1
|
De Paolis ML, Loffredo G, Krashia P, La Barbera L, Nobili A, Cauzzi E, Babicola L, Di Segni M, Coccurello R, Puglisi-Allegra S, Latagliata EC, D'Amelio M. Repetitive prefrontal tDCS activates VTA dopaminergic neurons, resulting in attenuation of Alzheimer's Disease-like deficits in Tg2576 mice. Alzheimers Res Ther 2025; 17:94. [PMID: 40301905 PMCID: PMC12039073 DOI: 10.1186/s13195-025-01736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND Emerging evidence implicates early dysfunction of dopaminergic neurons in the Ventral Tegmental Area (VTA) as a key contributor to Alzheimer's Disease (AD) pathophysiology. Specifically, the VTA dopaminergic neurodegeneration and the consequent reduction of dopamine (DA) in mesocorticolimbic targets are associated with the onset of cognitive impairments and neuropsychiatric-like manifestations in AD animal models. Moreover, decreased midbrain volume and functional VTA disconnection are identified as predictors of accelerated progression from Mild Cognitive Impairment to AD-dementia in clinical populations. Given these findings, interventions capable of directly modulating VTA activity and augmenting DA release, despite the ongoing neurodegeneration, may hold therapeutic potential for mitigating DA-related deficits in AD. This study aims at evaluating the therapeutic potential of prefrontal transcranial Direct Current Stimulation (tDCS) in the Tg2576 mouse model of AD, exhibiting early VTA dopaminergic neurodegeneration. METHODS Repeated tDCS was applied to assess its ability to activate VTA DA neurons. We also evaluated tDCS effects on synaptic plasticity, cognitive and non-cognitive behaviours and AD-related pathology. Hippocampal DA release and Nucleus Accumbens (NAc) DA transporter (DAT) expression were measured. With immunohistochemistry we examined microglial density and morphological complexity at different disease stages. Additionally, intracellular amyloid-β (Aβ) levels and plaque burden were evaluated to determine the impact of tDCS on AD pathology. RESULTS Prefrontal tDCS enhanced the activity of VTA dopaminergic neurons, leading to increased hippocampal DA release and higher DAT levels in the NAc. The enhanced DA outflow is associated with restored CA3-CA1 synaptic plasticity and improvements in recognition memory and motivational behaviours. tDCS reduced microglial numbers and morphological complexity in Tg2576 mice at both pre-plaque stage (7-months) and at an advanced stage characterized by plaque accumulation (12-months). Notably, tDCS also decreased Aβ plaque burden, although no changes in intracellular Aβ levels were observed in younger Tg2576 mice. CONCLUSIONS These findings highlight the multifaceted therapeutic potential of prefrontal tDCS in targeting key AD pathophysiological hallmarks, including dopaminergic dysfunction, synaptic impairments, neuroinflammation and plaque deposition. As a non-invasive neuromodulatory approach, prefrontal tDCS emerges as a promising early intervention strategy to complement existing AD treatments, with the potential to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Gilda Loffredo
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Paraskevi Krashia
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy
| | - Livia La Barbera
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy
| | - Annalisa Nobili
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy
| | - Emma Cauzzi
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Lucy Babicola
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy
- Department of Psychology, Sapienza University of Rome, P.Le Aldo Moro, 5, 00185, Rome, Italy
| | - Matteo Di Segni
- Child Psychopathology Unit, IRCCS Eugenio Medea, Via Don Luigi Monza, 20, 23842, Bosisio Parini, Italy
| | - Roberto Coccurello
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy
- National Research Council (CNR), Institute for Complex System (ISC), Via Dei Taurini, 19, 00185, Rome, Italy
| | - Stefano Puglisi-Allegra
- Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense, 18, 86077, Pozzilli, Italy
| | - Emanuele Claudio Latagliata
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy.
- Department of Psychology, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|
2
|
Saggu S, Bai A, Aida M, Rehman H, Pless A, Ware D, Deak F, Jiao K, Wang Q. Monoamine alterations in Alzheimer's disease and their implications in comorbid neuropsychiatric symptoms. GeroScience 2025; 47:457-482. [PMID: 39331291 PMCID: PMC11872848 DOI: 10.1007/s11357-024-01359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by relentless cognitive decline and the emergence of profoundly disruptive neuropsychiatric symptoms. As the disease progresses, it unveils a formidable array of neuropsychiatric manifestations, including debilitating depression, anxiety, agitation, and distressing episodes of psychosis. The intricate web of the monoaminergic system, governed by serotonin, dopamine, and norepinephrine, significantly influences our mood, cognition, and behavior. Emerging evidence suggests that dysregulation and degeneration of this system occur early in AD, leading to notable alterations in these critical neurotransmitters' levels, metabolism, and receptor function. However, how the degeneration of monoaminergic neurons and subsequent compensatory changes contribute to the presentation of neuropsychiatric symptoms observed in Alzheimer's disease remains elusive. This review synthesizes current findings on monoamine alterations in AD and explores how these changes contribute to the neuropsychiatric symptomatology of the disease. By elucidating the biological underpinnings of AD-related psychiatric symptoms, we aim to underscore the complexity and inform innovative approaches for treating neuropsychiatric symptoms in AD.
