023-06481-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Co-use of cannabis is increasing in nicotine users and presents additional challenges in addressing nicotine dependence. This study examined the links between regular co-use of cannabis and nicotine with biobehavioral and affective changes in response to stress during nicotine withdrawal and ad libitum use. METHODS Participants (N = 79) who regularly used nicotine-only, cannabis-only, both substances, or neither substance were invited to attend two laboratory stress assessment sessions. For nicotine users, one session occurred during ad libitum nicotine use and one occurred after abstinence from nicotine. During the stress sessions, participants provided saliva samples for cortisol assay and completed measures of subjective states. Cardiovascular measures were collected during resting baseline, exposure to acute stressors, and a recovery rest period. RESULTS Nicotine-only users had higher average cortisol levels in the second lab session (nicotine withdrawal) relative to the first lab session (ad libitum nicotine use). Compared to nicotine non-users, nicotine users reported less positive affect and exhibited attenuated cortisol and systolic blood pressure (BP) stress responses. Cannabis users exhibited exaggerated diastolic BP responses to stress compared to cannabis non-users, and co-users of nicotine and cannabis had higher levels of cannabis craving than cannabis-only users (p < .01). CONCLUSIONS This study partially replicated earlier findings on the effects of chronic nicotine use and provided novel results regarding the influence of cannabis co-use on physiological and affective responses to stress in nicotine users during nicotine withdrawal.
Collapse
Affiliation(s)
- Mustafa al'Absi
- Department of Family Medicine and Biobehavioral Health, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA.
| | - Briana N DeAngelis
- Department of Family Medicine and Biobehavioral Health, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA
| | - Motohiro Nakajima
- Department of Family Medicine and Biobehavioral Health, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA
- Eikei University of Hiroshima, Hiroshima, Japan
| | - James S Hodges
- School of Public Health, University of Minnesota, Twin Cities. Minneapolis, MN, USA
| | | | - Dorothy Hatsukami
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Twin Cities. Minneapolis, MN, USA
| | - Sharon Allen
- Department of Family Medicine and Community Health, University of Minnesota, Twin Cities. Minneapolis, MN, USA
| |
Collapse
|
3
|
Gunduz-Cinar O, Castillo LI, Xia M, Van Leer E, Brockway ET, Pollack GA, Yasmin F, Bukalo O, Limoges A, Oreizi-Esfahani S, Kondev V, Báldi R, Dong A, Harvey-White J, Cinar R, Kunos G, Li Y, Zweifel LS, Patel S, Holmes A. A cortico-amygdala neural substrate for endocannabinoid modulation of fear extinction. Neuron 2023; 111:3053-3067.e10. [PMID: 37480845 PMCID: PMC10592324 DOI: 10.1016/j.neuron.2023.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Preclinical and clinical studies implicate endocannabinoids (eCBs) in fear extinction, but the underlying neural circuit basis of these actions is unclear. Here, we employed in vivo optogenetics, eCB biosensor imaging, ex vivo electrophysiology, and CRISPR-Cas9 gene editing in mice to examine whether basolateral amygdala (BLA)-projecting medial prefrontal cortex (mPFC) neurons represent a neural substrate for the effects of eCBs on extinction. We found that photoexcitation of mPFC axons in BLA during extinction mobilizes BLA eCBs. eCB biosensor imaging showed that eCBs exhibit a dynamic stimulus-specific pattern of activity at mPFC→BLA neurons that tracks extinction learning. Furthermore, using CRISPR-Cas9-mediated gene editing, we demonstrated that extinction memory formation involves eCB activity at cannabinoid CB1 receptors expressed at vmPFC→BLA synapses. Our findings reveal the temporal characteristics and a neural circuit basis of eCBs' effects on fear extinction and inform efforts to target the eCB system as a therapeutic approach in extinction-deficient neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| | - Laura I Castillo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Maya Xia
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Elise Van Leer
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Emma T Brockway
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Gabrielle A Pollack
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Farhana Yasmin
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Aaron Limoges
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Sarvar Oreizi-Esfahani
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Rita Báldi
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ao Dong
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Judy Harvey-White
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA; Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Yulong Li
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Fan X, Mocchi M, Pascuzzi B, Xiao J, Metzger BA, Mathura RK, Hacker C, Adkinson JA, Bartoli E, Elhassa S, Watrous AJ, Zhang Y, Goodman W, Pouratian N, Bijanki KR. Brain mechanisms underlying the emotion processing bias in treatment-resistant depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554837. [PMID: 37693557 PMCID: PMC10491112 DOI: 10.1101/2023.08.26.554837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Depression is associated with a cognitive bias towards negative information and away from positive information. This biased emotion processing may underlie core depression symptoms, including persistent feelings of sadness or low mood and a reduced capacity to experience pleasure. The neural mechanisms responsible for this biased emotion processing remain unknown. Here, we had a unique opportunity to record stereotactic electroencephalography (sEEG) signals in the amygdala and prefrontal cortex (PFC) from 5 treatment-resistant depression (TRD) patients and 12 epilepsy patients (as control) while they participated in an affective bias task in which happy and sad faces were rated. First, compared with the control group, patients with TRD showed increased amygdala responses to sad faces in the early stage (around 300 ms) and decreased amygdala responses to happy faces in the late stage (around 600 ms) following the onset of faces. Further, during the late stage of happy face processing, alpha-band activity in PFC as well as alpha-phase locking between the amygdala and PFC were significantly greater in TRD patients compared to the controls. Second, after deep brain stimulation (DBS) delivered to bilateral subcallosal cingulate (SCC) and ventral capsule/ventral striatum (VC/VS), atypical amygdala and PFC processing of happy faces in TRD patients remitted toward the normative pattern. The increased amygdala activation during the early stage of sad face processing suggests an overactive bottom-up processing system in TRD. Meanwhile, the reduced amygdala response during the late stage of happy face processing could be attributed to inhibition by PFC through alpha-band oscillation, which can be released by DBS in SCC and VC/VS.
Collapse
|
5
|
Meamar M, Rashidy-Pour A, Vafaei AA, Raise-Abdullahi P. β-adrenoceptors of the infra-limbic cortex mediate corticosterone-induced enhancement of acquisition and consolidation of fear memory extinction in rats. Behav Brain Res 2023; 442:114310. [PMID: 36706807 DOI: 10.1016/j.bbr.2023.114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The extinction of auditory fear conditioning (AFC) refers to reducing the fear responses induced following repeated presentation of a conditioned stimulus (tone) in the absence of an unconditioned stimulus (electric foot shock). Glucocorticoid receptors (GRs) play an important role in extinction, but the underlying neurobiological mechanisms are unclear. This study aimed to investigate the interaction between glucocorticoids and β-adrenoceptors of the infra-limbic cortex (IL) in regulating the acquisition and consolidation of fear memory extinction in rats. Male rats were trained to AFC and received three trial tones (30 s, 4 kHz, 80 dB) co-terminated with a footshock (0.8 mA, 1 s; unconditioned stimulus). Extinction trials were conducted over 3 days after training (Ext 1-3). In experiment 1, rats received clenbuterol (0.25 mg/kg/2 ml, IP) as a β2-adrenoceptor agonist or propranolol (2.5 mg/kg/2 ml, IP) as a β-adrenoceptors antagonist before Ext 1 and immediately after Ext 1 and Ext 2 followed by systemic injection of corticosterone (3 mg/kg/2 ml, IP). In Experiment 2, separate groups of rats received a bilateral intra-IL injection of clenbuterol (50 ng/0.5 µl/side) or propranolol (500 ng/0.5 µl/side) followed by a systemic injection of corticosterone (3 mg/kg/2 ml) before Ext 1 and immediately after Ext 1 and Ext 2. Results indicated that systemic and intra-IL injections of clenbuterol and propranolol inhibited and increased the facilitative effects of corticosterone on fear memory extinction, respectively. These findings show that activating β-adrenergic receptors in the IL mediates glucocorticoid effects on the acquisition and consolidation of auditory-conditioned fear memory extinction.
Collapse
Affiliation(s)
- Morvarid Meamar
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | | |
Collapse
|
6
|
Alizamini MM, Li Y, Zhang JJ, Liang J, Haghparast A. Endocannabinoids and addiction memory: Relevance to methamphetamine/morphine abuse. World J Biol Psychiatry 2022; 23:743-763. [PMID: 35137652 DOI: 10.1080/15622975.2022.2039408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AIM This review aims to summarise the role of endocannabinoid system (ECS), incluing cannabinoid receptors and their endogenous lipid ligands in the modulation of methamphetamine (METH)/morphine-induced memory impairments. METHODS Here, we utilized the results from researches which have investigated regulatory role of ECS (including cannabinoid receptor agonists and antagonists) on METH/morphine-induced memory impairments. RESULTS Among the neurotransmitters, glutamate and dopamine seem to play a critical role in association with the ECS to heal the drug-induced memory damages. Also, the amygdala, hippocampus, and prefrontal cortex are three important brain regions that participate in both drug addiction and memory task processes, and endocannabinoid neurotransmission have been investigated. CONCLUSION ECS can be regarded as a treatment for the side effects of METH and morphine, and their memory-impairing effects.
Collapse
Affiliation(s)
- Mirmohammadali Mirramezani Alizamini
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Jun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Goh KK, Lu ML. Relationship between the domains of theory of mind, social dysfunction, and oxytocin in schizophrenia. J Psychiatr Res 2022; 155:420-429. [PMID: 36182771 DOI: 10.1016/j.jpsychires.2022.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/28/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022]
Abstract
Social dysfunction, manifested by impaired social cognition, is contributing to poorer prognosis of patients with schizophrenia. Growing evidence indicates that oxytocin acts as a neurotransmitter in the regulation of social cognition. It still lacks a thorough understanding of how oxytocin is linked with deficits in social cognition and social functioning in schizophrenia. To this end, we aimed to study the role of plasma oxytocin levels in the relationship between subdomains of social cognition and social dysfunction in patients with schizophrenia. Social Functioning Scale was administered to measure social dysfunction while Faux Pas Recognition Test was used to assess the Theory of Mind (ToM) in 40 patients with schizophrenia and 40 age-matched healthy controls. Patients with schizophrenia exhibited more deficits in ToM, more severe social dysfunction, and had lower plasma oxytocin levels, relative to healthy controls. A pooled correlation analysis of all participants revealed significant effects of plasma oxytocin levels on the ToM and social dysfunction. In patients with schizophrenia, plasma oxytocin levels were positively correlated with the affective but not cognitive component of the ToM, and the effects of plasma oxytocin levels on social functioning were partially mediated by affective ToM. Our findings underscore the importance of oxytocin as a potential predictor of ToM and social functioning in patients with schizophrenia. It may be worthwhile for future studies of oxytocin in schizophrenia to focus on an affected behavioral domain, e.g., social cognition, rather than diagnosis, and the targeted domain should be deconstructed into more detailed subdomains.
