1
|
Sweat SC, Cheetham CEJ. Deficits in olfactory system neurogenesis in neurodevelopmental disorders. Genesis 2024; 62:e23590. [PMID: 38490949 PMCID: PMC10990073 DOI: 10.1002/dvg.23590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
The role of neurogenesis in neurodevelopmental disorders (NDDs) merits much attention. The complex process by which stem cells produce daughter cells that in turn differentiate into neurons, migrate various distances, and form synaptic connections that are then refined by neuronal activity or experience is integral to the development of the nervous system. Given the continued postnatal neurogenesis that occurs in the mammalian olfactory system, it provides an ideal model for understanding how disruptions in distinct stages of neurogenesis contribute to the pathophysiology of various NDDs. This review summarizes and discusses what is currently known about the disruption of neurogenesis within the olfactory system as it pertains to attention-deficit/hyperactivity disorder, autism spectrum disorder, Down syndrome, Fragile X syndrome, and Rett syndrome. Studies included in this review used either human subjects, mouse models, or Drosophila models, and lay a compelling foundation for continued investigation of NDDs by utilizing the olfactory system.
Collapse
Affiliation(s)
- Sean C Sweat
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claire E J Cheetham
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Wu J, Hu Q, Rao X, Zhao H, Tang H, Wang Y. Gut microbiome and metabolic profiles of mouse model for MeCP2 duplication syndrome. Brain Res Bull 2024; 206:110862. [PMID: 38145758 DOI: 10.1016/j.brainresbull.2023.110862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
The extra copy of the methyl-CpG-binding protein 2 (MeCp2) gene causes MeCP2 duplication syndrome (MDS), a neurodevelopmental disorder characterized by intellectual disability and autistic phenotypes. However, the disturbed microbiome and metabolic profiling underlying the autistic-like behavioral deficits of MDS are rarely investigated. Here we aimed to understand the contributions of microbiome disruption and associated metabolic alterations, especially the disturbed neurotransmitters in MDS employing a transgenic mouse model with MeCP2 overexpression. We analyzed metabolic profiles of plasma, urine, and cecum content and microbiome profiles by both 16 s RNA and shotgun metagenomics sequence technology. We found the decreased levels of Firmicutes and increased levels of Bacteroides in the single MeCP2 gene mutation autism-like mouse model, demonstrating the importance of the host genome in a selection of microbiome, leading to the heterogeneity characteristics of microbiome in MDS. Furthermore, the changed levels of several neurotransmitters (such as dopamine, taurine, and glutamate) implied the excitatory-inhibitory imbalance caused by the single gene mutation. Concurrently, a range of microbial metabolisms of aromatic amino acids (such as tryptophan and phenylalanine) were identified in different biological matrices obtained from MeCP2 transgenic mice. Our investigation revealed the importance of genetic variation in accounting for the differences in microbiomes and confirmed the bidirectional regulatory axis of microbiota-gut-brain in studying the role of microbiome on MDS, which could be useful in deeply understanding the microbiome-based treatment in this autistic-like disease.