Collapse
Affiliation(s)
- Shalini Saggu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| | - Ava Bai
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Mae Aida
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hasibur Rehman
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Andrew Pless
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Destany Ware
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Ferenc Deak
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Kai Jiao
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
3
|
Jiang J, Jiang T, Wang X, Zhao M, Shi H, Zhang H, Li W, Jiang S, Zhang X, Zhou J, Ren Q, Wang L, Yang S, Yao Z, Liu Y, Xu J. Malnutrition exacerbating neuropsychiatric symptoms on the Alzheimer's continuum is relevant to the cAMP signaling pathway: Human and mouse studies. Alzheimers Dement 2025; 21:e14506. [PMID: 39868480 PMCID: PMC11848410 DOI: 10.1002/alz.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Malnutrition correlates with neuropsychiatric symptoms (NPSs) in Alzheimer's disease (AD); however, the potential mechanism underlying this association remains unclear. METHODS Baseline and longitudinal associations of nutritional status with NPSs were analyzed in 374 patients on the AD continuum and 61 healthy controls. Serum biomarkers, behavioral tests, cerebral neurotransmitters, and differentially gene expression were evaluated in standard and malnourished diet-fed transgenic APPswe/PSEN1dE9 (APP/PS1) mice. RESULTS Poor nutritional status and increased cerebral blood flow in the midbrain and striatum were associated with severe general NPSs and subtypes, especially depression, anxiety, and apathy. APP/PS1 mice fed a malnourished diet showed poor nutritional status, depression- and anxiety-like behaviors, altered neurotransmitter levels, and downregulated c-Fos expression in the midbrain and striatum; these were associated with suppressed cyclic adenosine monophosphate (cAMP) signaling pathway. DISCUSSION Malnutrition exacerbating NPSs is relevant to suppressed cAMP pathway in the midbrain and striatum, suggesting the potential for targeted nutritional interventions to mitigate NPSs in the AD continuum. HIGHLIGHTS Poor nutritional status linked to general and specific neuropsychiatric symptom (NPS) deterioration. Malnutrition affects NPSs, usually involving the midbrain and striatum. Malnourished diet induces depression- and anxiety-like behaviors in APP/PS1 mice. Malnutrition exacerbates NPSs associated with cAMP signaling pathway in the midbrain and striatum.
Collapse
Affiliation(s)
- Jiwei Jiang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Tianlin Jiang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xiaohong Wang
- Institute of Translational MedicineMedical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental & Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Min Zhao
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Hanping Shi
- Beijing Shijitan Hospital, Capital Medical UniversityBeijingChina
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijingChina
| | - Huiying Zhang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wenyi Li
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shirui Jiang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xiaoli Zhang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jiawei Zhou
- Institute of Translational MedicineMedical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental & Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Qiwei Ren
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Linlin Wang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shiyi Yang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zeshan Yao
- Beijing Institute of Collaborative InnovationBeijingChina
| | - Yaou Liu
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jun Xu
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
4
|
Pilotto A, Galli A, Sala A, Caminiti SP, Presotto L, Liguori C, Mercuri NB, Premi E, Garibotto V, Frisoni G, Chiaravalloti A, Schillaci O, D'Amelio M, Paghera B, Lucchini S, Bertagna F, Perani D, Padovani A. Dopaminergic deficits along the spectrum of Alzheimer's disease. Mol Psychiatry 2025:10.1038/s41380-025-02913-5. [PMID: 39890920 DOI: 10.1038/s41380-025-02913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 12/16/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Both post-mortem and in vivo data argue for dopamine dysfunction in patients with Alzheimer's Disease (AD). However, the timing and regional progression of dopaminergic systems alterations in AD are still debated. The aim of the study was to investigate in vivo the pattern of dopaminergic changes and connectivity using DAT-SPECT imaging in patients across the AD spectrum. Fifty-nine AD patients (n = 21 AD-MCI; n = 38 AD-DEM) and a control group (CG) of n = 45 age- and sex-matched individuals entered the study and underwent 123I-FP-CIT dopaminergic imaging. The occipital binding was used as reference region to obtain single-subject binding in different brain regions. Between-group differences in 123I-FP-CIT binding in both mesolimbic and nigrostriatal dopaminergic pathways were assessed using an ANCOVA test, adjusting for the effect of center of imaging acquisition, age, and sex. Regions resulting from the voxel-wise direct comparison between AD-MCI and AD-DEM were considered as a seed of interest for a voxel-wise interregional correlation analysis. Both AD-MCI and AD-DEM patients showed dopaminergic depletion within the basal ganglia, whereas cortico-limbic regions (namely hippocampus, amygdala, anterior and middle cingulate, frontal cortex and thalamus) resulted impaired only in the dementia phase. The brain voxel-wise interregional correlation analysis showed a progressive pattern of disruption of caudate/thalamus dopaminergic connectivity to hippocampus and amygdala from AD-MCI to AD-DEM stages. This study indicates basal ganglia dopaminergic alterations and connectivity disruption in the nigrostriatal and mesolimbic systems already in early stage AD, extending to several cortico-limbic regions in dementia phases.
Collapse
Affiliation(s)
- Andrea Pilotto
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy.
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy.
- Neurology Unit, Department of continuity of care and frailty, ASST Spedali Civili Brescia Hospital, Brescia, Italy.
- Neurobiorepository and Laboratory of advanced biological markers, University of Brescia and ASST Spedali Civili Hospital, Brescia, Italy.