Collapse
Affiliation(s)
- Kah Kheng Goh
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Prenatal THC Exposure Induces Sex-Dependent Neuropsychiatric Endophenotypes in Offspring and Long-Term Disruptions in Fatty-Acid Signaling Pathways Directly in the Mesolimbic Circuitry. eNeuro 2022; 9:ENEURO.0253-22.2022. [PMID: 36171057 PMCID: PMC9557330 DOI: 10.1523/eneuro.0253-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022] Open
Abstract
Despite increased prevalence of maternal cannabis use, little is understood regarding potential long-term effects of prenatal cannabis exposure (PCE) on neurodevelopmental outcomes. While neurodevelopmental cannabis exposure increases the risk of developing affective/mood disorders in adulthood, the precise neuropathophysiological mechanisms in male and female offspring are largely unknown. Given the interconnectivity of the endocannabinoid (ECb) system and the brain's fatty acid pathways, we hypothesized that prenatal exposure to Δ9-tetrahydrocannabinol (THC) may dysregulate fetal neurodevelopment through alterations of fatty-acid dependent synaptic and neuronal function in the mesolimbic system. To investigate this, pregnant Wistar rats were exposed to vehicle or THC (3 mg/kg) from gestational day (GD)7 until GD22. Anxiety-like, depressive-like, and reward-seeking behavior, electrophysiology, and molecular assays were performed on adult male/female offspring. Imaging of fatty acids using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) was performed at prepubescence and adulthood. We report that PCE induces behavioral, neuronal, and molecular alterations in the mesolimbic system in male and female offspring, resembling neuropsychiatric endophenotypes. Additionally, PCE resulted in profound dysregulation of critical fatty acid pathways in the developing brain lipidome. Female progeny exhibited significant alterations to fatty acid levels at prepubescence but recovered from these deficits by early adulthood. In contrast, males exhibited persistent fatty acid deficits into adulthood. Moreover, both sexes maintained enduring abnormalities in glutamatergic/GABAergic function in the nucleus accumbens (NAc). These findings identify several novel long-term risks of maternal cannabis use and demonstrate for the first time, sex-related effects of maternal cannabinoid exposure directly in the developing neural lipidome.
Collapse
|
9
|
Eghtedarian R, Akbari M, Badrlou E, Mahmud Hussen B, Eslami S, Akhavan-Bahabadi M, Taheri M, Ghafouri-Fard S, Neishabouri SM. Assessment of expression of oxytocin-related lncRNAs in schizophrenia. Eur J Pharmacol 2022; 932:175205. [PMID: 35987251 DOI: 10.1016/j.ejphar.2022.175205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Schizophrenia is a neuropsychiatric disorder characterized by a variety of clinical manifestations. This disorder has a complex inheritance. Oxytocinegic system has been shown to be implicated in the pathophysiology of schizophrenia. This system can alter social cognition through direct interaction with dopaminergic signaling, facilitating brain-stimulation reward, reduction of defense mechanism and stress reactivity, and modulation of social information processing through enhancing the greatness of social incentives. Long non-coding RNAs (lncRNAs) can affect activity of oxytocinegic system, thus contributing in the etiology of this disorder. METHODS We designed the current study to appraise dysregulation of nine oxytocin-associated mRNAs and lncRNAs in the venous blood of patients with schizophrenia. RESULTS Expression of FOS was up-regulated in total patients compared with total control group (Expression ratio (95% CI)= 13.64 (5.46-34.05), adjusted P value<0.0001) and in female patients compared with female control group (Expression ratio (95% CI)=32.13 (5.81-176), adjusted P value<0.0001). Such pattern was also seen for Lnc-FOXF1 (Expression ratio (95% CI)= 6.41 (2.84-14.3), adjusted P value<0.0001 and Expression ratio (95% CI)= 14.41 (3.2-64.44), adjusted P value<0.0001, respectively). ITPR1 was down-regulated in total patients compared with total controls (Expression ratio (95% CI)= 0.22 (0.076-0.67), adjusted P value=0.0079). ROC curve analyses demonstrated that FOS had the best AUC value among other genes in differentiation between patients and controls (AUC=0.78). CONCLUSION The above-mentioned results imply dysregulation of oxytocin-related genes in the circulatory blood of patients with schizophrenia.
Collapse
Affiliation(s)
- Reyhane Eghtedarian
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadarian Akbari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Badrlou
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
10
|
Abstract
PURPOSE A growing body of evidence has implicated the endocannabinoid (eCB) system in the acute, chronic, and withdrawal effects of alcohol/ethanol on synaptic function. These eCB-mediated synaptic effects may contribute to the development of alcohol use disorder (AUD). Alcohol exposure causes neurobiological alterations similar to those elicited by chronic cannabinoid (CB) exposure. Like alcohol, cannabinoids alter many central processes, such as cognition, locomotion, synaptic transmission, and neurotransmitter release. There is a strong need to elucidate the effects of ethanol on the eCB system in different brain regions to understand the role of eCB signaling in AUD. SEARCH METHODS For the scope of this review, preclinical studies were identified through queries of the PubMed database. SEARCH RESULTS This search yielded 459 articles. Clinical studies and papers irrelevant to the topic of this review were excluded. DISCUSSION AND CONCLUSIONS The endocannabinoid system includes, but is not limited to, cannabinoid receptors 1 (CB1), among the most abundantly expressed neuronal receptors in the brain; cannabinoid receptors 2 (CB2); and endogenously formed CB1 ligands, including arachidonoylethanolamide (AEA; anandamide), and 2-arachidonoylglycerol (2-AG). The development of specific CB1 agonists, such as WIN 55,212-2 (WIN), and antagonists, such as SR 141716A (rimonabant), provide powerful pharmacological tools for eCB research. Alcohol exposure has brain region-specific effects on the eCB system, including altering the synthesis of endocannabinoids (e.g., AEA, 2-AG), the synthesis of their precursors, and the density and coupling efficacy of CB1. These alcohol-induced alterations of the eCB system have subsequent effects on synaptic function including neuronal excitability and postsynaptic conductance. This review will provide a comprehensive evaluation of the current literature on the synaptic interactions of alcohol exposure and eCB signaling systems, with an emphasis on molecular and physiological synaptic effects of alcohol on the eCB system. A limited volume of studies has focused on the underlying interactions of alcohol and the eCB system at the synaptic level in the brain. Thus, the data on synaptic interactions are sparse, and future research addressing these interactions is much needed.
Collapse
Affiliation(s)
- Sarah A Wolfe
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California
| | - Valentina Vozella
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California
| | - Marisa Roberto
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California
| |
Collapse
|
11
|
al'Absi M, Allen AM. Impact of Acute and Chronic Cannabis Use on Stress Response Regulation: Challenging the Belief That Cannabis Is an Effective Method for Coping. Front Psychol 2021; 12:687106. [PMID: 34276511 PMCID: PMC8283823 DOI: 10.3389/fpsyg.2021.687106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Although research has only recently started to examine the impact of cannabis use on stress response, there is some evidence that indicates acute and chronic impacts of cannabis on these processes. In this paper, we review processes involved in regulating the stress response and we review the influence of acute and chronic exposure to cannabis on patterns and regulation of the stress response. We also highlight the role of stress as a risk factor for initiation and maintenance of cannabis use. In this context, we examine moderating variables, including sex and life adversity. In light of recent observations indicating increasing prevalence of cannabis use during pregnancy, we provide additional focus on cannabis use in this vulnerable population, including how acute and chronic stress may predispose some individuals to use cannabis during pregnancy. While this line of research is in its infancy, we review available articles that focus on the perinatal period and that examined the association between cannabis use and various life stressors, including partner violence, job loss, and lack of housing. We also review psychiatric co-morbidities (e.g., post-traumatic stress disorder, anxiety). A better understanding of the way stress and cannabis use relate within the general population, as well as within certain subgroups that may be at a greater risk of using and/or at greater risk for adverse outcomes of use, may lead to the development of novel prevention and intervention approaches.
Collapse
Affiliation(s)
- Mustafa al'Absi
- Department of Family Medicine and Biobehavioral Health, University of Minnesota Medical School, Duluth, MN, United States
| | - Alicia M Allen
- Department of Family and Community Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
12
|
Pintori N, Castelli MP, Miliano C, Simola N, Fadda P, Fattore L, Scherma M, Ennas MG, Mostallino R, Flore G, De Felice M, Sagheddu C, Pistis M, Di Chiara G, De Luca MA. Repeated exposure to JWH-018 induces adaptive changes in the mesolimbic and mesocortical dopaminergic pathways, glial cells alterations, and behavioural correlates. Br J Pharmacol 2021; 178:3476-3497. [PMID: 33837969 PMCID: PMC8457172 DOI: 10.1111/bph.15494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose Spice/K2 herbal mixtures, containing synthetic cannabinoids such as JWH‐018, have been marketed as marijuana surrogates since 2004. JWH‐018 has cannabinoid CB1 receptor‐dependent reinforcing properties and acutely increases dopaminergic transmission selectively in the NAc shell. Here, we tested the hypothesis that repeated administration of JWH‐018 (i) modulates behaviour, (ii) affects dopaminergic transmission and its responsiveness to motivational stimuli, and (iii) is associated with a neuroinflammatory phenotype. Experimental Approach Rats were administered with JWH‐018 once a day for 14 consecutive days. We then performed behavioural, electrophysiological, and neurochemical evaluation at multiple time points after drug discontinuation. Key Results Repeated JWH‐018 exposure (i) induced anxious and aversive behaviours, transitory attentional deficits, and withdrawal signs; (ii) decreased spontaneous activity and number of dopamine neurons in the VTA; and (iii) reduced stimulation of dopaminergic transmission in the NAc shell while potentiating that in the NAc core, in response to acute JWH‐018 challenge. Moreover, (iv) we observed a decreased dopamine sensitivity in the NAc shell and core, but not in the mPFC, to a first chocolate exposure; conversely, after a second exposure, dialysate dopamine fully increased in the NAc shell and core but not in the mPFC. Finally, selected dopamine brain areas showed (v) astrogliosis (mPFC, NAc shell and core, VTA), microgliosis (NAc shell and core), and downregulation of CB1 receptors (mPFC, NAc shell and core). Conclusion and Implications Repeated exposure to JWH‐018 may provide a useful model to clarify the detrimental effects of recurring use of Spice/K2 drugs.