Collapse
Affiliation(s)
- Junfang Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| | - Qingyu Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoping Rao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430000, China
| | - Hongyang Zhao
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
3
|
Wang T, Chen B, Luo M, Xie L, Lu M, Lu X, Zhang S, Wei L, Zhou X, Yao B, Wang H, Xu D. Microbiota-indole 3-propionic acid-brain axis mediates abnormal synaptic pruning of hippocampal microglia and susceptibility to ASD in IUGR offspring. MICROBIOME 2023; 11:245. [PMID: 37932832 PMCID: PMC10629055 DOI: 10.1186/s40168-023-01656-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/23/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) has been associated with intrauterine growth restriction (IUGR), but the underlying mechanisms are unclear. RESULTS We found that the IUGR rat model induced by prenatal caffeine exposure (PCE) showed ASD-like symptoms, accompanied by altered gut microbiota and reduced production of indole 3-propionic acid (IPA), a microbiota-specific metabolite and a ligand of aryl hydrocarbon receptor (AHR). IUGR children also had a reduced serum IPA level consistent with the animal model. We demonstrated that the dysregulated IPA/AHR/NF-κB signaling caused by disturbed gut microbiota mediated the hippocampal microglia hyperactivation and neuronal synapse over-pruning in the PCE-induced IUGR rats. Moreover, postnatal IPA supplementation restored the ASD-like symptoms and the underlying hippocampal lesions in the IUGR rats. CONCLUSIONS This study suggests that the microbiota-IPA-brain axis regulates ASD susceptibility in PCE-induced IUGR offspring, and supplementation of microbiota-derived IPA might be a promising interventional strategy for ASD with a fetal origin. Video Abstract.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Beidi Chen
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Mingcui Luo
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lulu Xie
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Mengxi Lu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaoqian Lu
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Shuai Zhang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Liyi Wei
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xinli Zhou
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Dan Xu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
4
|
Jach ME, Serefko A, Szopa A, Sajnaga E, Golczyk H, Santos LS, Borowicz-Reutt K, Sieniawska E. The Role of Probiotics and Their Metabolites in the Treatment of Depression. Molecules 2023; 28:molecules28073213. [PMID: 37049975 PMCID: PMC10096791 DOI: 10.3390/molecules28073213] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
Depression is a common and complex mental and emotional disorder that causes disability, morbidity, and quite often mortality around the world. Depression is closely related to several physical and metabolic conditions causing metabolic depression. Studies have indicated that there is a relationship between the intestinal microbiota and the brain, known as the gut–brain axis. While this microbiota–gut–brain connection is disturbed, dysfunctions of the brain, immune system, endocrine system, and gastrointestinal tract occur. Numerous studies show that intestinal dysbiosis characterized by abnormal microbiota and dysfunction of the microbiota–gut–brain axis could be a direct cause of mental and emotional disorders. Traditional treatment of depression includes psychotherapy and pharmacotherapy, and it mainly targets the brain. However, restoration of the intestinal microbiota and functions of the gut–brain axis via using probiotics, their metabolites, prebiotics, and healthy diet may alleviate depressive symptoms. Administration of probiotics labeled as psychobiotics and their metabolites as metabiotics, especially as an adjuvant to antidepressants, improves mental disorders. It is a new approach to the prevention, management, and treatment of mental and emotional illnesses, particularly major depressive disorder and metabolic depression. For the effectiveness of antidepressant therapy, psychobiotics should be administered at a dose higher than 1 billion CFU/day for at least 8 weeks.
Collapse
Affiliation(s)
- Monika Elżbieta Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland
| | - Ewa Sajnaga
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Konstantynów Street 1J, 20-708 Lublin, Poland
| | - Hieronim Golczyk
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland
| | - Leandro Soares Santos
- Department of Animal and Rural Technology, State University of Southwest Bahia, Itapetinga 45700-000, BA, Brazil
| | - Kinga Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Huang Y, Liu L, Hao Z, Chen L, Yang Q, Xiong X, Deng Y. Potential roles of gut microbial tryptophan metabolites in the complex pathogenesis of acne vulgaris. Front Microbiol 2022; 13:942027. [PMID: 35966699 PMCID: PMC9363916 DOI: 10.3389/fmicb.2022.942027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Acne vulgaris is a chronic inflammatory skin disease in which the influence of gut microbiota has been implicated but without clarification of mechanisms. Gut microbiota may exert such an influence via metabolites, particularly those of tryptophan. End metabolites of tryptophan activate receptors, including aryl hydrocarbon, G protein-coupled, and pregnane X receptors to stabilize the immune microenvironment and intestinal mucosal homeostasis. Any impact on the pathogenesis of acne vulgaris remains unclear. The current review collates recent advances concerning potential roles of tryptophan metabolism in mediating skin inflammation, follicular sebaceous gland function and intestinal permeability, all of which influence the pathogenesis of acne vulgaris. The aim was to improve understanding of the pathogenesis of acne vulgaris and to expose therapeutic opportunities.
