1
|
COVID-19 Semantic Pneumonia Segmentation and Classification Using Artificial Intelligence. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5297709. [PMID: 36176933 PMCID: PMC9499792 DOI: 10.1155/2022/5297709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/06/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022]
Abstract
Coronavirus 2019 (COVID-19) has become a pandemic. The seriousness of COVID-19 can be realized from the number of victims worldwide and large number of deaths. This paper presents an efficient deep semantic segmentation network (DeepLabv3Plus). Initially, the dynamic adaptive histogram equalization is utilized to enhance the images. Data augmentation techniques are then used to augment the enhanced images. The second stage builds a custom convolutional neural network model using several pretrained ImageNet models and compares them to repeatedly trim the best-performing models to reduce complexity and improve memory efficiency. Several experiments were done using different techniques and parameters. Furthermore, the proposed model achieved an average accuracy of 99.6% and an area under the curve of 0.996 in the COVID-19 detection. This paper will discuss how to train a customized smart convolutional neural network using various parameters on a set of chest X-rays with an accuracy of 99.6%.
Collapse
|
2
|
Sepand MR, Bigdelou B, Ho JQ, Sharaf M, Lannigan AJ, Sullivan IM, da Silva AP, Barrett LO, McGoldrick S, Lnu Y, Lynch SE, Boisclair JM, Barnard-Pratt DD, Zanganeh S. Long-Term Immunity and Antibody Response: Challenges for Developing Efficient COVID-19 Vaccines. Antibodies (Basel) 2022; 11:35. [PMID: 35645208 PMCID: PMC9149948 DOI: 10.3390/antib11020035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
Questions and concerns regarding the efficacy and immunogenicity of coronavirus disease 2019 (COVID-19) vaccines have plagued scientists since the BNT162b2 mRNA vaccine was introduced in late 2020. As a result, decisions about vaccine boosters based on breakthrough infection rates and the decline of antibody titers have commanded worldwide attention and research. COVID-19 patients have displayed continued severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-spike-protein-specific antibodies and neutralizing antibodies in longitudinal studies; in addition, cytokine activation has been detected at early steps following SARS-CoV-2 infection. Epitopes that are highly reactive and can mediate long-term antibody responses have been identified at the spike and ORF1ab proteins. The N-terminal domain of the S1 and S2 subunits is the location of important SARS-CoV-2 spike protein epitopes. High sequence identity between earlier and newer variants of SARS-CoV-2 and different degrees of sequence homology among endemic human coronaviruses have been observed. Understanding the extent and duration of protective immunity is consequential for determining the course of the COVID-19 pandemic. Further knowledge of memory responses to different variants of SARS-CoV-2 is needed to improve the design of the vaccine.
Collapse
Affiliation(s)
- Mohammad Reza Sepand
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA; (M.R.S.); (B.B.); (A.J.L.); (I.M.S.); (A.P.d.S.); (L.O.B.); (S.M.); (Y.L.); (S.E.L.); (J.M.B.); (D.D.B.-P.)
| | - Banafsheh Bigdelou
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA; (M.R.S.); (B.B.); (A.J.L.); (I.M.S.); (A.P.d.S.); (L.O.B.); (S.M.); (Y.L.); (S.E.L.); (J.M.B.); (D.D.B.-P.)
| | - Jim Q. Ho
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Mohammad Sharaf
- Department of Chemical and Biomolecular Engineering, New York University, New York, NY 10012, USA;
| | - Alexis J. Lannigan
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA; (M.R.S.); (B.B.); (A.J.L.); (I.M.S.); (A.P.d.S.); (L.O.B.); (S.M.); (Y.L.); (S.E.L.); (J.M.B.); (D.D.B.-P.)
| | - Ian M. Sullivan
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA; (M.R.S.); (B.B.); (A.J.L.); (I.M.S.); (A.P.d.S.); (L.O.B.); (S.M.); (Y.L.); (S.E.L.); (J.M.B.); (D.D.B.-P.)
| | - Alecsander P. da Silva
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA; (M.R.S.); (B.B.); (A.J.L.); (I.M.S.); (A.P.d.S.); (L.O.B.); (S.M.); (Y.L.); (S.E.L.); (J.M.B.); (D.D.B.-P.)
| | - Leland O. Barrett
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA; (M.R.S.); (B.B.); (A.J.L.); (I.M.S.); (A.P.d.S.); (L.O.B.); (S.M.); (Y.L.); (S.E.L.); (J.M.B.); (D.D.B.-P.)
| | - Scott McGoldrick
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA; (M.R.S.); (B.B.); (A.J.L.); (I.M.S.); (A.P.d.S.); (L.O.B.); (S.M.); (Y.L.); (S.E.L.); (J.M.B.); (D.D.B.-P.)