| | - Alice Galli
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy
| | - Arianna Sala
- Coma Science group- University of Liege, Liège, Belgium
| | | | - Luca Presotto
- Department of Physics "G. Occhialini", University of Milano-Bicocca, Milan, Italy
| | - Claudio Liguori
- Neurophysiology Unit, Sleep and Epilepsy Center- University of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Neurophysiology Unit, Sleep and Epilepsy Center- University of Rome Tor Vergata, Rome, Italy
| | - Enrico Premi
- Stroke Unit, ASST Spedali Civili Brescia Hospital, Brescia, Italy
| | - Valentina Garibotto
- Department of Radiology and Medical Informatics- Geneva University Hospital, Geneva, Switzerland
| | - Giovanni Frisoni
- Department of Psychiatry- Geneva University Hospital, Geneva, Switzerland
| | | | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Barbara Paghera
- Nuclear Medicine Unit- University of Brescia, Brescia, Italy
| | - Silvia Lucchini
- Nuclear Medicine Unit- University of Brescia, Brescia, Italy
| | | | - Daniela Perani
- University Vita-Salute San Raffaele, IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy
- Neurology Unit, Department of continuity of care and frailty, ASST Spedali Civili Brescia Hospital, Brescia, Italy
- Brain Health Center, University of Brescia, Brescia, Italy
| |
Collapse
|
5
|
Zhang NK, Zhang SK, Zhang LI, Tao HW, Zhang GW. The neural basis of neuropsychiatric symptoms in Alzheimer's disease. Front Aging Neurosci 2024; 16:1487875. [PMID: 39703925 PMCID: PMC11655510 DOI: 10.3389/fnagi.2024.1487875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Neuropsychiatric symptoms (NPS) such as depression, anxiety, apathy and aggression affect up to 90% of Alzheimer's disease (AD) patients. These symptoms significantly increase caregiver stress and institutionalization rates, and more importantly they are correlated with faster cognitive decline. However, the neuronal basis of NPS in AD remains largely unknown. Here, we review current understanding of NPS and related pathology in studies of AD patients and AD mouse models. Clinical studies indicate that NPS prevalence and severity vary across different AD stages and types. Neuroimaging and postmortem studies have suggested that pathological changes in the anterior cingulate cortex, hippocampus, prefrontal cortex, and amygdala are linked to NPS, although the precise mechanisms remain unclear. Studies of AD mouse models have indicated that amyloid-beta and tau-related neurodegeneration in the hippocampus, prefrontal cortex, and anterior cingulate cortex are correlated with NPS-like behavioral deficits. A better understanding of the NPS phenotypes and related pathological changes will pave the way for developing a better management strategy for NPS in AD patients.
Collapse
Affiliation(s)
- Nicole K. Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Selena K. Zhang
- Biomedical Engineering Program, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Li I. Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Huizhong W. Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Guang-Wei Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Chen H, Du H, Yi F, Wang T, Yang S, Pan Y, Yan H, Liu D, Zhou M, Chen Y, Zhao M, Pi J, Yang Y, Fan X, Cai X, Qiu Z, Zhang J, Liu Y, Gu W, Wang Y. Artificial intelligence-assisted oculo-gait measurements for cognitive impairment in cerebral small vessel disease. Alzheimers Dement 2024; 20:8516-8526. [PMID: 39410879 DOI: 10.1002/alz.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION Oculomotor and gait dysfunctions are closely associated with cognition. However, oculo-gait patterns and their correlation with cognition in cerebral small vessel disease (CSVD) remain unclear. METHODS Patients with CSVD from a hospital-based cohort (n = 194) and individuals with presumed early CSVD from a community-based cohort (n = 319) were included. Oculo-gait patterns were measured using the artificial intelligence (AI) -assisted 'EyeKnow' eye-tracking and 'ReadyGo' motor evaluation systems. Multivariable linear and logistic regression models were employed to investigate the association between the oculo-gait parameters and cognition. RESULTS Anti-saccade accuracy, stride velocity, and swing velocity were significantly associated with cognition in both patients and community dwellers with CSVD, and could identify cognitive impairment in CSVD with moderate accuracy (area under the curve [AUC]: hospital cohort, 0.787; community cohort, 0.810) after adjusting for age and education. DISCUSSION The evaluation of oculo-gait features (anti-saccade accuracy, stride velocity, and swing velocity) may help screen cognitive impairment in CSVD. HIGHLIGHTS Oculo-gait features (lower anti-saccade accuracy, stride velocity, and swing velocity) were associated with cognitive impairment in cerebral small vessel disease (CSVD). Logistic model integrating the oculo-gait features, age, and education level moderately distinguished cognitive status in CSVD. Artificial intelligence-assisted oculomotor and gait measurements provide quick and accurate evaluation in hospital and community settings.
Collapse
Affiliation(s)
- Huimin Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dongcheng, Beijing, China
| | - Hao Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Yi
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingting Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai, Beijing, China
| | - Shuo Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai, Beijing, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Fengtai, Beijing, China
| | - Hongyi Yan
- China National Clinical Research Center for Neurological Diseases, Fengtai, Beijing, China
| | - Dandan Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Fengtai, Beijing, China
| | - Mengyuan Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai, Beijing, China
| | - Yiyi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai, Beijing, China
| | - Mengxi Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai, Beijing, China
| | - Jingtao Pi
- Beijing Tsinghua Changgung Hospital, Changping, Beijing, China
| | - Yingying Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai, Beijing, China
| | - Xiangmin Fan
- Institute of Software, Chinese Academy of Sciences, Beijing, China
| | - Xueli Cai
- Department of Neurology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, Zhejiang, China
| | - Ziyu Qiu
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, Xicheng, Beijing, China
| | - Jipeng Zhang
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, Xicheng, Beijing, China
| | - Yawei Liu
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, Xicheng, Beijing, China
| | - Wenping Gu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Fengtai, Beijing, China
- Chinese Institute for Brain Research, Changping, Beijing, China
- National Center for Neurological Disorders, Xicheng, Beijing, China
- Advanced Innovation Center for Human Brain Projection, Capital Medical University, Xicheng, Beijing, China
- Beijing Laboratory of Oral Health, Capital Medical University, Fengtai, Beijing, China
| |
Collapse
|
7
|
Blankenship HE, Carter KA, Pham KD, Cassidy NT, Markiewicz AN, Thellmann MI, Sharpe AL, Freeman WM, Beckstead MJ. VTA dopamine neurons are hyperexcitable in 3xTg-AD mice due to casein kinase 2-dependent SK channel dysfunction. Nat Commun 2024; 15:9673. [PMID: 39516200 PMCID: PMC11549218 DOI: 10.1038/s41467-024-53891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) patients exhibit neuropsychiatric symptoms that extend beyond classical cognitive deficits, suggesting involvement of subcortical areas. Here, we investigated the role of midbrain dopamine (DA) neurons in AD using the amyloid + tau-driven 3xTg-AD mouse model. We found deficits in reward-based operant learning in AD mice, suggesting possible VTA DA neuron dysregulation. Physiological assessment revealed hyperexcitability and disrupted firing in DA neurons caused by reduced activity of small-conductance calcium-activated potassium (SK) channels. RNA sequencing from contents of single patch-clamped DA neurons (Patch-seq) identified up-regulation of the SK channel modulator casein kinase 2 (CK2), which we corroborated by immunohistochemical protein analysis. Pharmacological inhibition of CK2 restored SK channel activity and normal firing patterns in 3xTg-AD mice. These findings identify a mechanism of ion channel dysregulation in VTA DA neurons that could contribute to behavioral abnormalities in AD, paving the way for novel treatment strategies.