Collapse
Affiliation(s)
- Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Institute of Neuroscience-Cagliari, National Research Council, Rome, Italy
| | - Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council, Rome, Italy
| | - Maria Scherma
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Grazia Ennas
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giovanna Flore
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Marta De Felice
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Claudia Sagheddu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Institute of Neuroscience-Cagliari, National Research Council, Rome, Italy
| | - Gaetano Di Chiara
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Institute of Neuroscience-Cagliari, National Research Council, Rome, Italy
| | | |
Collapse
|
13
|
Lee SK, Lee JS, Shin YB, Kim HE, Kim BH, Kim JJ. The relationship between ambivalence, alexithymia, and salience network dysfunction in schizophrenia. Psychiatry Res Neuroimaging 2021; 310:111271. [PMID: 33711658 DOI: 10.1016/j.pscychresns.2021.111271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/17/2021] [Accepted: 03/04/2021] [Indexed: 10/22/2022]
Abstract
Ambivalence in schizophrenia is worth investigating its association with salience processing and alexithymia using functional MRI. Twenty-two patients with schizophrenia and 22 healthy controls were scanned during the ambivalence task of matching picture (ambivalent, positive and negative) and word (positive and negative) stimuli, and the Toronto Alexithymia Scale (TAS) was rated. Patients exhibited decreased activity in the anterior cingulate cortex (ACC) and insula compared to controls, and ACC activity in the ambivalent condition was negatively correlated with the TAS score in patients. Ambivalence in schizophrenia may be based on salience network dysfunction, and this disturbance may be related to alexithymia.
Collapse
Affiliation(s)
- Seon-Koo Lee
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Bundang Jesaeng Hospital, Seongnam, Gyeonggi, Republic of Korea
| | - Jung Suk Lee
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, National Health Insurance Service Ilsan Hospital, Goyang, Gyeonggi, Republic of Korea
| | - Yu-Bin Shin
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hesun Erin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung-Hoon Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Jin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Oxytocin in Schizophrenia: Pathophysiology and Implications for Future Treatment. Int J Mol Sci 2021; 22:ijms22042146. [PMID: 33670047 PMCID: PMC7926349 DOI: 10.3390/ijms22042146] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Schizophrenia is a form of mental disorder that is behaviorally characterized by abnormal behavior, such as social function deficits or other behaviors that are disconnected from reality. Dysregulation of oxytocin may play a role in regulating the expression of schizophrenia. Given oxytocin’s role in social cognition and behavior, a variety of studies have examined the potential clinical benefits of oxytocin in improving the psychopathology of patients with schizophrenia. In this review, we highlight the evidence for the role of endogenous oxytocin in schizophrenia, from animal models to human studies. We further discuss the potential of oxytocin as a therapeutic agent for schizophrenia and its implication in future treatment.
Collapse
|
15
|
Martín-Sánchez A, García-Baos A, Castro-Zavala A, Alegre-Zurano L, Valverde O. Early-life stress exacerbates the effects of WIN55,212-2 and modulates the cannabinoid receptor type 1 expression. Neuropharmacology 2021; 184:108416. [PMID: 33271186 DOI: 10.1016/j.neuropharm.2020.108416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/06/2023]
Abstract
Early-life stress induces an abnormal brain development and increases the risk of psychiatric diseases, including depression, anxiety and substance use disorders. We have developed a reliable model for maternal neglect, named maternal separation with early weaning (MSEW) in CD1 mice. In the present study, we evaluated the long-term effects on anxiety-like behaviours, nociception as well as the Iba1-positive microglial cells in this model in comparison to standard nest (SN) mice. Moreover, we investigated whether MSEW alters the cannabinoid agonist WIN55,212-2 effects regarding reward, spatial and emotional memories, tolerance to different cannabinoid responses, and physical dependence. Adult male offspring of MSEW group showed impaired responses on spatial and emotional memories after a repeated WIN55,212-2 treatment. These behavioural impairments were associated with an increase in basolateral amygdala and hippocampal CB1-expressing fibres and higher number of CB1-containing cells in cerebellum. Additionally, MSEW promotes a higher number of Iba1-positive microglial cells in basolateral amygdala and cerebellum. As for the cannabinoid-induced effects, rearing conditions did not influence the rewarding effects of WIN55,212-2 in the conditioned place preference paradigm. However, MSEW mice showed a delay in the development of tolerance to the cannabinoid effects. Moreover, CB1-positive fibres were reduced in limbic areas in MSEW mice after cannabinoid withdrawal precipitated with the CB1 antagonist SR141617A. These findings support that early-life stress promotes behavioural and molecular changes in the sensitivity to cannabinoids, which are mediated by alterations in CB1 signalling in limbic areas and it induces an increased Iba1-microglial marker which could interfere in emotional memories formation.
Collapse
Affiliation(s)
- Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain
| | - Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
16
|
Paulus FW, Ohmann S, Möhler E, Plener P, Popow C. Emotional Dysregulation in Children and Adolescents With Psychiatric Disorders. A Narrative Review. Front Psychiatry 2021; 12:628252. [PMID: 34759846 PMCID: PMC8573252 DOI: 10.3389/fpsyt.2021.628252] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Emotional dysregulation (ED) is a transdiagnostic construct defined as the inability to regulate the intensity and quality of emotions (such as, fear, anger, sadness), in order to generate an appropriate emotional response, to handle excitability, mood instability, and emotional overreactivity, and to come down to an emotional baseline. Because ED has not been defined as a clinical entity, and because ED plays a major role in child and adolescent psychopathology, we decided to summarize current knowledge on this topic based on a narrative review of the current literature. Methods: This narrative review is based on a literature search of peer-reviewed journals. We searched the databases ERIC, PsycARTICLES, PsycINFO and PSYNDEX on June 2, 2020 for peer reviewed articles published between 2000 and 2020 in English language for the preschool, school, and adolescent age (2-17 years) using the following search terms: "emotional dysregulation" OR "affect dysregulation," retrieving 943 articles. Results: The results of the literature search are presented in the following sections: the relationship between ED and psychiatric disorders (ADHD, Mood Disorders, Psychological Trauma, Posttraumatic Stress Disorder, Non-suicidal Self-Injury, Eating Disorders, Oppositional Defiant Disorder, Conduct Disorder, Disruptive Disruptive Mood Dysregulation Disorder, Personality Disorders, Substance Use Disorder, Developmental Disorders, Autism Spectrum Disorder, Psychosis and Schizophrenia, and Gaming Disorder), prevention, and treatment of ED. Conclusion: Basic conditions of ED are genetic disposition, the experience of trauma, especially sexual or physical abuse, emotional neglect in childhood or adolescence, and personal stress. ED is a complex construct and a comprehensive concept, aggravating a number of various mental disorders. Differential treatment is mandatory for individual and social functioning.
Collapse
Affiliation(s)
- Frank W Paulus
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Saarland University Medical Center, Homburg, Germany
| | - Susanne Ohmann
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria.,Austrian Society of Cognitive Behavioral Therapy (OeGVT), Vienna, Austria
| | - Eva Möhler
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Saarland University Medical Center, Homburg, Germany
| | - Paul Plener
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Christian Popow
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria.,Austrian Society of Cognitive Behavioral Therapy (OeGVT), Vienna, Austria.,Department of Child and Adolescent Psychiatry and Psychotherapy, Regional Psychiatric Hospital, Mauer, Austria
| |
Collapse
|
17
|
Perju-Dumbrava L, Kempster P. Movement disorders in psychiatric patients. BMJ Neurol Open 2020; 2:e000057. [PMID: 33681793 PMCID: PMC7871724 DOI: 10.1136/bmjno-2020-000057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 11/11/2022] Open
Abstract
The observability of movement gives it advantages when trying to draw connections between brain and mind. Disturbed motor function pervades schizophrenia, though it is difficult now to subtract the effects of antipsychotic treatment. There is evidence from patients never exposed to these drugs that dyskinesia and even parkinsonism are to some degree innate to schizophrenia. Tardive dyskinesia and drug-induced parkinsonism are the most common movement disorders encountered in psychiatric practice. While D2 dopamine receptor blockade is a causative factor, both conditions defy straightforward neurochemical explanation. Balanced against the need to manage schizophrenic symptoms, neither prevention nor treatment is easy. Of all disorders classified as psychiatric, catatonia sits closest to organic neurology on the neuropsychiatric spectrum. Not only does it occur in the setting of unequivocally organic cerebral disease, but the alterations of consciousness it produces have 'organic' qualities even when the cause is psychiatric. No longer considered a subtype of schizophrenia, catatonia is defined by syndromic features based on motor phenomenology. Both severe depression and obsessive-compulsive disorder may be associated with 'soft' extrapyramidal signs that resemble parkinsonian bradykinesia. As functional neuroimaging studies suggest, movement and psychiatric disorders involve the same network connections between the basal ganglia and the cerebral cortex.
