1
|
Szabó Á, Galla Z, Spekker E, Szűcs M, Martos D, Takeda K, Ozaki K, Inoue H, Yamamoto S, Toldi J, Ono E, Vécsei L, Tanaka M. Oxidative and Excitatory Neurotoxic Stresses in CRISPR/Cas9-Induced Kynurenine Aminotransferase Knockout Mice: A Novel Model for Despair-Based Depression and Post-Traumatic Stress Disorder. FRONT BIOSCI-LANDMRK 2025; 30:25706. [PMID: 39862084 DOI: 10.31083/fbl25706] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 11/18/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUNDS Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders. The majority of KYNA is produced by the aadat (kat2) gene-encoded mitochondrial kynurenine aminotransferase (KAT) isotype 2. Little is known about the consequences of deleting the KYN enzyme gene. METHODS In CRISPR/Cas9-induced aadat knockout (kat2-/-) mice, we examined the effects on emotion, memory, motor function, Trp and its metabolite levels, enzyme activities in the plasma and urine of 8-week-old males compared to wild-type mice. RESULTS Transgenic mice showed more depressive-like behaviors in the forced swim test, but not in the tail suspension, anxiety, or memory tests. They also had fewer center field and corner entries, shorter walking distances, and fewer jumping counts in the open field test. Plasma metabolite levels are generally consistent with those of urine: antioxidant KYNs, 5-hydroxyindoleacetic acid, and indole-3-acetic acid levels were lower; enzyme activities in KATs, kynureninase, and monoamine oxidase/aldehyde dehydrogenase were lower, but kynurenine 3-monooxygenase was higher; and oxidative stress and excitotoxicity indices were higher. Transgenic mice displayed depression-like behavior in a learned helplessness model, emotional indifference, and motor deficits, coupled with a decrease in KYNA, a shift of Trp metabolism toward the KYN-3-hydroxykynurenine pathway, and a partial decrease in the gut microbial Trp-indole pathway metabolite. CONCLUSIONS This is the first evidence that deleting the aadat gene induces depression-like behaviors uniquely linked to experiences of despair, which appear to be associated with excitatory neurotoxic and oxidative stresses. This may lead to the development of a double-hit preclinical model in despair-based depression, a better understanding of these complex conditions, and more effective therapeutic strategies by elucidating the relationship between Trp metabolism and PTSD pathogenesis.
Collapse
Affiliation(s)
- Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Zsolt Galla
- Department of Pediatrics, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Eleonóra Spekker
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| | - Mónika Szűcs
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Diána Martos
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| | - Keiko Takeda
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Kinuyo Ozaki
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Hiromi Inoue
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Sayo Yamamoto
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Etsuro Ono
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| |
Collapse
|
2
|
Martos D, Lőrinczi B, Szatmári I, Vécsei L, Tanaka M. The Impact of C-3 Side Chain Modifications on Kynurenic Acid: A Behavioral Analysis of Its Analogs in the Motor Domain. Int J Mol Sci 2024; 25:3394. [PMID: 38542368 PMCID: PMC10970565 DOI: 10.3390/ijms25063394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
The central nervous system (CNS) is the final frontier in drug delivery because of the blood-brain barrier (BBB), which poses significant barriers to the access of most drugs to their targets. Kynurenic acid (KYNA), a tryptophan (Trp) metabolite, plays an important role in behavioral functions, and abnormal KYNA levels have been observed in neuropsychiatric conditions. The current challenge lies in delivering KYNA to the CNS owing to its polar side chain. Recently, C-3 side chain-modified KYNA analogs have been shown to cross the BBB; however, it is unclear whether they retain the biological functions of the parent molecule. This study examined the impact of KYNA analogs, specifically, SZR-72, SZR-104, and the newly developed SZRG-21, on behavior. The analogs were administered intracerebroventricularly (i.c.v.), and their effects on the motor domain were compared with those of KYNA. Specifically, open-field (OF) and rotarod (RR) tests were employed to assess motor activity and skills. SZR-104 increased horizontal exploratory activity in the OF test at a dose of 0.04 μmol/4 μL, while SZR-72 decreased vertical activity at doses of 0.04 and 0.1 μmol/4 μL. In the RR test, however, neither KYNA nor its analogs showed any significant differences in motor skills at either dose. Side chain modification affects affective motor performance and exploratory behavior, as the results show for the first time. In this study, we showed that KYNA analogs alter emotional components such as motor-associated curiosity and emotions. Consequently, drug design necessitates the development of precise strategies to traverse the BBB while paying close attention to modifications in their effects on behavior.