Collapse
Affiliation(s)
- Harris E Blankenship
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kelsey A Carter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kevin D Pham
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Nina T Cassidy
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Andrea N Markiewicz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael I Thellmann
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Amanda L Sharpe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Michael J Beckstead
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
8
|
Li H, Jacob MA, Cai M, Kessels RPC, Norris DG, Duering M, de Leeuw FE, Tuladhar AM. Meso-cortical pathway damage in cognition, apathy and gait in cerebral small vessel disease. Brain 2024; 147:3804-3816. [PMID: 38709856 PMCID: PMC11531843 DOI: 10.1093/brain/awae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
Cerebral small vessel disease (SVD) is known to contribute to cognitive impairment, apathy and gait dysfunction. Although associations between cognitive impairment and either apathy or gait dysfunction have been shown in SVD, the inter-relations among these three clinical features and their potential common neural basis remain unexplored. The dopaminergic meso-cortical and meso-limbic pathways have been known as the important brain circuits for both cognitive control, emotion regulation and motor function. Here, we investigated the potential inter-relations between cognitive impairment, apathy and gait dysfunction, with a specific focus on determining whether these clinical features are associated with damage to the meso-cortical and meso-limbic pathways in SVD. In this cross-sectional study, we included 213 participants with SVD for whom MRI and comprehensive neurobehavioural assessments were performed. These assessments comprised six clinical measures: processing speed, executive function, memory, apathy (based on the Apathy Evaluation Scale) and gait function (based on the time and steps in the Timed Up and Go Test). We reconstructed five tracts connecting the ventral tegmental area (VTA) and dorsolateral prefrontal cortex (PFC), ventral lateral PFC, medial orbitofrontal cortex, anterior cingulate cortex (ACC) and nucleus accumbens within meso-cortical and meso-limbic pathways using diffusion weighted imaging. The damage along the five tracts was quantified using the free water (FW) and FW-corrected mean diffusivity indices. Furthermore, we explored the inter-correlations among the six clinical measures and identified their common components using principal component analysis (PCA). Linear regression analyses showed that higher FW values of tracts within meso-cortical pathways were related to these clinical measures in cognition, apathy, and gait (all P-corrected values < 0.05). The PCA showed strong inter-associations among these clinical measures and identified a common component wherein all six clinical measures loaded on. Higher FW values of tracts within meso-cortical pathways were related to the PCA-derived common component (all P-corrected values < 0.05). Moreover, FW values of the VTA-ACC tract showed the strongest contribution to the PCA-derived common component over all other neuroimaging features. In conclusion, our study showed that the three clinical features (cognitive impairment, apathy, and gait dysfunction) of SVD are strongly inter-related and that the damage in meso-cortical pathway could be the common neural basis underlying the three features in SVD. These findings advance our understanding of the mechanisms behind these clinical features of SVD and have the potential to inform novel management and intervention strategies for SVD.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurology, Radboud Institute for Medical research and Innovation and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Mina A Jacob
- Department of Neurology, Radboud Institute for Medical research and Innovation and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Mengfei Cai
- Department of Neurology, Radboud Institute for Medical research and Innovation and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 510000 Guangzhou, China
| | - Roy P C Kessels
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Radboud University, 6525 GD Nijmegen, The Netherlands
- Department of Medical Psychology and Radboudumc Alzheimer Center, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders, Vincent van Gogh Institute for Psychiatry, 5804 AV Venray, The Netherlands
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, 6525 GD Nijmegen, The Netherlands
| | - Marco Duering
- Medical Image Analysis Center (MIAC AG) and Department of Biomedical Engineering, University of Basel, 4051 Basel, Switzerland
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, 81377 LMU Munich, Germany
| | - Frank-Erik de Leeuw
- Department of Neurology, Radboud Institute for Medical research and Innovation and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anil M Tuladhar
- Department of Neurology, Radboud Institute for Medical research and Innovation and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
9
|
Basso V, Döbrössy MD, Thompson LH, Kirik D, Fuller HR, Gates MA. State of the Art in Sub-Phenotyping Midbrain Dopamine Neurons. BIOLOGY 2024; 13:690. [PMID: 39336117 PMCID: PMC11428604 DOI: 10.3390/biology13090690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Dopaminergic neurons in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNpc) comprise around 75% of all dopaminergic neurons in the human brain. While both groups of dopaminergic neurons are in close proximity in the midbrain and partially overlap, development, function, and impairments in these two classes of neurons are highly diverse. The molecular and cellular mechanisms underlying these differences are not yet fully understood, but research over the past decade has highlighted the need to differentiate between these two classes of dopaminergic neurons during their development and in the mature brain. This differentiation is crucial not only for understanding fundamental circuitry formation in the brain but also for developing therapies targeted to specific dopaminergic neuron classes without affecting others. In this review, we summarize the state of the art in our understanding of the differences between the dopaminergic neurons of the VTA and the SNpc, such as anatomy, structure, morphology, output and input, electrophysiology, development, and disorders, and discuss the current technologies and methods available for studying these two classes of dopaminergic neurons, highlighting their advantages, limitations, and the necessary improvements required to achieve more-precise therapeutic interventions.