Collapse
Affiliation(s)
| | - Peter Kempster
- Neurosciences, Monash Medical Centre Clayton, Clayton, Victoria, Australia
- School of Clinical Sciences of Medicine, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Sahker E, Sakata M, Toyomoto R, Hwang C, Yoshida K, Luo Y, Watanabe N, Furukawa TA. Efficacy of brief intervention for drug misuse in primary care facilities: systematic review and meta-analysis protocol. BMJ Open 2020; 10:e036633. [PMID: 32878757 PMCID: PMC7470504 DOI: 10.1136/bmjopen-2019-036633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Drug misuse is associated with significant global morbidity, mortality, economic costs and social costs. Many primary care facilities have integrated drug misuse screening and brief intervention (BI) into their usual care delivery. However, the efficacy of BI for drug misuse in primary care has not been substantiated through meta-analysis. The aim of this systematic review and meta-analysis is to determine the efficacy of BI for drug misuse in primary care settings. METHODS AND ANALYSIS We will include all randomised controlled trials comparing primary care-delivered BI for drug misuse with no intervention or minimal screening/assessment and usual care. Primary outcomes are (1) drug use frequency scores and (2) severity scores at intermediate follow-up (4-8 months). We will retrieve all studies through searches in CENTRAL, Embase, MEDLINE and PsycINFO until 31 May 2020. The reference list will be supplemented with searches in trial registries (eg, www.clinicaltrials.gov) and through relevant existing study reference lists identified in the literature. We will conduct a random-effect pairwise meta-analysis for primary and secondary outcomes. We will assess statistical heterogeneity though visual inspection of a forest plot and calculate I2 statistics. We will assess risk of bias using the Cochrane Risk of Bias Tool V.2 and evaluate the certainty of evidence through the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Sensitivity analyses will account for studies with control group variations and studies with a high risk of bias. If heterogeneity is present, subgroup analyses will consider patient variables of age, sex/gender, race/ethnicity, per cent insured, baseline severity and primary drug misused. ETHICS AND DISSEMINATION This study will use published aggregate data and will not require ethical approval. Findings will be disseminated in a peer-reviewed journal.
Collapse
Affiliation(s)
- Ethan Sahker
- Department of Health Promotion and Human Behavior, Graduate School of Medicine, School of Public Health, Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science (JSPS), Overseas Fellowship Division, Kojimachi, Chiyoda-ku, Tokyo, Japan
| | - Masatsugu Sakata
- Department of Health Promotion and Human Behavior, Graduate School of Medicine, School of Public Health, Kyoto University, Kyoto, Japan
| | - Rie Toyomoto
- Department of Health Promotion and Human Behavior, Graduate School of Medicine, School of Public Health, Kyoto University, Kyoto, Japan
| | - Chiyoung Hwang
- Department of Health Promotion and Human Behavior, Graduate School of Medicine, School of Public Health, Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science (JSPS), Research Fellowship Division, Kojimachi, Chiyoda-ku, Tokyo, Japan
| | - Kazufumi Yoshida
- Department of Health Promotion and Human Behavior, Graduate School of Medicine, School of Public Health, Kyoto University, Kyoto, Japan
| | - Yan Luo
- Department of Health Promotion and Human Behavior, Graduate School of Medicine, School of Public Health, Kyoto University, Kyoto, Japan
| | - Norio Watanabe
- Department of Health Promotion and Human Behavior, Graduate School of Medicine, School of Public Health, Kyoto University, Kyoto, Japan
| | - Toshi A Furukawa
- Department of Health Promotion and Human Behavior, Graduate School of Medicine, School of Public Health, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Jané-Llopis E, Anderson P, Piazza M, O'Donnell A, Gual A, Schulte B, Pérez Gómez A, de Vries H, Natera Rey G, Kokole D, V Bustamante I, Braddick F, Mejía Trujillo J, Solovei A, Pérez De León A, Kaner EF, Matrai S, Manthey J, Mercken L, López-Pelayo H, Rowlands G, Schmidt C, Rehm J. Implementing primary healthcare-based measurement, advice and treatment for heavy drinking and comorbid depression at the municipal level in three Latin American countries: final protocol for a quasiexperimental study (SCALA study). BMJ Open 2020; 10:e038226. [PMID: 32723746 PMCID: PMC7390229 DOI: 10.1136/bmjopen-2020-038226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Eva Jané-Llopis
- ESADE Business School, Ramon Llull University, Barcelona, Catalunya, Spain
- Department of Health Promotion, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, CAMH, Toronto, Ontario, Canada
| | - Peter Anderson
- Department of Health Promotion, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Marina Piazza
- Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Amy O'Donnell
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Antoni Gual
- Addiction Unit, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Red de Trastornos Adictivos, Instituto Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Bernd Schulte
- Center for Interdisciplinary Addiction Research (ZIS), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Hamburg, Germany
| | | | - Hein de Vries
- Department of Health Promotion, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Guillermina Natera Rey
- Dirección de Investigaciones Epidemiológicas y Psicosociales, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico, DF, Mexico
| | - Daša Kokole
- Department of Health Promotion, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Ines V Bustamante
- Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Fleur Braddick
- Addiction Unit, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
| | | | - Adriana Solovei
- Department of Health Promotion, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Alexandra Pérez De León
- Dirección de Investigaciones Epidemiológicas y Psicosociales, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico, DF, Mexico
| | - Eileen Fs Kaner
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Silvia Matrai
- Addiction Unit, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
| | - Jakob Manthey
- Institute for Clinical Psychology and Psychotherapy, TU Dresden, Dresden, Germany
| | - Liesbeth Mercken
- Department of Health Promotion, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Hugo López-Pelayo
- Addiction Unit, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Red de Trastornos Adictivos, Instituto Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Gillian Rowlands
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christiane Schmidt
- Center for Interdisciplinary Addiction Research (ZIS), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Hamburg, Germany
| | - Jürgen Rehm
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, CAMH, Toronto, Ontario, Canada
- Institute for Clinical Psychology and Psychotherapy, TU Dresden, Dresden, Germany
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of International Health Projects, Institute for Leadership and Health Management, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
21
|
Brancato A, Castelli V, Lavanco G, Marino RAM, Cannizzaro C. In utero Δ9-tetrahydrocannabinol exposure confers vulnerability towards cognitive impairments and alcohol drinking in the adolescent offspring: Is there a role for neuropeptide Y? J Psychopharmacol 2020; 34:663-679. [PMID: 32338122 DOI: 10.1177/0269881120916135] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cannabinoid consumption during pregnancy has been increasing on the wave of the broad-based legalisation of cannabis in Western countries, raising concern about the putative detrimental outcomes on foetal neurodevelopment. Indeed, since the endocannabinoid system regulates synaptic plasticity, emotional and cognitive processes from early stages of life interfering with it and other excitability endogenous modulators, such as neuropeptide Y (NPY), might contribute to the occurrence of a vulnerable phenotype later in life. AIMS This research investigated whether in utero exposure to Δ9-tetrahydrocannabinol (THC) may induce deficits in emotional/cognitive processes and alcohol vulnerability in adolescent offspring. NPY and excitatory postsynaptic density (PSD) machinery were measured as markers of neurobiological vulnerability. METHODS Following in utero THC exposure (2 mg/kg delivered subcutaneously), preadolescent male rat offspring were assessed for: behavioural reactivity in the open field test, neutral declarative memory and aversive limbic memory in the Novel Object and Emotional Object Recognition tests, immunofluorescence for NPY neurons and the PSD proteins Homer-1, 1b/c and 2 in the prefrontal cortex, amygdala and nucleus accumbens at adolescence (cohort 1); and instrumental learning, alcohol taking, relapse and conflict behaviour in the operant chamber throughout adolescence until early adulthood (cohort 2). RESULTS In utero THC-exposed adolescent rats showed: (a) increased locomotor activity; (b) no alteration in neutral declarative memory; (c) impaired aversive limbic memory; (d) decreased NPY-positive neurons in limbic regions; (e) region-specific variations in Homer-1, 1b/c and 2 immunoreactivity; (f) decreased instrumental learning and increased alcohol drinking, relapse and conflict behaviour in the operant chamber. CONCLUSION Gestational THC impaired the formation of memory traces when integration between environmental encoding and emotional/motivational processing was required and promoted the development of alcohol-addictive behaviours. The abnormalities in NPY signalling and PSD make-up may represent the common neurobiological background, suggesting new targets for future research.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence 'G. D'Alessandro', University of Palermo, Palermo, Italy
| | - Valentina Castelli
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence 'G. D'Alessandro', University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- INSERM U1215, NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Rosa Anna Maria Marino
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, USA
| | - Carla Cannizzaro
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence 'G. D'Alessandro', University of Palermo, Palermo, Italy
| |
Collapse
|
22
|
Rivi V, Benatti C, Colliva C, Radighieri G, Brunello N, Tascedda F, Blom JMC. Lymnaea stagnalis as model for translational neuroscience research: From pond to bench. Neurosci Biobehav Rev 2019; 108:602-616. [PMID: 31786320 DOI: 10.1016/j.neubiorev.2019.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to illustrate how a reductionistic, but sophisticated, approach based on the use of a simple model system such as the pond snail Lymnaea stagnalis (L. stagnalis), might be useful to address fundamental questions in learning and memory. L. stagnalis, as a model, provides an interesting platform to investigate the dialog between the synapse and the nucleus and vice versa during memory and learning. More importantly, the "molecular actors" of the memory dialogue are well-conserved both across phylogenetic groups and learning paradigms, involving single- or multi-trials, aversion or reward, operant or classical conditioning. At the same time, this model could help to study how, where and when the memory dialog is impaired in stressful conditions and during aging and neurodegeneration in humans and thus offers new insights and targets in order to develop innovative therapies and technology for the treatment of a range of neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- V Rivi
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - C Benatti
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - C Colliva
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - G Radighieri
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - N Brunello
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - F Tascedda
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - J M C Blom
- Dept. of Education and Human Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
23
|
Shahveisi K, Farnia V, Khazaie H, Ghazvini H, Nozari M, Khodamoradi M. Novel object recognition memory in REM sleep-deprived rats: Role of the cannabinoid CB 1 receptor. Behav Brain Res 2019; 381:112311. [PMID: 31711896 DOI: 10.1016/j.bbr.2019.112311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/12/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022]
Abstract
A survey of the literature indicates that both rapid eye movement sleep deprivation (RSD) and activation of cannabinoid CB1 receptor (CB1R) may impair novel object recognition (NOR) memory in rodents. To our knowledge, so far, no previous study has investigated the probable effects of RSD on the different phases of NOR memory. Moreover, far too little attention has been paid to the potential role of the CB1R in the effects of RSD on object memory. Therefore, the major objective of this study was to investigate the probable role of the CB1R in the acquisition, consolidation, retrieval, and reconsolidation of NOR memory in the RSD rats. A 12-h paradigm of RSD using the multiple platform method did not affect acquisition, but it impaired the consolidation, retrieval, and reconsolidation of NOR memory. Administration of the CB1R antagonist rimonabant (1 or 3 mg/kg, i.p.) did not have significant effects on the acquisition and reconsolidation, but it improved RSD-induced impairment of the consolidation and retrieval of object memory, especially at the dose of 3 mg/kg. In addition, the RSD paradigm did not affect the levels of plasma corticosterone as an important marker of stress in rat. The results revealed that RSD may have different effects on the different phases of NOR memory which may not be attributable to the effects of stress. Our findings would seem to suggest that the CB1R can be targeted to, at least partially, modulate the adverse effects of RSD on the process of NOR memory.