| | - Yuvraj Lnu
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA; (M.R.S.); (B.B.); (A.J.L.); (I.M.S.); (A.P.d.S.); (L.O.B.); (S.M.); (Y.L.); (S.E.L.); (J.M.B.); (D.D.B.-P.)
| | - Shannon E. Lynch
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA; (M.R.S.); (B.B.); (A.J.L.); (I.M.S.); (A.P.d.S.); (L.O.B.); (S.M.); (Y.L.); (S.E.L.); (J.M.B.); (D.D.B.-P.)
| | - Jared M. Boisclair
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA; (M.R.S.); (B.B.); (A.J.L.); (I.M.S.); (A.P.d.S.); (L.O.B.); (S.M.); (Y.L.); (S.E.L.); (J.M.B.); (D.D.B.-P.)
| | - Dakarai D. Barnard-Pratt
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA; (M.R.S.); (B.B.); (A.J.L.); (I.M.S.); (A.P.d.S.); (L.O.B.); (S.M.); (Y.L.); (S.E.L.); (J.M.B.); (D.D.B.-P.)
| | - Steven Zanganeh
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA; (M.R.S.); (B.B.); (A.J.L.); (I.M.S.); (A.P.d.S.); (L.O.B.); (S.M.); (Y.L.); (S.E.L.); (J.M.B.); (D.D.B.-P.)
| |
Collapse
|
3
|
Shaik FB, Swarnalatha K, Mohan M, Thomas A, Chikati R, Sandeep G, Maddu N. Novel antiviral effects of chloroquine, hydroxychloroquine, and green tea catechins against SARS CoV-2 main protease (Mpro) and 3C-like protease for COVID-19 treatment. CLINICAL NUTRITION OPEN SCIENCE 2022; 42:62-72. [PMID: 35106518 PMCID: PMC8795779 DOI: 10.1016/j.nutos.2021.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Coronaviruses are globally emerging viruses that threaten our health care systems and have become a popular pandemic around the world. This causes a sudden rise in positive coronavirus cases and related deaths to occur worldwide, representing a significant health hazard to humans and the economy. METHODS We examined predominantly catechins of green tea include epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG), and drugs of chloroquine (CQ), and hydroxychloroquine (HCQ) appearing to reveal anti-viral activities. Data were collected from PubMed, Google Scholar, and Science Direct databases. To investigate the role of antiviral effects (CQ and HCQ), green tea catechins, beneficial use of convalescent plasma; covaxin in COVID-19 patients faced a dangerous healthiness issue. Computational docking analysis has been used for this purpose. RESULTS The lead compounds are EGCG and ECG act as potential inhibitors bind to the active site region of the HKU4-CoV 3CL protease and M-Pro protease enzymes of coronavirus. Conclusions: SARS-COV-2 is a pathogen of substantial vigour concern and the review unveils the role of catechins associated with many viral diseases. We suggested that the function of green tea catechins, novel drugs of CQ, and HCQ exhibit antiviral activities against positive-sense single-stranded RNA viruses (CoVs).
Collapse
Affiliation(s)
- Fareeda Begum Shaik
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, 515003, A.P. India
| | - K. Swarnalatha
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, 515003, A.P. India
| | | | - Anu Thomas
- Department of Nursing, Banaswadi College of Nursing, Bangalore, Karnataka, India
| | - Rajasekhar Chikati
- Department of Biochemistry, Yogivemana University, Kadapa, 516005, A.P. India
| | - G. Sandeep
- Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, 517502, A.P, India
| | - Narendra Maddu
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, 515003, A.P. India,Corresponding author. Department of Biochemistry, Sri Krishnadevaraya University, Ananthapuramu, 515003, Andhra Pradesh, India. Tel.: +91 9441983797
| |
Collapse
|
4
|
Chen F, Hao L, Zhu S, Yang X, Shi W, Zheng K, Wang T, Chen H. Potential Adverse Effects of Dexamethasone Therapy on COVID-19 Patients: Review and Recommendations. Infect Dis Ther 2021; 10:1907-1931. [PMID: 34296386 PMCID: PMC8298044 DOI: 10.1007/s40121-021-00500-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
In the context of the coronavirus disease 2019 (COVID-19) pandemic, the global healthcare community has raced to find effective therapeutic agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, dexamethasone is the first and an important therapeutic to significantly reduce the risk of death in COVID-19 patients with severe disease. Due to powerful anti-inflammatory and immunosuppressive effects, dexamethasone could attenuate SARS-CoV-2-induced uncontrolled cytokine storm, severe acute respiratory distress syndrome and lung injury. Nevertheless, dexamethasone treatment is a double-edged sword, as numerous studies have revealed that it has significant adverse impacts later in life. In this article, we reviewed the literature regarding the adverse effects of dexamethasone administration on different organ systems as well as related disease pathogenesis in an attempt to clarify the potential harms that may arise in COVID-19 patients receiving dexamethasone treatment. Overall, taking the threat of COVID19 pandemic into account, we think it is necessary to apply dexamethasone as a pharmaceutical therapy in critical patients. However, its adverse side effects cannot be ignored. Our review will help medical professionals in the prognosis and follow-up of patients treated with dexamethasone. In addition, given that a considerable amount of uncertainty, confusion and even controversy still exist, further studies and more clinical trials are urgently needed to improve our understanding of the parameters and the effects of dexamethasone on patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fei Chen
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China.