Collapse
Affiliation(s)
- Valentina Basso
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Lachlan H Thompson
- Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S) Unit, Department of Experimental Medical Science, Lund University, BMC D11, 22184 Lund, Sweden
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Monte A Gates
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| |
Collapse
|
10
|
Tournier BB, Ceyzériat K, Badina AM, Gloria Y, Fall AB, Amossé Q, Tsartsalis S, Millet P. Impairment of hippocampal astrocyte-mediated striatal dopamine release and locomotion in Alzheimer's disease. Neuroimage 2024; 298:120778. [PMID: 39122057 DOI: 10.1016/j.neuroimage.2024.120778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Clinical and translational research has identified deficits in the dopaminergic neurotransmission in the striatum in Alzheimer's disease (AD) and this could be related to the pathophysiology of psychiatric symptoms appearing even at early stages of the pathology. HYPOTHESIS We hypothesized that AD pathology in the hippocampus may influence dopaminergic neurotransmission even in the absence of AD-related lesion in the mesostriatal circuit. METHODS We chemogenetically manipulated the activity of hippocampal neurons and astrocytes in wild-type and hemizygous TgF344-AD (Tg) rats, an animal model of AD pathology. We assessed the brain-wide functional output of this manipulation using in vivo Single Photon Emission Computed Tomography to measure cerebral blood flow and D2/3 receptor binding, in response to acute (3 mg kg-1 i.p.) and chronic (0.015 mg/ml in drinking water, 28 days) stimulation of neurons or astrocytes with clozapine N-oxide. We also assessed the effects of the chronic chemogenetic manipulations on D2 receptor density, low or high aggregated forms of amyloid Aβ40 and Aβ42, astrocytes and microglial reactivity, and the capacity of astrocytes and microglia to surround and phagocytize Aβ both locally and in the striatum. RESULTS We showed that acute and chronic neuronal and astrocytic stimulation induces widespread effects on the brain regional activation pattern, notably with an inhibition of striatal activation. In the Tg rats, both these effects were blunted. Chemogenetic stimulation in the hippocampus increased microglial density and its capacity to limit AD pathology, whereas these effects were absent in the striatum perhaps as a consequence of the altered connectivity between the hippocampus and the striatum. CONCLUSIONS Our work suggests that hippocampal AD pathology may alter mesostriatal signalling and induce widespread alterations of brain activity. Neuronal and astrocytic activation may induce a protective, Aβ-limiting phenotype of microglia, which surrounds Aβ plaques and limits Αβ concentration more efficiently.
Collapse
Affiliation(s)
- Benjamin B Tournier
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland; Department of Psychiatry, University of Geneva, Geneva, Switzerland.
| | - Kelly Ceyzériat
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland; Division of Nuclear medicine and Molecular Imaging, University Hospitals of Geneva, Geneva, Switzerland; Division of Radiation Oncology, Department of Oncology, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Yesica Gloria
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland; Department of Psychiatry, University of Geneva, Geneva, Switzerland; Present address: Bertarelli Foundation Gene Therapy Platform, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Aïda B Fall
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland; Division of Geriatric Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Quentin Amossé
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland; Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Stergios Tsartsalis
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland; Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Philippe Millet
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland; Department of Psychiatry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Chujan S, Cholpraipimolrat W, Satayavivad J. Integrated Transcriptomics and Network Analysis Identified Altered Neural Mechanisms in Frontal Aging Brain-Associated Alzheimer's Disease. Biochem Genet 2024; 62:2382-2398. [PMID: 37934339 DOI: 10.1007/s10528-023-10549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. The late stage of AD typically develops after 60 years of age and AD pathogenesis can be detected predominately in the frontal lobe, which is responsible for memory. Multiple alterations in cellular mechanisms have been associated with AD, but there is no clear information on AD pathogenesis during brain aging. This study aimed to explore the differentially expressed genes (DEGs) in the frontal lobe of aging brains and to identify shared crucial mechanisms in the aging brain linked to AD pathogenesis. Three datasets were downloaded from the Gene Expression Omnibus (GEO). Biological function analysis was performed by DAVID and KEGG databases. An AD patient's cohort (GSE150696) was collected for verification of the enriched pathway. The results demonstrated that multiple neurochemical synapsis and regulation of the cytoskeleton are linked to AD pathogenesis during aging. Taken together, this study contributes to our further understanding of neural alterations during aging in AD that could be used to develop therapeutics for early intervention to prevent or slow progression.
Collapse
Affiliation(s)
- Suthipong Chujan
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | | | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand.
| |
Collapse
|
12
|
De Paolis ML, Paoletti I, Zaccone C, Capone F, D'Amelio M, Krashia P. Transcranial alternating current stimulation (tACS) at gamma frequency: an up-and-coming tool to modify the progression of Alzheimer's Disease. Transl Neurodegener 2024; 13:33. [PMID: 38926897 PMCID: PMC11210106 DOI: 10.1186/s40035-024-00423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.
Collapse
Affiliation(s)
- Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Ilaria Paoletti
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Claudio Zaccone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy.
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| |
Collapse
|
13
|
Wearn A, Tremblay SA, Tardif CL, Leppert IR, Gauthier CJ, Baracchini G, Hughes C, Hewan P, Tremblay-Mercier J, Rosa-Neto P, Poirier J, Villeneuve S, Schmitz TW, Turner GR, Spreng RN. Neuromodulatory subcortical nucleus integrity is associated with white matter microstructure, tauopathy and APOE status. Nat Commun 2024; 15:4706. [PMID: 38830849 PMCID: PMC11148077 DOI: 10.1038/s41467-024-48490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
The neuromodulatory subcortical nuclei within the isodendritic core (IdC) are the earliest sites of tauopathy in Alzheimer's disease (AD). They project broadly throughout the brain's white matter. We investigated the relationship between IdC microstructure and whole-brain white matter microstructure to better understand early neuropathological changes in AD. Using multiparametric quantitative magnetic resonance imaging we observed two covariance patterns between IdC and white matter microstructure in 133 cognitively unimpaired older adults (age 67.9 ± 5.3 years) with familial risk for AD. IdC integrity related to 1) whole-brain neurite density, and 2) neurite orientation dispersion in white matter tracts known to be affected early in AD. Pattern 2 was associated with CSF concentration of phosphorylated-tau, indicating AD specificity. Apolipoprotein-E4 carriers expressed both patterns more strongly than non-carriers. IdC microstructure variation is reflected in white matter, particularly in AD-affected tracts, highlighting an early mechanism of pathological development.