Collapse
Affiliation(s)
- Kaveh Shahveisi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Farnia
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamed Ghazvini
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Masoumeh Nozari
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Khodamoradi
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
24
|
Andrade AK, Renda B, Murray JE. Cannabinoids, interoception, and anxiety. Pharmacol Biochem Behav 2019; 180:60-73. [DOI: 10.1016/j.pbb.2019.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/14/2019] [Accepted: 03/22/2019] [Indexed: 12/16/2022]
|
25
|
Aging and the Combined effects of ADRA2B and CB1 deletions on Affective Working Memory. Sci Rep 2019; 9:4081. [PMID: 30858399 PMCID: PMC6411975 DOI: 10.1038/s41598-019-40108-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/04/2019] [Indexed: 02/05/2023] Open
Abstract
Many studies have found that memory for affective material is better than memory for neutral information and memory for positive material compared to negative material is better in older adults. Behavioral, neurophysiological as well as single polymorphism differences have been advanced to account for these effects. Here, we aimed to examine whether the combination of two polymorphisms (ADRA2B and CB1) in older adults influences active maintenance and manipulation of emotional information in aging working memory. We examined genotype data from 207 older adults (56 double deletion carriers, 116 single deletion carriers and 35 no deletion carriers) who performed a verbal operation span-like task with positive, negative and neutral words. We found that subjects carrying both ADRA2B and CB1 variants generally remembered a higher number of words. In addition, double carriers showed positivity effects while single carriers showed more general emotional enhancement effects, especially as strings lengthened. These findings are amongst the first to suggest a haplotype account of positivity effects in older adults’ memory.
Collapse
|
26
|
Abstract
The objective of this article is to describe the possible association of catatonia and temporal brain lesions. This is a case presentation of a 57-year-old man presenting with depression, with catatonia secondary to a temporal glioblastoma. He was referred to hospital because for a sudden deterioration in depressed state. He was diagnosed with catatonia and treated successfully with lorazepam. During his admission, he became increasingly disinhibited, and an MRI scan revealed an intracranial mass in the right temporal lobe, with uncal herniation and a mass effect. Surgical resection of the entire tumour was successful. Histological examination revealed a glioblastoma multiforme requiring additional chemoradiotherapy. Postoperatively, catatonic signs and symptoms were not detectable. A postsurgical frontal syndrome with disinhibition and logorrhoea was present and gradually normalised over the course of several weeks. Catatonia can be the presenting symptom of a temporal brain tumour, and should therefore prompt the physician to a thorough medical investigation.
Collapse
Affiliation(s)
| | - Pascal Sienaert
- Academic Center for ECT and Neuromodulation (AcCENT), Universitair Psychiatrisch Centrum KU Leuven, Kortenberg, Belgium
| |
Collapse
|
27
|
Ghasemzadeh Z, Rezayof A. Medial Prefrontal Cortical Cannabinoid CB1 Receptors Mediate Morphine–Dextromethorphan Cross State-Dependent Memory: The Involvement of BDNF/cFOS Signaling Pathways. Neuroscience 2018; 393:295-304. [DOI: 10.1016/j.neuroscience.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
|
28
|
Augustin SM, Lovinger DM. Functional Relevance of Endocannabinoid-Dependent Synaptic Plasticity in the Central Nervous System. ACS Chem Neurosci 2018; 9:2146-2161. [PMID: 29400439 DOI: 10.1021/acschemneuro.7b00508] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endocannabinoid (eCB) signaling system plays a key role in short-term and long-term synaptic plasticity in brain regions involved in various neural functions ranging from action selection to appetite control. This review will explore the role of eCBs in shaping neural circuit function to regulate behaviors. In particular, we will discuss the behavioral consequences of eCB mediated long-term synaptic plasticity in different brain regions. This review brings together evidence from in vitro and ex vivo studies and points out the need for more in vivo studies.
Collapse
Affiliation(s)
- Shana M. Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852, United States
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852, United States
| |
Collapse
|
29
|
Sunada H, Watanabe T, Hatakeyama D, Lee S, Forest J, Sakakibara M, Ito E, Lukowiak K. Pharmacological effects of cannabinoids on learning and memory in Lymnaea. ACTA ACUST UNITED AC 2018; 220:3026-3038. [PMID: 28855319 DOI: 10.1242/jeb.159038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/07/2017] [Indexed: 12/22/2022]
Abstract
Cannabinoids are hypothesized to play an important role in modulating learning and memory formation. Here, we identified mRNAs expressed in Lymnaeastagnalis central nervous system that encode two G-protein-coupled receptors (Lymnaea CBr-like 1 and 2) that structurally resemble mammalian cannabinoid receptors (CBrs). We found that injection of a mammalian CBr agonist WIN 55,212-2 (WIN 55) into the snail before operant conditioning obstructed learning and memory formation. This effect of WIN 55 injection persisted for at least 4 days following its injection. A similar obstruction of learning and memory occurred when a severe traumatic stimulus was delivered to L. stagnalis In contrast, injection of a mammalian CBr antagonist AM 251 enhanced long-term memory formation in snails and reduced the duration of the effects of the severe traumatic stressor on learning and memory. Neither WIN 55 nor AM 251 altered normal homeostatic aerial respiratory behaviour elicited in hypoxic conditions. Our results suggest that putative cannabinoid receptors mediate stressful stimuli that alter learning and memory formation in Lymnaea This is also the first demonstration that putative CBrs are present in Lymnaea and play a key role in learning and memory formation.
Collapse
Affiliation(s)
- Hiroshi Sunada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1.,Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Takayuki Watanabe
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 060-0811, Japan
| | - Dai Hatakeyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Sangmin Lee
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Jeremy Forest
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Manabu Sakakibara
- School of High-Technology for Human Welfare, Tokai University, Numazu, Shizuoka 410-0321, Japan
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan .,Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
30
|
Psychedelics and reconsolidation of traumatic and appetitive maladaptive memories: focus on cannabinoids and ketamine. Psychopharmacology (Berl) 2018; 235:433-445. [PMID: 29178010 DOI: 10.1007/s00213-017-4793-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022]
Abstract
RATIONALE Clinical data with 3,4-methylenedioxymethamphetamine (MDMA) in post-traumatic stress disorder (PTSD) patients recently stimulated interest on the potential therapeutic use of psychedelics in disorders characterized by maladaptive memories, including substance use disorders (SUD). The rationale for the use of MDMA in PTSD and SUD is being extended to a broader beneficial "psychedelic effect," which is supporting further clinical investigations, in spite of the lack of mechanistic hypothesis. Considering that the retrieval of emotional memories reactivates specific brain mechanisms vulnerable to inhibition, interference, or strengthening (i.e., the reconsolidation process), it was proposed that the ability to retrieve and change these maladaptive memories might be a novel intervention for PTSD and SUD. The mechanisms underlying MDMA effects indicate memory reconsolidation modulation as a hypothetical process underlying its efficacy. OBJECTIVE Mechanistic and clinical studies with other two classes of psychedelic substances, namely cannabinoids and ketamine, are providing data in support of a potential use in PTSD and SUD based on the modulation of traumatic and appetitive memory reconsolidation, respectively. Here, we review preclinical and clinical data on cannabinoids and ketamine effects on biobehavioral processes related to the reconsolidation of maladaptive memories. RESULTS We report the findings supporting (or not) the working hypothesis linking the potential therapeutic effect of these substances to the underlying reconsolidation process. We also proposed possible approaches for testing the use of these two classes of drugs within the current paradigm of reconsolidation memory inhibition. CONCLUSIONS Metaplasticity may be the process in common between cannabinoids and ketamine/ketamine-like substance effects on the mediation and potential manipulation of maladaptive memories.
Collapse
|
31
|
Integrating Endocannabinoid Signaling and Cannabinoids into the Biology and Treatment of Posttraumatic Stress Disorder. Neuropsychopharmacology 2018; 43:80-102. [PMID: 28745306 PMCID: PMC5719095 DOI: 10.1038/npp.2017.162] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023]
Abstract
Exposure to stress is an undeniable, but in most cases surmountable, part of life. However, in certain individuals, exposure to severe or cumulative stressors can lead to an array of pathological conditions including posttraumatic stress disorder (PTSD), characterized by debilitating trauma-related intrusive thoughts, avoidance behaviors, hyperarousal, as well as depressed mood and anxiety. In the context of the rapidly changing political and legal landscape surrounding use of cannabis products in the USA, there has been a surge of public and research interest in the role of cannabinoids in the regulation of stress-related biological processes and in their potential therapeutic application for stress-related psychopathology. Here we review the current state of knowledge regarding the effects of cannabis and cannabinoids in PTSD and the preclinical and clinical literature on the effects of cannabinoids and endogenous cannabinoid signaling systems in the regulation of biological processes related to the pathogenesis of PTSD. Potential therapeutic implications of the reviewed literature are also discussed. Finally, we propose that a state of endocannabinoid deficiency could represent a stress susceptibility endophenotype predisposing to the development of trauma-related psychopathology and provide biologically plausible support for the self-medication hypotheses used to explain high rates of cannabis use in patients with trauma-related disorders.