Collapse
Affiliation(s)
- Yukun Huang
- Department of Dermatology and STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lu Liu
- Department of Dermatology and STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhenyu Hao
- Department of Dermatology and STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lingna Chen
- Department of Dermatology and STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qian Yang
- School of Nursing, Chengdu Medical College, Chengdu, China
- *Correspondence: Qian Yang,
| | - Xia Xiong
- Department of Dermatology and STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Xia Xiong,
| | - Yongqiong Deng
- Department of Dermatology and STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Yongqiong Deng,
| |
Collapse
|
6
|
Influence of the Aryl Hydrocarbon Receptor Activating Environmental Pollutants on Autism Spectrum Disorder. Int J Mol Sci 2021; 22:ijms22179258. [PMID: 34502168 PMCID: PMC8431328 DOI: 10.3390/ijms22179258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is an umbrella term that includes many different disorders that affect the development, communication, and behavior of an individual. Prevalence of ASD has risen exponentially in the past couple of decades. ASD has a complex etiology and traditionally recognized risk factors only account for a small percentage of incidence of the disorder. Recent studies have examined factors beyond the conventional risk factors (e.g., environmental pollution). There has been an increase in air pollution since the beginning of industrialization. Most environmental pollutants cause toxicities through activation of several cellular receptors, such as the aryl hydrocarbon receptor (AhR)/cytochrome P450 (CYPs) pathway. There is little research on the involvement of AhR in contributing to ASD. Although a few reviews have discussed and addressed the link between increased prevalence of ASD and exposure to environmental pollutants, the mechanism governing this effect, specifically the role of AhR in ASD development and the molecular mechanisms involved, have not been discussed or reviewed before. This article reviews the state of knowledge regarding the impact of the AhR/CYP pathway modulation upon exposure to environmental pollutants on ASD risk, incidence, and development. It also explores the molecular mechanisms involved, such as epigenesis and polymorphism. In addition, the review explores possible new AhR-mediated mechanisms of several drugs used for treatment of ASD, such as sulforaphane, resveratrol, haloperidol, and metformin.
Collapse
|
7
|
Generoso JS, Giridharan VV, Lee J, Macedo D, Barichello T. The role of the microbiota-gut-brain axis in neuropsychiatric disorders. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2021; 43:293-305. [PMID: 32667590 PMCID: PMC8136391 DOI: 10.1590/1516-4446-2020-0987] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The microbiota-gut-brain axis is a bidirectional signaling mechanism between the gastrointestinal tract and the central nervous system. The complexity of the intestinal ecosystem is extraordinary; it comprises more than 100 trillion microbial cells that inhabit the small and large intestine, and this interaction between microbiota and intestinal epithelium can cause physiological changes in the brain and influence mood and behavior. Currently, there has been an emphasis on how such interactions affect mental health. Evidence indicates that intestinal microbiota are involved in neurological and psychiatric disorders. This review covers evidence for the influence of gut microbiota on the brain and behavior in Alzheimer disease, dementia, anxiety, autism spectrum disorder, bipolar disorder, major depressive disorder, Parkinson's disease, and schizophrenia. The primary focus is on the pathways involved in intestinal metabolites of microbial origin, including short-chain fatty acids, tryptophan metabolites, and bacterial components that can activate the host's immune system. We also list clinical evidence regarding prebiotics, probiotics, and fecal microbiota transplantation as adjuvant therapies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jaqueline S. Generoso
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Vijayasree V. Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Danielle Macedo
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Ribeirão Preto, SP, Brazil
| | - Tatiana Barichello
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
8
|