Collapse
Affiliation(s)
- Alfie Wearn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada.
| | - Stéfanie A Tremblay
- Department of Physics, Concordia University, Montreal, H4B 1R6, QC, Canada
- Montreal Heart Institute, Montreal, H1T 1C8, QC, Canada
- School of Health, Concordia University, Montreal, H4B 1R6, QC, Canada
| | - Christine L Tardif
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Department of Biomedical Engineering, McGill University, McGill, H3A 2B4, QC, Canada
| | - Ilana R Leppert
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Montreal, H4B 1R6, QC, Canada
- Montreal Heart Institute, Montreal, H1T 1C8, QC, Canada
- School of Health, Concordia University, Montreal, H4B 1R6, QC, Canada
| | - Giulia Baracchini
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Colleen Hughes
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Patrick Hewan
- Department of Psychology, York University, Toronto, M3J 1P3, ON, Canada
| | | | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada
| | - Sylvia Villeneuve
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada
| | - Taylor W Schmitz
- Department of Physiology & Pharmacology, Western Institute for Neuroscience, Western University, London, N6A 5C1, ON, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, M3J 1P3, ON, Canada
| | - R Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada.
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada.
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada.
| |
Collapse
|
14
|
Spoleti E, La Barbera L, Cauzzi E, De Paolis ML, Saba L, Marino R, Sciamanna G, Di Lazzaro V, Keller F, Nobili A, Krashia P, D'Amelio M. Dopamine neuron degeneration in the Ventral Tegmental Area causes hippocampal hyperexcitability in experimental Alzheimer's Disease. Mol Psychiatry 2024; 29:1265-1280. [PMID: 38228889 PMCID: PMC11189820 DOI: 10.1038/s41380-024-02408-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Early and progressive dysfunctions of the dopaminergic system from the Ventral Tegmental Area (VTA) have been described in Alzheimer's Disease (AD). During the long pre-symptomatic phase, alterations in the function of Parvalbumin interneurons (PV-INs) are also observed, resulting in cortical hyperexcitability represented by subclinical epilepsy and aberrant gamma-oscillations. However, it is unknown whether the dopaminergic deficits contribute to brain hyperexcitability in AD. Here, using the Tg2576 mouse model of AD, we prove that reduced hippocampal dopaminergic innervation, due to VTA dopamine neuron degeneration, impairs PV-IN firing and gamma-waves, weakens the inhibition of pyramidal neurons and induces hippocampal hyperexcitability via lower D2-receptor-mediated activation of the CREB-pathway. These alterations coincide with reduced PV-IN numbers and Perineuronal Net density. Importantly, L-DOPA and the selective D2-receptor agonist quinpirole rescue p-CREB levels and improve the PV-IN-mediated inhibition, thus reducing hyperexcitability. Moreover, similarly to quinpirole, sumanirole - another D2-receptor agonist and a known anticonvulsant - not only increases p-CREB levels in PV-INs but also restores gamma-oscillations in Tg2576 mice. Conversely, blocking the dopaminergic transmission with sulpiride (a D2-like receptor antagonist) in WT mice reduces p-CREB levels in PV-INs, mimicking what occurs in Tg2576. Overall, these findings support the hypothesis that the VTA dopaminergic system integrity plays a key role in hippocampal PV-IN function and survival, disclosing a relevant contribution of the reduced dopaminergic tone to aberrant gamma-waves, hippocampal hyperexcitability and epileptiform activity in early AD.
Collapse
Affiliation(s)
- Elena Spoleti
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Livia La Barbera
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Emma Cauzzi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Luana Saba
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Ramona Marino
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Giuseppe Sciamanna
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
- UniCamillus International University of Health Sciences, 00131, Rome, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy
| | - Flavio Keller
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Annalisa Nobili
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
| |
Collapse
|
15
|
López-Ortiz S, Caruso G, Emanuele E, Menéndez H, Peñín-Grandes S, Guerrera CS, Caraci F, Nisticò R, Lucia A, Santos-Lozano A, Lista S. Digging into the intrinsic capacity concept: Can it be applied to Alzheimer's disease? Prog Neurobiol 2024; 234:102574. [PMID: 38266702 DOI: 10.1016/j.pneurobio.2024.102574] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Historically, aging research has largely centered on disease pathology rather than promoting healthy aging. The World Health Organization's (WHO) policy framework (2015-2030) underscores the significance of fostering the contributions of older individuals to their families, communities, and economies. The WHO has introduced the concept of intrinsic capacity (IC) as a key metric for healthy aging, encompassing five primary domains: locomotion, vitality, sensory, cognitive, and psychological. Past AD research, constrained by methodological limitations, has focused on single outcome measures, sidelining the complexity of the disease. Our current scientific milieu, however, is primed to adopt the IC concept. This is due to three critical considerations: (I) the decline in IC is linked to neurocognitive disorders, including AD, (II) cognition, a key component of IC, is deeply affected in AD, and (III) the cognitive decline associated with AD involves multiple factors and pathophysiological pathways. Our study explores the application of the IC concept to AD patients, offering a comprehensive model that could revolutionize the disease's diagnosis and prognosis. There is a dearth of information on the biological characteristics of IC, which are a result of complex interactions within biological systems. Employing a systems biology approach, integrating omics technologies, could aid in unraveling these interactions and understanding IC from a holistic viewpoint. This comprehensive analysis of IC could be leveraged in clinical settings, equipping healthcare providers to assess AD patients' health status more effectively and devise personalized therapeutic interventions in accordance with the precision medicine paradigm. We aimed to determine whether the IC concept could be extended from older individuals to patients with AD, thereby presenting a model that could significantly enhance the diagnosis and prognosis of this disease.