Collapse
|
32
|
Fattore L, Piva A, Zanda MT, Fumagalli G, Chiamulera C. Psychedelics and reconsolidation of traumatic and appetitive maladaptive memories: focus on cannabinoids and ketamine. Psychopharmacology (Berl) 2017. [PMID: 29178010 DOI: 10.1007/s00213-017-4793-4.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
RATIONALE Clinical data with 3,4-methylenedioxymethamphetamine (MDMA) in post-traumatic stress disorder (PTSD) patients recently stimulated interest on the potential therapeutic use of psychedelics in disorders characterized by maladaptive memories, including substance use disorders (SUD). The rationale for the use of MDMA in PTSD and SUD is being extended to a broader beneficial "psychedelic effect," which is supporting further clinical investigations, in spite of the lack of mechanistic hypothesis. Considering that the retrieval of emotional memories reactivates specific brain mechanisms vulnerable to inhibition, interference, or strengthening (i.e., the reconsolidation process), it was proposed that the ability to retrieve and change these maladaptive memories might be a novel intervention for PTSD and SUD. The mechanisms underlying MDMA effects indicate memory reconsolidation modulation as a hypothetical process underlying its efficacy. OBJECTIVE Mechanistic and clinical studies with other two classes of psychedelic substances, namely cannabinoids and ketamine, are providing data in support of a potential use in PTSD and SUD based on the modulation of traumatic and appetitive memory reconsolidation, respectively. Here, we review preclinical and clinical data on cannabinoids and ketamine effects on biobehavioral processes related to the reconsolidation of maladaptive memories. RESULTS We report the findings supporting (or not) the working hypothesis linking the potential therapeutic effect of these substances to the underlying reconsolidation process. We also proposed possible approaches for testing the use of these two classes of drugs within the current paradigm of reconsolidation memory inhibition. CONCLUSIONS Metaplasticity may be the process in common between cannabinoids and ketamine/ketamine-like substance effects on the mediation and potential manipulation of maladaptive memories.
Collapse
Affiliation(s)
- Liana Fattore
- National Research Council of Italy, Institute of Neuroscience-Cagliari, Cagliari, Italy
| | - Alessandro Piva
- Sezione Farmacologia, Dipt. Diagnostica e Sanità Pubblica, Università degli Studi di Verona, Policlinico Borgo Roma, P.le Scuro 10, 37134, Verona, Italy
| | - Mary Tresa Zanda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Km 0.700, 09042, Monserrato, Italy
| | - Guido Fumagalli
- Sezione Farmacologia, Dipt. Diagnostica e Sanità Pubblica, Università degli Studi di Verona, Policlinico Borgo Roma, P.le Scuro 10, 37134, Verona, Italy
| | - Cristiano Chiamulera
- Sezione Farmacologia, Dipt. Diagnostica e Sanità Pubblica, Università degli Studi di Verona, Policlinico Borgo Roma, P.le Scuro 10, 37134, Verona, Italy.
| |
Collapse
|
33
|
Ahmad T, Sun N, Lyons D, Laviolette SR. Bi-directional cannabinoid signalling in the basolateral amygdala controls rewarding and aversive emotional processing via functional regulation of the nucleus accumbens. Addict Biol 2017; 22:1218-1231. [PMID: 27230434 DOI: 10.1111/adb.12406] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/25/2016] [Accepted: 03/22/2016] [Indexed: 02/06/2023]
Abstract
Functional connections between the basolateral amygdala (BLA) and nucleus accumbens (NAc) are involved critically in opiate-reward processing. In the BLA, inhibitory GABAergic substrates are inhibited by cannabinoid CB1 receptor (CB1R) activation and can modulate BLA projections to various limbic regions, including the NAc. However, the potential role of CB1R transmission in the regulation of opiate-related memory formation via the BLA → NAc circuit is not understood. Using an unbiased conditioned place preference paradigm in rats, we examined the effects of intra-BLA CB1R modulation by either direct pharmacological activation or blockade of CB1R transmission. We report that intra-BLA CB1R activation switches normally rewarding effects of morphine into strongly aversive effects. In contrast, CB1R blockade strongly potentiates normally subreward threshold effects of morphine. Next, using targeted microinfusions of an NMDA receptor antagonist to either the core or shell (NASh) subdivisions of the NAc, we found that selective blockade of NMDA transmission in the NA shell, but not core, prevented both intra-BLA CB1 blockade-mediated opiate reward potentiation and CB1 activation-mediated aversion effects. Finally, using multi-unit, in vivo electrophysiological recordings in the NASh, we report that the ability of intra-BLA CB1R modulation to control opiate reward salience and motivational valence is associated with distinct reward or aversion neuronal activity patterns and bi-directional regulation of intra-NASh fast-spiking interneurons versus medium spiny neurons. These findings identify a unique mechanism whereby bi-directional BLA CB1R transmission can regulate opiate-related motivational processing and control affective states through functional modulation of mesolimbic neuronal activity.
Collapse
Affiliation(s)
- Tasha Ahmad
- Addiction Research Group; The Schulich School of Medicine and Dentistry, University of Western Ontario; Canada
- Department of Anatomy and Cell Biology; The Schulich School of Medicine and Dentistry, University of Western Ontario; Canada
| | - Ninglei Sun
- Addiction Research Group; The Schulich School of Medicine and Dentistry, University of Western Ontario; Canada
- Department of Anatomy and Cell Biology; The Schulich School of Medicine and Dentistry, University of Western Ontario; Canada
| | - Danika Lyons
- Addiction Research Group; The Schulich School of Medicine and Dentistry, University of Western Ontario; Canada
- Department of Anatomy and Cell Biology; The Schulich School of Medicine and Dentistry, University of Western Ontario; Canada
| | - Steven R. Laviolette
- Addiction Research Group; The Schulich School of Medicine and Dentistry, University of Western Ontario; Canada
- Department of Anatomy and Cell Biology; The Schulich School of Medicine and Dentistry, University of Western Ontario; Canada
- Department of Psychiatry; The Schulich School of Medicine and Dentistry, University of Western Ontario; Canada
- Department of Psychology; The Schulich School of Medicine and Dentistry, University of Western Ontario; Canada
| |
Collapse
|
34
|
Cannabidiol Counteracts Amphetamine-Induced Neuronal and Behavioral Sensitization of the Mesolimbic Dopamine Pathway through a Novel mTOR/p70S6 Kinase Signaling Pathway. J Neurosci 2017; 36:5160-9. [PMID: 27147666 DOI: 10.1523/jneurosci.3387-15.2016] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/25/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Schizophrenia-related psychosis is associated with disturbances in mesolimbic dopamine (DA) transmission, characterized by hyperdopaminergic activity in the mesolimbic pathway. Currently, the only clinically effective treatment for schizophrenia involves the use of antipsychotic medications that block DA receptor transmission. However, these medications produce serious side effects leading to poor compliance and treatment outcomes. Emerging evidence points to the involvement of a specific phytochemical component of marijuana called cannabidiol (CBD), which possesses promising therapeutic properties for the treatment of schizophrenia-related psychoses. However, the neuronal and molecular mechanisms through which CBD may exert these effects are entirely unknown. We used amphetamine (AMPH)-induced sensitization and sensorimotor gating in rats, two preclinical procedures relevant to schizophrenia-related psychopathology, combined with in vivo single-unit neuronal electrophysiology recordings in the ventral tegmental area, and molecular analyses to characterize the actions of CBD directly in the nucleus accumbens shell (NASh), a brain region that is the current target of most effective antipsychotics. We demonstrate that Intra-NASh CBD attenuates AMPH-induced sensitization, both in terms of DAergic neuronal activity measured in the ventral tegmental area and psychotomimetic behavioral analyses. We further report that CBD controls downstream phosphorylation of the mTOR/p70S6 kinase signaling pathways directly within the NASh. Our findings demonstrate a novel mechanism for the putative antipsychotic-like properties of CBD in the mesolimbic circuitry. We identify the molecular signaling pathways through which CBD may functionally reduce schizophrenia-like neuropsychopathology. SIGNIFICANCE STATEMENT The cannabis-derived phytochemical, cannabidiol (CBD), has been shown to have pharmacotherapeutic efficacy for the treatment of schizophrenia. However, the mechanisms by which CBD may produce antipsychotic effects are entirely unknown. Using preclinical behavioral procedures combined with molecular analyses and in vivo neuronal electrophysiology, our findings identify a functional role for the nucleus accumbens as a critical brain region whereby CBD can produce effects similar to antipsychotic medications by triggering molecular signaling pathways associated with the effects of classic antipsychotic medications. Specifically, we report that CBD can attenuate both behavioral and dopaminergic neuronal correlates of mesolimbic dopaminergic sensitization, via a direct interaction with mTOR/p70S6 kinase signaling within the mesolimbic pathway.
Collapse
|
35
|
Fairfield B, Mammarella N, Franzago M, Di Domenico A, Stuppia L, Gatta V. A variant on promoter of the cannabinoid receptor 1 gene (CNR1) moderates the effect of valence on working memory. Memory 2017; 26:260-268. [PMID: 28685667 DOI: 10.1080/09658211.2017.1347685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cannabinoid receptor 1 gene (CNR1) variants have been related to affective information processing and, in particular, to stress release. Here, we aimed to examine whether the endocannabinoid system via CNR1 signaling modulates affective working memory, the memory system that transiently maintains and manipulates emotionally charged material. We focused on rs2180619 (A > G) polymorphism and examined genotype data collected from 231 healthy females. Analyses showed how a general positivity bias in working memory (i.e., better memory for positive words) emerged as task strings lengthened only in carriers of the major allele (AA/AG). Differently, GG carriers showed better memory for affective items in general (i.e., positive and negative words). These findings are some of the first to directly highlight the role of variant on promoter of the CNR1 gene in affective working memory and to evidence a differentiation among CNR1 genotypes in terms of larger difficulties in disengaging from negative stimuli in GG carriers.