Collapse
Affiliation(s)
- Diána Martos
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry and HUN-REN–SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.)
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and HUN-REN–SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.)
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| |
Collapse
|
3
|
Battaglia S, Avenanti A, Vécsei L, Tanaka M. Neural Correlates and Molecular Mechanisms of Memory and Learning. Int J Mol Sci 2024; 25:2724. [PMID: 38473973 DOI: 10.3390/ijms25052724] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Memory and learning are essential cognitive processes that enable us to obtain, retain, and recall information [...].
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Neuropsicology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
4
|
Tanaka M, Szabó Á, Körtési T, Szok D, Tajti J, Vécsei L. From CGRP to PACAP, VIP, and Beyond: Unraveling the Next Chapters in Migraine Treatment. Cells 2023; 12:2649. [PMID: 37998384 PMCID: PMC10670698 DOI: 10.3390/cells12222649] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Migraine is a neurovascular disorder that can be debilitating for individuals and society. Current research focuses on finding effective analgesics and management strategies for migraines by targeting specific receptors and neuropeptides. Nonetheless, newly approved calcitonin gene-related peptide (CGRP) monoclonal antibodies (mAbs) have a 50% responder rate ranging from 27 to 71.0%, whereas CGRP receptor inhibitors have a 50% responder rate ranging from 56 to 71%. To address the need for novel therapeutic targets, researchers are exploring the potential of another secretin family peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), as a ground-breaking treatment avenue for migraine. Preclinical models have revealed how PACAP affects the trigeminal system, which is implicated in headache disorders. Clinical studies have demonstrated the significance of PACAP in migraine pathophysiology; however, a few clinical trials remain inconclusive: the pituitary adenylate cyclase-activating peptide 1 receptor mAb, AMG 301 showed no benefit for migraine prevention, while the PACAP ligand mAb, Lu AG09222 significantly reduced the number of monthly migraine days over placebo in a phase 2 clinical trial. Meanwhile, another secretin family peptide vasoactive intestinal peptide (VIP) is gaining interest as a potential new target. In light of recent advances in PACAP research, we emphasize the potential of PACAP as a promising target for migraine treatment, highlighting the significance of exploring PACAP as a member of the antimigraine armamentarium, especially for patients who do not respond to or contraindicated to anti-CGRP therapies. By updating our knowledge of PACAP and its unique contribution to migraine pathophysiology, we can pave the way for reinforcing PACAP and other secretin peptides, including VIP, as a novel treatment option for migraines.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (Á.S.); (D.S.); (J.T.)
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Tamás Körtési
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, H-6726 Szeged, Hungary;
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| | - Délia Szok
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (Á.S.); (D.S.); (J.T.)
| | - János Tajti
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (Á.S.); (D.S.); (J.T.)
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (Á.S.); (D.S.); (J.T.)
| |
Collapse
|
5
|
Tanaka M, Szabó Á, Vécsei L, Giménez-Llort L. Emerging Translational Research in Neurological and Psychiatric Diseases: From In Vitro to In Vivo Models. Int J Mol Sci 2023; 24:15739. [PMID: 37958722 PMCID: PMC10649796 DOI: 10.3390/ijms242115739] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
Revealing the underlying pathomechanisms of neurological and psychiatric disorders, searching for new biomarkers, and developing novel therapeutics all require translational research [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - László Vécsei
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Department of Psychiatry & Forensic Medicine, Faculty of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
6
|
Tanaka M, Chen C. Editorial: Towards a mechanistic understanding of depression, anxiety, and their comorbidity: perspectives from cognitive neuroscience. Front Behav Neurosci 2023; 17:1268156. [PMID: 37654442 PMCID: PMC10466044 DOI: 10.3389/fnbeh.2023.1268156] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Affiliation(s)
- Masaru Tanaka
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Szeged, Hungary
| | - Chong Chen
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| |
Collapse
|