Collapse
Affiliation(s)
- Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | | | - Héctor Menéndez
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Saúl Peñín-Grandes
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Claudia Savia Guerrera
- Department of Educational Sciences, University of Catania, 95125 Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", 00133 Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, 00143 Rome, Italy
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre ('imas12'), 28041 Madrid, Spain; Faculty of Sport Sciences, European University of Madrid, 28670 Villaviciosa de Odón, Madrid, Spain; CIBER of Frailty and Healthy Ageing (CIBERFES), 28029 Madrid, Spain
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain; Research Institute of the Hospital 12 de Octubre ('imas12'), 28041 Madrid, Spain
| | - Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain.
| |
Collapse
|
16
|
Zhan Q, Kong F, Shao S, Zhang B, Huang S. Pathogenesis of Depression in Alzheimer's Disease. Neurochem Res 2024; 49:548-556. [PMID: 38015411 DOI: 10.1007/s11064-023-04061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Depression is a prevalent occurrence among Alzheimer's disease (AD) patients, yet its underlying mechanism remains unclear. Recent investigations have revealed that several pathophysiological changes associated with Alzheimer's disease can lead to mood disorders. These alterations include irregularities in monoamine neurotransmitters, disruptions in glutamatergic synaptic transmission, neuro-inflammation, dysfunction within the hypothalamic-pituitary-adrenocortical (HPA) axis, diminished levels of brain-derived neurotrophic factor (BDNF), and hippocampal atrophy. This review consolidates research findings from pertinent fields to elucidate the mechanisms underlying depression in Alzheimer's disease, aiming to provide valuable insights for the study of its mechanisms and clinical treatment.
Collapse
Affiliation(s)
- Qingyang Zhan
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fanyi Kong
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuai Shao
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Bo Zhang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Shuming Huang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
17
|
Tian MY, Zhou XY, Liao XY, Gong K, Cheng XT, Qin C, Liu KZ, Chen J, Lei W. Brain structural alterations in internet gaming disorder: Focus on the mesocorticolimbic dopaminergic system. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110806. [PMID: 37271367 DOI: 10.1016/j.pnpbp.2023.110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
AIMS This study aimed to identify gray/white matter volume (GMV/WMV) alterations in Internet Gaming Disorder (IGD), with a special focus on the subregions of the mesocorticolimbic dopaminergic system and their clinical association. RESULTS Compared with healthy controls, IGDs showed bigger GMV in the bilateral caudate and the left nucleus accumbens (NAc), and bigger WMV in the inferior parietal lobule. The comparison of regions of interest (ROI) confirmed increased GMV in the bilateral caudate (including the dorsal anterior, body, and tail) and the left core of NAc in IGD, but no significant WMV alterations in the mesocorticolimbic dopaminergic system. GMVs in the left lateral orbital gyrus of orbitofrontal cortex (OFC) were associated with craving for games, while GMVs in the left anterior insula, right NAc, right caudate, and right OFC were associated with self-control in IGD. CONCLUSIONS IGD was accompanied by changed GMV, but not WMV, in the mesocorticolimbic dopaminergic system. GMV in the mesocorticolimbic dopaminergic system may contribute to impaired self-control and craving in IGD.
Collapse
Affiliation(s)
- Ming-Yuan Tian
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Nuclear Industry 416 Hospital, the 2nd Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xin-Yi Zhou
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Yuan Liao
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ke Gong
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Tong Cheng
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Qin
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ke-Zhi Liu
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Chen
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Wei Lei
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
18
|
Blankenship HE, Carter KA, Cassidy NT, Markiewicz AN, Thellmann MI, Sharpe AL, Freeman WM, Beckstead MJ. VTA dopamine neurons are hyperexcitable in 3xTg-AD mice due to casein kinase 2-dependent SK channel dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567486. [PMID: 38014232 PMCID: PMC10680865 DOI: 10.1101/2023.11.16.567486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Alzheimer's disease (AD) patients exhibit neuropsychiatric symptoms that extend beyond classical cognitive deficits, suggesting involvement of subcortical areas. Here, we investigated the role of midbrain dopamine (DA) neurons in AD using the amyloid + tau-driven 3xTg-AD mouse model. We found deficits in reward-based operant learning in AD mice, suggesting possible VTA DA neuron dysregulation. Physiological assessment revealed hyperexcitability and disrupted firing in DA neurons caused by reduced activity of small-conductance calcium-activated potassium (SK) channels. RNA sequencing from contents of single patch-clamped DA neurons (Patch-seq) identified up-regulation of the SK channel modulator casein kinase 2 (CK2). Pharmacological inhibition of CK2 restored SK channel activity and normal firing patterns in 3xTg-AD mice. These findings shed light on a complex interplay between neuropsychiatric symptoms and subcortical circuits in AD, paving the way for novel treatment strategies.