da Silveira Cruz-Machado S, Guissoni Campos LM, Fadini CC, Anderson G, Markus RP, Pinato L. Disrupted nocturnal melatonin in autism: Association with tumor necrosis factor and sleep disturbances. J Pineal Res 2021; 70:e12715. [PMID: 33421193 DOI: 10.1111/jpi.12715] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Sleep disturbances, abnormal melatonin secretion, and increased inflammation are aspects of autism spectrum disorder (ASD) pathophysiology. The present study evaluated the daily urinary 6-sulfatoxymelatonin (aMT6s) excretion profile and the salivary levels of tumor necrosis factor (TNF) and interleukin-6 (IL-6) in 20 controls and 20 ASD participants, as well as correlating these measures with sleep disturbances. Although 60% of ASD participants showed a significant night-time rise in aMT6s excretion, this rise was significantly attenuated, compared to controls (P < .05). The remaining 40% of ASD individuals showed no significant increase in nocturnal aMT6s. ASD individuals showed higher nocturnal levels of saliva TNF, but not IL-6. Dysfunction in the initiation and maintenance of sleep, as indicated by the Sleep Disturbance Scale for Children, correlated with night-time aMT6s excretion (r = -.28, P < .05). Dysfunction in sleep breathing was inversely correlated with aMT6s (r = -.31, P < .05) and positively associated with TNF level (r = .42, P < .01). Overall such data indicate immune-pineal axis activation, with elevated TNF but not IL-6 levels associated with disrupted pineal melatonin release and sleep dysfunction in ASD. It is proposed that circadian dysregulation in ASD is intimately linked to heightened immune-inflammatory activity. Such two-way interactions of the immune-pineal axis may underpin many aspects of ASD pathophysiology, including sleep disturbances, as well as cognitive and behavioral alterations.
Collapse
Affiliation(s)
- Sanseray da Silveira Cruz-Machado
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Cintia Cristina Fadini
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marilia, Brazil
| | | | - Regina P Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo (USP), São Paulo, Brazil
| | - Luciana Pinato
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marilia, Brazil
| |
Collapse
|
9
|
Ma N, He T, Johnston LJ, Ma X. Host-microbiome interactions: the aryl hydrocarbon receptor as a critical node in tryptophan metabolites to brain signaling. Gut Microbes 2020; 11:1203-1219. [PMID: 32401136 PMCID: PMC7524279 DOI: 10.1080/19490976.2020.1758008] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tryptophan (Trp) is not only a nutrient enhancer but also has systemic effects. Trp metabolites signaling through the well-known aryl hydrocarbon receptor (AhR) constitute the interface of microbiome-gut-brain axis. However, the pathway through which Trp metabolites affect central nervous system (CNS) function have not been fully elucidated. AhR participates in a broad variety of physiological and pathological processes that also highly relevant to intestinal homeostasis and CNS diseases. Via the AhR-dependent mechanism, Trp metabolites connect bidirectional signaling between the gut microbiome and the brain, mediated via immune, metabolic, and neural (vagal) signaling mechanisms, with downstream effects on behavior and CNS function. These findings shed light on the complex Trp regulation of microbiome-gut-brain axis and add another facet to our understanding that dietary Trp is expected to be a promising noninvasive approach for alleviating systemic diseases.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ting He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J. Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, MN, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,CONTACT Xi Ma State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing100193, China
| |
Collapse
|
10
|
Anderson G, Betancort Medina SR. Autism Spectrum Disorders: Role of Pre- and Post-Natal GammaDelta (γδ) T Cells and Immune Regulation. Curr Pharm Des 2020; 25:4321-4330. [PMID: 31682211 DOI: 10.2174/1381612825666191102170125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND It is widely accepted that alterations in immune functioning are an important aspect of the pathoetiology and pathophysiology of autism spectrum disorders (ASD). A relatively under-explored aspect of these alterations is the role of gammaDelta (γδ) T cells, prenatally and in the postnatal gut, which seem important hubs in driving the course of ASD. METHODS The present article describes the role of γδ T cells in ASD, including their interactions with other immune cells shown to be altered in this spectrum of conditions, including natural killer cells and mast cells. RESULTS Other risk factors in ASD, such as decreased vitamins A & D, as well as toxin-associated activation of the aryl hydrocarbon receptor, may also be intimately linked to γδ T cells, and alterations in the regulation of these cells. A growing body of data has highlighted an important role for alterations in mitochondria functioning in the regulation of immune cells, including natural killer cells and mast cells. This is an area that requires investigation in γδ T cells and their putative subtypes. CONCLUSION It is also proposed that maternal stress may act through alterations in the maternal microbiome, leading to changes in how the balance of short-chain fatty acids, such as butyrate, which may act to regulate the placenta and foetal development. Following an overview of previous research on immune, especially γδ T cells, effects in ASD, the future research implications are discussed in detail.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| | | |