Collapse
Affiliation(s)
- Beth Fairfield
- a Department of Psychological, Health and Territorial Sciences , University of Chieti , Chieti , Italy.,b Center of Excellence on Aging and Translational Medicine (CeSI-MeT) "G. d'Annunzio" , University of Chieti , Chieti , Italy
| | - Nicola Mammarella
- a Department of Psychological, Health and Territorial Sciences , University of Chieti , Chieti , Italy.,b Center of Excellence on Aging and Translational Medicine (CeSI-MeT) "G. d'Annunzio" , University of Chieti , Chieti , Italy
| | - Marica Franzago
- a Department of Psychological, Health and Territorial Sciences , University of Chieti , Chieti , Italy.,b Center of Excellence on Aging and Translational Medicine (CeSI-MeT) "G. d'Annunzio" , University of Chieti , Chieti , Italy
| | - Alberto Di Domenico
- a Department of Psychological, Health and Territorial Sciences , University of Chieti , Chieti , Italy.,b Center of Excellence on Aging and Translational Medicine (CeSI-MeT) "G. d'Annunzio" , University of Chieti , Chieti , Italy
| | - Liborio Stuppia
- a Department of Psychological, Health and Territorial Sciences , University of Chieti , Chieti , Italy.,b Center of Excellence on Aging and Translational Medicine (CeSI-MeT) "G. d'Annunzio" , University of Chieti , Chieti , Italy
| | - Valentina Gatta
- a Department of Psychological, Health and Territorial Sciences , University of Chieti , Chieti , Italy.,b Center of Excellence on Aging and Translational Medicine (CeSI-MeT) "G. d'Annunzio" , University of Chieti , Chieti , Italy
| |
Collapse
|
36
|
Adolescent Exposure to the Synthetic Cannabinoid WIN 55212-2 Modifies Cocaine Withdrawal Symptoms in Adult Mice. Int J Mol Sci 2017. [PMID: 28635664 PMCID: PMC5486147 DOI: 10.3390/ijms18061326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Chronic cannabinoid consumption is an increasingly common behavior among teenagers and has been shown to cause long-lasting neurobehavioral alterations. Besides, it has been demonstrated that cocaine addiction in adulthood is highly correlated with cannabis abuse during adolescence. Cocaine consumption and subsequent abstinence from it can cause psychiatric symptoms, such as psychosis, cognitive impairment, anxiety, and depression. The aim of the present research was to study the consequences of adolescent exposure to cannabis on the psychiatric-like effects promoted by cocaine withdrawal in adult mice. We pre-treated juvenile mice with the cannabinoid CB1 receptor agonist WIN 55212-2 (WIN) and then subjected them to a chronic cocaine treatment during adulthood. Following these treatments, animals were tested under cocaine withdrawal in the following paradigms: pre-pulse inhibition, object recognition, elevated plus maze, and tail suspension. The long-term psychotic-like actions induced by WIN were not modified after cocaine cessation. Moreover, the memory impairments induced by cocaine withdrawal were not altered by previous adolescent WIN intake. However, WIN pre-treatment prevented the anxiogenic effects observed after cocaine abstinence, and led to greater depressive-like symptoms following cocaine removal in adulthood. This study is the first to show the long-lasting behavioral consequences of juvenile exposure to WIN on cocaine withdrawal in adult mice.
Collapse
|
37
|
Varodayan FP, Bajo M, Soni N, Luu G, Madamba SG, Schweitzer P, Roberto M. Chronic alcohol exposure disrupts CB 1 regulation of GABAergic transmission in the rat basolateral amygdala. Addict Biol 2017; 22:766-778. [PMID: 26786379 DOI: 10.1111/adb.12369] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023]
Abstract
The basolateral nucleus of the amygdala (BLA) is critical to the pathophysiology of anxiety-driven alcohol drinking and relapse. The endogenous cannabinoid/type 1 cannabinoid receptor (eCB/CB1 ) system curbs BLA-driven anxiety and stress responses via a retrograde negative feedback system that inhibits neurotransmitter release, and BLA CB1 activation reduces GABA release and drives anxiogenesis. Additionally, decreased amygdala CB1 is observed in abstinent alcoholic patients and ethanol withdrawn rats. Here, we investigated the potential disruption of eCB/CB1 signaling on GABAergic transmission in BLA pyramidal neurons of rats exposed to 2-3 weeks intermittent ethanol. In the naïve rat BLA, the CB1 agonist WIN 55,212-2 (WIN) decreased GABA release, and this effect was prevented by the CB1 antagonist AM251. AM251 alone increased GABA release via a mechanism requiring postsynaptic calcium-dependent activity. This retrograde tonic eCB/CB1 signaling was diminished in chronic ethanol exposed rats, suggesting a functional impairment of the eCB/CB1 system. In contrast, acute ethanol increased GABAergic transmission similarly in naïve and chronic ethanol exposed rats, via both presynaptic and postsynaptic mechanisms. Notably, CB1 activation impaired ethanol's facilitation of GABAergic transmission across both groups, but the AM251-induced and ethanol-induced facilitation of GABA release was additive, suggesting independent presynaptic sites of action. Collectively, the present findings highlight a critical CB1 influence on BLA GABAergic transmission that is dysregulated by chronic ethanol exposure and, thus, may contribute to the alcohol-dependent state.
Collapse
Affiliation(s)
- Florence P. Varodayan
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute (TSRI); La Jolla CA USA
| | - Michal Bajo
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute (TSRI); La Jolla CA USA
| | - Neeraj Soni
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute (TSRI); La Jolla CA USA
- Faculty of Health and Medical Sciences; University of Copenhagen (UCPH); Denmark
| | - George Luu
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute (TSRI); La Jolla CA USA
| | - Samuel G. Madamba
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute (TSRI); La Jolla CA USA
| | - Paul Schweitzer
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute (TSRI); La Jolla CA USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute (TSRI); La Jolla CA USA
| |
Collapse
|
38
|
Silveira MM, Arnold JC, Laviolette SR, Hillard CJ, Celorrio M, Aymerich MS, Adams WK. Seeing through the smoke: Human and animal studies of cannabis use and endocannabinoid signalling in corticolimbic networks. Neurosci Biobehav Rev 2017; 76:380-395. [PMID: 27639448 PMCID: PMC5350061 DOI: 10.1016/j.neubiorev.2016.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 08/02/2016] [Accepted: 09/13/2016] [Indexed: 02/07/2023]
Abstract
Public opinion surrounding the recreational use and therapeutic potential of cannabis is shifting. This review describes new work examining the behavioural and neural effects of cannabis and the endocannabinoid system, highlighting key regions within corticolimbic brain circuits. First, we consider the role of human genetic factors and cannabis strain chemotypic differences in contributing to interindividual variation in the response to cannabinoids, such as THC, and review studies demonstrating that THC-induced impairments in decision-making processes are mediated by actions at prefrontal CB1 receptors. We further describe evidence that signalling through prefrontal or ventral hippocampal CB1 receptors modulates mesolimbic dopamine activity, aberrations of which may contribute to emotional processing deficits in schizophrenia. Lastly, we review studies suggesting that endocannabinoid tone in the amygdala is a critical regulator of anxiety, and report new data showing that FAAH activity is integral to this response. Together, these findings underscore the importance of cannabinoid signalling in the regulation of cognitive and affective behaviours, and encourage further research given their social, political, and therapeutic implications.
Collapse
Affiliation(s)
- Mason M Silveira
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Jonathon C Arnold
- The Brain and Mind Centre and Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Steven R Laviolette
- Addiction Research Group and Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marta Celorrio
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona 31008, Spain
| | - María S Aymerich
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona 31008, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain
| | - Wendy K Adams
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
39
|
Brancato A, Lavanco G, Cavallaro A, Plescia F, Cannizzaro C. The use of the Emotional-Object Recognition as an assay to assess learning and memory associated to an aversive stimulus in rodents. J Neurosci Methods 2016; 274:106-115. [DOI: 10.1016/j.jneumeth.2016.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/14/2016] [Accepted: 09/28/2016] [Indexed: 12/25/2022]
|
40
|
A Primary Cortical Input to Hippocampus Expresses a Pathway-Specific and Endocannabinoid-Dependent Form of Long-Term Potentiation. eNeuro 2016; 3:eN-NWR-0160-16. [PMID: 27517090 PMCID: PMC4976302 DOI: 10.1523/eneuro.0160-16.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 02/03/2023] Open
Abstract
The endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG), a key modulator of synaptic transmission in mammalian brain, is produced in dendritic spines and then crosses the synaptic junction to depress neurotransmitter release. Here we report that 2-AG-dependent retrograde signaling also mediates an enduring enhancement of glutamate release, as assessed with independent tests, in the lateral perforant path (LPP), one of two cortical inputs to the granule cells of the dentate gyrus. Induction of this form of long-term potentiation (LTP) involved two types of glutamate receptors, changes in postsynaptic calcium, and the postsynaptic enzyme that synthesizes 2-AG. Stochastic optical reconstruction microscopy confirmed that CB1 cannabinoid receptors are localized presynaptically to LPP terminals, while the inhibition or knockout of the receptors eliminated LPP-LTP. Suppressing the enzyme that degrades 2-AG dramatically enhanced LPP potentiation, while overexpressing it produced the opposite effect. Priming with a CB1 agonist markedly reduced the threshold for LTP. Latrunculin A, which prevents actin polymerization, blocked LPP-LTP when applied extracellularly but had no effect when infused postsynaptically into granule cells, indicating that critical actin remodeling resides in the presynaptic compartment. Importantly, there was no evidence for the LPP form of potentiation in the Schaffer-commissural innervation of field CA1 or in the medial perforant path. Peripheral injections of compounds that block or enhance LPP-LTP had corresponding effects on the formation of long-term memory for cues conveyed to the dentate gyrus by the LPP. Together, these results indicate that the encoding of information carried by a principal hippocampal afferent involves an unusual, regionally differentiated form of plasticity.