Collapse
Affiliation(s)
- Harris E Blankenship
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation
- Department of Physiology, University of Oklahoma Health Sciences Center
| | - Kelsey A Carter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation
| | - Nina T Cassidy
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation
| | | | | | - Amanda L Sharpe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center
| | - Willard M Freeman
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Michael J Beckstead
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
19
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Targeting dopamine transporter to ameliorate cognitive deficits in Alzheimer's disease. Front Cell Neurosci 2023; 17:1292858. [PMID: 38026688 PMCID: PMC10679733 DOI: 10.3389/fncel.2023.1292858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the pathologic deposition of amyloid and neurofibrillary tangles in the brain, leading to neuronal damage and defective synapses. These changes manifest as abnormalities in cognition and behavior. The functional deficits are also attributed to abnormalities in multiple neurotransmitter systems contributing to neuronal dysfunction. One such important system is the dopaminergic system. It plays a crucial role in modulating movement, cognition, and behavior while connecting various brain areas and influencing other neurotransmitter systems, making it relevant in neurodegenerative disorders like AD and Parkinson's disease (PD). Considering its significance, the dopaminergic system has emerged as a promising target for alleviating movement and cognitive deficits in PD and AD, respectively. Extensive research has been conducted on dopaminergic neurons, receptors, and dopamine levels as critical factors in cognition and memory in AD. However, the exact nature of movement abnormalities and other features of extrapyramidal symptoms are not fully understood yet in AD. Recently, a previously overlooked element of the dopaminergic system, the dopamine transporter, has shown significant promise as a more effective target for enhancing cognition while addressing dopaminergic system dysfunction in AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Possemato E, La Barbera L, Nobili A, Krashia P, D'Amelio M. The role of dopamine in NLRP3 inflammasome inhibition: Implications for neurodegenerative diseases. Ageing Res Rev 2023; 87:101907. [PMID: 36893920 DOI: 10.1016/j.arr.2023.101907] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
In the Central Nervous System (CNS), neuroinflammation orchestrated by microglia and astrocytes is an innate immune response to counteract stressful and dangerous insults. One of the most important and best characterized players in the neuroinflammatory response is the NLRP3 inflammasome, a multiproteic complex composed by NOD-like receptor family Pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and pro-caspase-1. Different stimuli mediate NLRP3 activation, resulting in the NLRP3 inflammasome assembly and the pro-inflammatory cytokine (IL-1β and IL-18) maturation and secretion. The persistent and uncontrolled NLRP3 inflammasome activation has a leading role during the pathophysiology of neuroinflammation in age-related neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD). The neurotransmitter dopamine (DA) is one of the players that negatively modulate NLRP3 inflammasome activation through DA receptors expressed in both microglia and astrocytes. This review summarizes recent findings linking the role of DA in the modulation of NLRP3-mediated neuroinflammation in PD and AD, where early deficits of the dopaminergic system are well characterized. Highlighting the relationship between DA, its glial receptors and the NLRP3-mediated neuroinflammation can provide insights to novel diagnostic strategies in early disease phases and new pharmacological tools to delay the progression of these diseases.
Collapse
Affiliation(s)
- Elena Possemato
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Livia La Barbera
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Annalisa Nobili
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Paraskevi Krashia
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy.
| |
Collapse
|
21
|
La Barbera L, Nobili A, Cauzzi E, Paoletti I, Federici M, Saba L, Giacomet C, Marino R, Krashia P, Melone M, Keller F, Mercuri NB, Viscomi MT, Conti F, D’Amelio M. Upregulation of Ca 2+-binding proteins contributes to VTA dopamine neuron survival in the early phases of Alzheimer's disease in Tg2576 mice. Mol Neurodegener 2022; 17:76. [PMID: 36434727 PMCID: PMC9700939 DOI: 10.1186/s13024-022-00580-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Recent clinical and experimental studies have highlighted the involvement of Ventral Tegmental Area (VTA) dopamine (DA) neurons for the early pathogenesis of Alzheimer's Disease (AD). We have previously described a progressive and selective degeneration of these neurons in the Tg2576 mouse model of AD, long before amyloid-beta plaque formation. The degenerative process in DA neurons is associated with an autophagy flux impairment, whose rescue can prevent neuronal loss. Impairments in autophagy can be the basis for accumulation of damaged mitochondria, leading to disturbance in calcium (Ca2+) homeostasis, and to functional and structural deterioration of DA neurons. METHODS In Tg2576 mice, we performed amperometric recordings of DA levels and analysis of dopaminergic fibers in the Nucleus Accumbens - a major component of the ventral striatum precociously affected in AD patients - together with retrograde tracing, to identify the most vulnerable DA neuron subpopulations in the VTA. Then, we focused on these neurons to analyze mitochondrial integrity and Apoptosis-inducing factor (AIF) localization by electron and confocal microscopy, respectively. Stereological cell count was also used to evaluate degeneration of DA neuron subpopulations containing the Ca2+-binding proteins Calbindin-D28K and Calretinin. The expression levels for these proteins were analyzed by western blot and confocal microscopy. Lastly, using electrophysiology and microfluorometry we analyzed VTA DA neuron intrinsic properties and cytosolic free Ca2+ levels. RESULTS We found a progressive degeneration of mesolimbic DA neurons projecting to the ventral striatum, located in the paranigral nucleus and parabrachial pigmented subnucleus of the VTA. At the onset of degeneration (3 months of age), the vulnerable DA neurons in the Tg2576 accumulate damaged mitochondria, while AIF translocates from the mitochondria to the nucleus. Although we describe an age-dependent loss of the DA neurons expressing Calbindin-D28K or Calretinin, we observed that the remaining cells upregulate the levels of Ca2+-binding proteins, and the free cytosolic levels of Ca2+ in these neurons are significantly decreased. Coherently, TUNEL-stained Tg2576 DA neurons express lower levels of Calbindin-D28K when compared with non-apoptotic cells. CONCLUSION Overall, our results suggest that the overexpression of Ca2+-binding proteins in VTA DA neurons might be an attempt of cells to survive by increasing their ability to buffer free Ca2+. Exploring strategies to overexpress Ca2+-binding proteins could be fundamental to reduce neuronal suffering and improve cognitive and non-cognitive functions in AD.
Collapse
Affiliation(s)
- Livia La Barbera
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Annalisa Nobili
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Emma Cauzzi
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy ,grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilaria Paoletti
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mauro Federici
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Luana Saba
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Cecilia Giacomet
- grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ramona Marino
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Paraskevi Krashia
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy ,grid.9657.d0000 0004 1757 5329Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Marcello Melone
- grid.7010.60000 0001 1017 3210Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020 Ancona, Italy ,Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020 Ancona, Italy
| | - Flavio Keller
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Nicola Biagio Mercuri
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy ,grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Teresa Viscomi
- grid.8142.f0000 0001 0941 3192Department of Life Science and Public Health; Section of Histology and Embryology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Fiorenzo Conti
- grid.7010.60000 0001 1017 3210Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020 Ancona, Italy ,Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020 Ancona, Italy ,grid.7010.60000 0001 1017 3210Foundation for Molecular Medicine, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Marcello D’Amelio
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| |
Collapse
|