Collapse
|
11
|
Seo M, Anderson G. Gut-Amygdala Interactions in Autism Spectrum Disorders: Developmental Roles via regulating Mitochondria, Exosomes, Immunity and microRNAs. Curr Pharm Des 2020; 25:4344-4356. [PMID: 31692435 DOI: 10.2174/1381612825666191105102545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autism Spectrum Disorders (ASD) have long been conceived as developmental disorder. A growing body of data highlights a role for alterations in the gut in the pathoetiology and/or pathophysiology of ASD. Recent work shows alterations in the gut microbiome to have a significant impact on amygdala development in infancy, suggesting that the alterations in the gut microbiome may act to modulate not only amygdala development but how the amygdala modulates the development of the frontal cortex and other brain regions. METHODS This article reviews wide bodies of data pertaining to the developmental roles of the maternal and foetal gut and immune systems in the regulation of offspring brain development. RESULTS A number of processes seem to be important in mediating how genetic, epigenetic and environmental factors interact in early development to regulate such gut-mediated changes in the amygdala, wider brain functioning and inter-area connectivity, including via regulation of microRNA (miR)-451, 14-3-3 proteins, cytochrome P450 (CYP)1B1 and the melatonergic pathways. As well as a decrease in the activity of monoamine oxidase, heightened levels of in miR-451 and CYP1B1, coupled to decreased 14-3-3 act to inhibit the synthesis of N-acetylserotonin and melatonin, contributing to the hyperserotonemia that is often evident in ASD, with consequences for mitochondria functioning and the content of released exosomes. These same factors are likely to play a role in regulating placental changes that underpin the association of ASD with preeclampsia and other perinatal risk factors, including exposure to heavy metals and air pollutants. Such alterations in placental and gut processes act to change the amygdala-driven biological underpinnings of affect-cognitive and affect-sensory interactions in the brain. CONCLUSION Such a perspective readily incorporates previously disparate bodies of data in ASD, including the role of the mu-opioid receptor, dopamine signaling and dopamine receptors, as well as the changes occurring to oxytocin and taurine levels. This has a number of treatment implications, the most readily applicable being the utilization of sodium butyrate and melatonin.
Collapse
Affiliation(s)
- Moonsang Seo
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| |
Collapse
|
12
|
Friedrich J, Strandberg E, Arvelius P, Sánchez-Molano E, Pong-Wong R, Hickey JM, Haskell MJ, Wiener P. Genetic dissection of complex behaviour traits in German Shepherd dogs. Heredity (Edinb) 2019; 123:746-758. [PMID: 31611599 PMCID: PMC6834583 DOI: 10.1038/s41437-019-0275-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022] Open
Abstract
A favourable genetic structure and diversity of behavioural features highlights the potential of dogs for studying the genetic architecture of behaviour traits. However, behaviours are complex traits, which have been shown to be influenced by numerous genetic and non-genetic factors, complicating their analysis. In this study, the genetic contribution to behaviour variation in German Shepherd dogs (GSDs) was analysed using genomic approaches. GSDs were phenotyped for behaviour traits using the established Canine Behavioural Assessment and Research Questionnaire (C-BARQ). Genome-wide association study (GWAS) and regional heritability mapping (RHM) approaches were employed to identify associations between behaviour traits and genetic variants, while accounting for relevant non-genetic factors. By combining these complementary methods we endeavoured to increase the power to detect loci with small effects. Several behavioural traits exhibited moderate heritabilities, with the highest identified for Human-directed playfulness, a trait characterised by positive interactions with humans. We identified several genomic regions associated with one or more of the analysed behaviour traits. Some candidate genes located in these regions were previously linked to behavioural disorders in humans, suggesting a new context for their influence on behaviour characteristics. Overall, the results support dogs as a valuable resource to dissect the genetic architecture of behaviour traits and also highlight the value of focusing on a single breed in order to control for background genetic effects and thus avoid limitations of between-breed analyses.