Collapse
|
41
|
Cannabinoid Transmission in the Hippocampus Activates Nucleus Accumbens Neurons and Modulates Reward and Aversion-Related Emotional Salience. Biol Psychiatry 2016; 80:216-25. [PMID: 26681496 DOI: 10.1016/j.biopsych.2015.10.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cannabinoid receptor transmission strongly influences emotional processing, and disturbances in cannabinoid signaling are associated with various neuropsychiatric disorders. The mammalian ventral hippocampus (vHipp) is a critical neural region controlling mesolimbic activity via glutamatergic projections to the nucleus accumbens. Furthermore, vHipp abnormalities are linked to schizophrenia-related psychopathology. Nevertheless, the mechanisms by which intra-vHipp cannabinoid signaling may modulate mesolimbic activity states and emotional processing are not currently understood. METHODS Using an integrative combination of in vivo electrophysiological recordings and behavioral pharmacologic assays in rats, we tested whether activation of cannabinoid type 1 receptors (CB1R) in the vHipp may modulate neuronal activity in the shell subregion of the nucleus accumbens (NASh). We next examined how vHipp CB1R signaling may control the salience of rewarding or aversive emotional memory formation and social interaction/recognition behaviors via intra-NASh glutamatergic transmission. RESULTS We demonstrate for the first time that vHipp CB1R transmission can potently modulate NASh neuronal activity and can differentially control the formation of context-dependent and context-independent forms of rewarding or aversion-related emotional associative memories. In addition, we found that activation of vHipp CB1R transmission strongly disrupts normal social behavior and cognition. Finally, we report that these behavioral effects are dependent upon intra-NASh alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartate receptor transmission. CONCLUSIONS Together, these findings demonstrate a critical role for hippocampal cannabinoid signaling in the modulation of mesolimbic neuronal activity states and suggest that dysregulation of CB1R transmission in the vHipp→NASh circuit may underlie hippocampal-mediated affective and social behavioral disturbances present in neuropsychiatric disorders.
Collapse
|
42
|
Henry RJ, Kerr DM, Finn DP, Roche M. For whom the endocannabinoid tolls: Modulation of innate immune function and implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:167-80. [PMID: 25794989 DOI: 10.1016/j.pnpbp.2015.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) mediate the innate immune response to pathogens and are critical in the host defence, homeostasis and response to injury. However, uncontrolled and aberrant TLR activation can elicit potent effects on neurotransmission and neurodegenerative cascades and has been proposed to trigger the onset of certain neurodegenerative disorders and elicit detrimental effects on the progression and outcome of established disease. Over the past decade, there has been increasing evidence demonstrating that the endocannabinoid system can elicit potent modulatory effects on inflammatory processes, with clinical and preclinical evidence demonstrating beneficial effects on disease severity and symptoms in several inflammatory conditions. This review examines the evidence supporting a modulatory effect of endocannabinoids on TLR-mediated immune responses both peripherally and centrally, and the implications for psychiatric disorders such as depression and schizophrenia.
Collapse
Affiliation(s)
- Rebecca J Henry
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | - Daniel M Kerr
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland.
| |
Collapse
|
43
|
Ballinger MD, Saito A, Abazyan B, Taniguchi Y, Huang CH, Ito K, Zhu X, Segal H, Jaaro-Peled H, Sawa A, Mackie K, Pletnikov MV, Kamiya A. Adolescent cannabis exposure interacts with mutant DISC1 to produce impaired adult emotional memory. Neurobiol Dis 2015; 82:176-184. [PMID: 26093170 PMCID: PMC4640936 DOI: 10.1016/j.nbd.2015.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 06/05/2015] [Accepted: 06/12/2015] [Indexed: 11/23/2022] Open
Abstract
Cannabis is an increasingly popular and controversial drug used worldwide. Cannabis use often begins during adolescence, a highly susceptible period for environmental stimuli to alter functional and structural organization of the developing brain. Given that adolescence is a critical time for the emergence of mental illnesses before full-onset in early adulthood, it is particularly important to investigate how genetic insults and adolescent cannabis exposure interact to affect brain development and function. Here we show for the first time that a perturbation in disrupted in schizophrenia 1 (DISC1) exacerbates the response to adolescent exposure to delta-9-tetrahydrocannabinol (Δ(9)-THC), a major psychoactive ingredient of cannabis, consistent with the concept that gene-environment interaction may contribute to the pathophysiology of psychiatric conditions. We found that chronic adolescent treatment with Δ(9)-THC exacerbates deficits in fear-associated memory in adult mice that express a putative dominant-negative mutant of DISC1 (DN-DISC1). Synaptic expression of cannabinoid receptor 1 (CB1R) is down-regulated in the prefrontal cortex, hippocampus, and amygdala, critical brain regions for fear-associated memory, by either expression of DN-DISC1 or adolescent Δ(9)-THC treatment. Notably, elevation of c-Fos expression evoked by context-dependent fear memory retrieval is impaired in these brain regions in DN-DISC1 mice. We also found a synergistic reduction of c-Fos expression induced by cue-dependent fear memory retrieval in DN-DISC1 with adolescent Δ(9)-THC exposure. These results suggest that alteration of CB1R-mediated signaling in DN-DISC1 mice may underlie susceptibility to detrimental effects of adolescent cannabis exposure on adult behaviors.
Collapse
Affiliation(s)
- Michael D Ballinger
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atsushi Saito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bagrat Abazyan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu Taniguchi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ching-Hsun Huang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koki Ito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hadar Segal
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanna Jaaro-Peled
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
44
|
Hippocampal cannabinoid transmission modulates dopamine neuron activity: impact on rewarding memory formation and social interaction. Neuropsychopharmacology 2015; 40:1436-47. [PMID: 25510937 PMCID: PMC4397402 DOI: 10.1038/npp.2014.329] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/22/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022]
Abstract
Disturbances in cannabinoid type 1 receptor (CB1R) signaling have been linked to emotional and cognitive deficits characterizing neuropsychiatric disorders, including schizophrenia. Thus, there is growing interest in characterizing the relationship between cannabinoid transmission, emotional processing, and dopamine (DA)-dependent behavioral deficits. The CB1R is highly expressed in the mammalian nervous system, particularly in the hippocampus. Activation of the ventral hippocampal subregion (vHipp) is known to increase both the activity of DAergic neurons located in the ventral tegmental area (VTA) and DA levels in reward-related brain regions, particularly the nucleus accumbens (NAc). However, the possible functional relationship between hippocampal CB1R transmission and VTA DA neuronal activity is not currently understood. In this study, using in vivo neuronal recordings in rats, we demonstrate that activation of CB1R in the vHipp strongly increases VTA DA neuronal firing and bursting activity, while simultaneously decreasing the activity of VTA non-DA neurons. Furthermore, using a conditioned place preference procedure and a social interaction test, we report that intra-vHipp CB1R activation potentiates the reward salience of normally sub-threshold conditioning doses of opiates and induces deficits in natural sociability and social recognition behaviors. Finally, these behavioral effects were prevented by directly blocking NAc DAergic transmission. Collectively, these findings identify hippocampal CB1R transmission as a critical modulator of the mesolimbic DA pathway and in the processing of reward and social-related behavioral phenomena.
Collapse
|
45
|
Ceredig RA, Massotte D. Fluorescent knock-in mice to decipher the physiopathological role of G protein-coupled receptors. Front Pharmacol 2015; 5:289. [PMID: 25610398 PMCID: PMC4284998 DOI: 10.3389/fphar.2014.00289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/12/2014] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) modulate most physiological functions but are also critically involved in numerous pathological states. Approximately a third of marketed drugs target GPCRs, which places this family of receptors in the main arena of pharmacological pre-clinical and clinical research. The complexity of GPCR function demands comprehensive appraisal in native environment to collect in-depth knowledge of receptor physiopathological roles and assess the potential of therapeutic molecules. Identifying neurons expressing endogenous GPCRs is therefore essential to locate them within functional circuits whereas GPCR visualization with subcellular resolution is required to get insight into agonist-induced trafficking. Both remain frequently poorly investigated because direct visualization of endogenous receptors is often hampered by the lack of appropriate tools. Also, monitoring intracellular trafficking requires real-time visualization to gather in-depth knowledge. In this context, knock-in mice expressing a fluorescent protein or a fluorescent version of a GPCR under the control of the endogenous promoter not only help to decipher neuroanatomical circuits but also enable real-time monitoring with subcellular resolution thus providing invaluable information on their trafficking in response to a physiological or a pharmacological challenge. This review will present the animal models and discuss their contribution to the understanding of the physiopathological role of GPCRs. We will also address the drawbacks associated with this methodological approach and browse future directions.
Collapse
Affiliation(s)
- Rhian A Ceredig
- CNRS, Institut des Neurosciences Cellulaires et Intégratives, UPR 3212 Strasbourg, France
| | - Dominique Massotte
- CNRS, Institut des Neurosciences Cellulaires et Intégratives, UPR 3212 Strasbourg, France
| |
Collapse
|
46
|
Rich ME, Caldwell HK. A Role for Oxytocin in the Etiology and Treatment of Schizophrenia. Front Endocrinol (Lausanne) 2015; 6:90. [PMID: 26089815 PMCID: PMC4453483 DOI: 10.3389/fendo.2015.00090] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/15/2015] [Indexed: 01/12/2023] Open
Abstract
Schizophrenia is a chronic debilitating neuropsychiatric disorder estimated to affect 51 million people worldwide. Several symptom domains characterize schizophrenia, including negative symptoms, such as social withdrawal and anhedonia, cognitive impairments, such as disorganized thinking and impaired memory, and positive symptoms, such as hallucinations and delusions. While schizophrenia is a complex neuropsychiatric disorder with no single "cause," there is evidence that the oxytocin (Oxt) system may be dysregulated in some individuals. Further, treatment with intranasal Oxt reduces some of the heterogeneous symptoms associated with schizophrenia. Since Oxt is known for its modulatory effects on a variety of social and non-social behaviors, it is perhaps not surprising that it may contribute to some aspects of schizophrenia and could also be a useful therapeutic agent. In this review, we highlight what is known about Oxt's contributions to schizophrenia and schizophrenia-related behaviors and discuss its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Megan Elizabeth Rich
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, The School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Heather Kingsley Caldwell
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, The School of Biomedical Sciences, Kent State University, Kent, OH, USA
- *Correspondence: Heather Kingsley Caldwell, Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, The School of Biomedical Sciences, Kent State University, PO Box 5190, 121 Cunningham Hall, Kent, OH 44242, USA,
| |
Collapse
|