Collapse
Affiliation(s)
- Juliane Friedrich
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Erling Strandberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, 750 07, Uppsala, Sweden
| | - Per Arvelius
- Swedish Armed Forces Dog Training Centre, PO Box 194, 195 24, Märsta, Sweden
| | - E Sánchez-Molano
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Ricardo Pong-Wong
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - John M Hickey
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Marie J Haskell
- Animal and Veterinary Sciences Group, Scotland's Rural College, Edinburgh, EH25 9RG, UK.
| | - Pamela Wiener
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.
| |
Collapse
|
13
|
Abstract
The gut microbiota is a crucial actor in human physiology. Many of these effects are mediated by metabolites that are either produced by the microbes or derived from the transformation of environmental or host molecules. Among the array of metabolites at the interface between these microorganisms and the host is the essential aromatic amino acid tryptophan (Trp). In the gut, the three major Trp metabolism pathways leading to serotonin (5-hydroxytryptamine), kynurenine (Kyn), and indole derivatives are under the direct or indirect control of the microbiota. In this review, we gather the most recent advances concerning the central role of Trp metabolism in microbiota-host crosstalk in health and disease. Deciphering the complex equilibrium between these pathways will facilitate a better understanding of the pathogenesis of human diseases and open therapeutic opportunities.
Collapse
|
14
|
Maes M, Anderson G, Betancort Medina SR, Seo M, Ojala JO. Integrating Autism Spectrum Disorder Pathophysiology: Mitochondria, Vitamin A, CD38, Oxytocin, Serotonin and Melatonergic Alterations in the Placenta and Gut. Curr Pharm Des 2019; 25:4405-4420. [PMID: 31682209 DOI: 10.2174/1381612825666191102165459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND A diverse array of data has been associated with autism spectrum disorder (ASD), reflecting the complexity of its pathophysiology as well as its heterogeneity. Two important hubs have emerged, the placenta/prenatal period and the postnatal gut, with alterations in mitochondria functioning crucial in both. METHODS Factors acting to regulate mitochondria functioning in ASD across development are reviewed in this article. RESULTS Decreased vitamin A, and its retinoic acid metabolites, lead to a decrease in CD38 and associated changes that underpin a wide array of data on the biological underpinnings of ASD, including decreased oxytocin, with relevance both prenatally and in the gut. Decreased sirtuins, poly-ADP ribose polymerase-driven decreases in nicotinamide adenine dinucleotide (NAD+), hyperserotonemia, decreased monoamine oxidase, alterations in 14-3-3 proteins, microRNA alterations, dysregulated aryl hydrocarbon receptor activity, suboptimal mitochondria functioning, and decreases in the melatonergic pathways are intimately linked to this. Many of the above processes may be modulating, or mediated by, alterations in mitochondria functioning. Other bodies of data associated with ASD may also be incorporated within these basic processes, including how ASD risk factors such as maternal obesity and preeclampsia, as well as more general prenatal stressors, modulate the likelihood of offspring ASD. CONCLUSION Such a mitochondria-focussed integrated model of the pathophysiology of ASD has important preventative and treatment implications.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| | | | - Moonsang Seo
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Johanna O Ojala
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
15
|
Guo Z, Xie HQ, Zhang P, Luo Y, Xu T, Liu Y, Fu H, Xu L, Valsami-Jones E, Boksa P, Zhao B. Dioxins as potential risk factors for autism spectrum disorder. ENVIRONMENT INTERNATIONAL 2018; 121:906-915. [PMID: 30347373 DOI: 10.1016/j.envint.2018.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/14/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
Autism spectrum disorder (ASD) has emerged as a major public health concern due to its fast-growing prevalence in recent decades. Environmental factors are thought to contribute substantially to the variance in ASD. Interest in environmental toxins as causes of ASD has arisen due to the high sensitivity of the developing human brain to toxic chemicals, particularly to dioxin and certain dioxin-like compounds (dioxins). As a group of typical persistent organic pollutants, dioxins have been found to exert adverse effects on human brain development. In this paper, we review the evidence for association of exposure to dioxins with neurodevelopmental abnormalities related to ASD based on both human epidemiological and animal studies. It has been documented that exposure to dioxins during critical developmental periods increased risk for ASD. This notion has been demonstrated in different populations exposed to high or background level of dioxins. Furthermore, the effects and mechanisms of action of dioxins relevant to the pathophysiology and pathogenesis of ASD are summarized, describing potential underlying mechanisms linking dioxin exposure with ASD onset. Further studies focusing on effects of prenatal/perinatal exposure to individual dioxin congeners or to mixtures of dioxins on ASD-associated behavioral and neurobiological consequences in animal models, and on the mechanisms of actions of dioxins, are needed in order to better understand how dioxin exposure might contribute to increased risk for ASD.
Collapse
Affiliation(s)
- Zhiling Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham B15 2TT, UK
| | - Yali Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eugenia Valsami-Jones
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham B15 2TT, UK
| | - Patricia Boksa
- Department of Psychiatry, McGill University, 6875 LaSalle Boulevard, Montreal, QC, Canada; Neuroscience Division, Douglas Mental Health University Institute, Montreal, QC, Canada.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Hosseinpour M, Mashayekhi F, Bidabadi E, Salehi Z. Neuropilin-2 rs849563 gene variations and susceptibility to autism in Iranian population: A case-control study. Metab Brain Dis 2017; 32:1471-1474. [PMID: 28484884 DOI: 10.1007/s11011-017-0024-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disruptions usually diagnosed in the first three years of child's life that characterized by some impairments in verbal and nonverbal communication, problems in social interactions and repetitive behaviors. The neuropilin-2 (NRP2) gene has been shown to both guide axons and control neuronal migration in the central nervous system (CNS). In this study the association between the NRP2 gene and autism using a cohort of 120 Iranian children (50 cases with autism and 70 control cases) was analyzed. Single nucleotide polymorphism (SNP) was genotyped by the polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analyses. There was significant difference between the genotype and allele frequency between control and patient groups (P = 0.003 and P = 0.01, respectively). The prevalence of genotype frequencies of TT and TG in autistic children were 40% and 60%, respectively, while in controls were 68.5% and 31.5%, respectively. The heterozyote TG was associated with an increased risk of autism compared with TT genotype (OR = 3.72, 95%CI = 1.53-6.95, P = 0.02). The allele frequencies of T and G in autistic children were 78.5% and 21.4%, respectively and in controls were 84.2% and 15.7%, respectively. The NRP2 G allele conferred a 2.29-fold increased risk to autism relative to the T allele (OR = 2.29, 95%CI = 1.23-4.29, P = 0.009). The results of this study showed that there is a significant association between rs849563 polymorphism and autism in the studied population. However in order to obtain a definitive conclusion larger studies with more samples are required to confirm the results of this study.
Collapse
Affiliation(s)
| | - Farhad Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Elham Bidabadi
- Faculty of Medicine, Department of Child Neurology, Guilan University of Medical Sciences, Rasht, Iran
| | - Zivar Salehi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|