| | - Lanting Hao
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Shiheng Zhu
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Xinyuan Yang
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Wenhao Shi
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Kai Zheng
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Tenger Wang
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Huiran Chen
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| |
Collapse
|
5
|
Abdel-Moneim AS, Abdelwhab EM, Memish ZA. Insights into SARS-CoV-2 evolution, potential antivirals, and vaccines. Virology 2021; 558:1-12. [PMID: 33691216 PMCID: PMC7898979 DOI: 10.1016/j.virol.2021.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
SARS-CoV-2 is a novel coronavirus, spread among humans, and to date, more than 100 million of laboratory-confirmed cases have been reported worldwide. The virus demonstrates 96% similarity to a coronavirus from a horseshoe bat and most probably emerged from a spill over from bats or wild animal(s) to humans. Currently, two variants are circulating in the UK and South Africa and spread to many countries around the world. The impact of mutations on virus replication, virulence and transmissibility should be monitored carefully. Current data suggest recurrent infection with SARS-CoV-2 correlated to the level of neutralising antibodies and with sustained memory responses following infection. Recently, remdesivir was FDA approved for treatment of COVID-19, however many potential antivirals are currently in different clinical trials. Clinical data and experimental studies indicated that licenced vaccines are helpful in controlling the disease. However, the current vaccines should be evaluated against the emerging variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Ahmed S Abdel-Moneim
- Microbiology Department, Virology Division, College of Medicine, Taif University, Al-Taif, Saudi Arabia.
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ziad A Memish
- Research & Innovation Center, King Saud Medical City, Ministry of Health and College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
6
|
Anand U, Cabreros C, Mal J, Ballesteros F, Sillanpää M, Tripathi V, Bontempi E. Novel coronavirus disease 2019 (COVID-19) pandemic: From transmission to control with an interdisciplinary vision. ENVIRONMENTAL RESEARCH 2021; 197:111126. [PMID: 33831411 PMCID: PMC8020611 DOI: 10.1016/j.envres.2021.111126] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/09/2021] [Accepted: 04/01/2021] [Indexed: 05/06/2023]
Abstract
There a lot of review papers addressing specific COVID-19 research sectors, then devoted to specialists. This review provides an in-depth summary of the available information about SARS-CoV-2 and the corresponding disease (also known as COVID-19), with a multi-disciplinary approach. After the paper introduction, the first section treats the virological characteristics of SARS-CoV-2, the medical implications of the infection, and the human susceptivity. Great attention is devoted to the factor affecting the infection routes, distinguishing among the possible human-to-human, environmental-to-human, and pollution-to-human transmission mechanisms. The second section is devoted to reporting the impact of SARS-CoV-2 not only on the healthcare systems but also on the economy and society. The third section is devoted to non-pharmaceutical behaviours against COVID-19. In this context, this review section presents an analysis of the European second wave allowing not only to focalize the importance of some restrictions, but also the relevance of social acceptance of some measures. The data reassumed in this work are very useful for interdisciplinary researchers that work in a team to find the basic available information about all the aspects connected with this pandemic (from virus diffusion mechanism to health information, from economic and social impacts to measures to reduce the pandemic spread), with great attention to social acceptance of restriction measures and of vaccines (that currently results to be insufficient to achieve community immunity). Then, this review paper highlights the fundamental role of the trans-multi-disciplinary research that is devoted not only to understand the basics of the pandemic to propose solutions but has also the commitment to find strategies to increase population resilience. For this aim, the authors strongly suggest the establishment of an international health-care trans-multi-disciplinary workforce devoted to investigate, mitigate, and control also future viral events.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion, University of the Negev, Beer-Sheva, 84105, Israel
| | - Carlo Cabreros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101, Diliman, Quezon City, Philippines
| | - Joyabrata Mal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Florencio Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101, Diliman, Quezon City, Philippines; Department of Chemical Engineering, College of Engineering, University of the Philippines, 1101, Diliman, Quezon City, Philippines
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; School of Chemical and Metallurgical Engineering, University of the Witwatersrand, 2050, Johannesburg, South Africa
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India.
| | - Elza Bontempi
- INSTM and Chemistry for Technologies, University of Brescia, Via Branze 38, 25123, Brescia, Italy.
| |
Collapse
|
7
|
Anand U, Cabreros C, Mal J, Ballesteros F, Sillanpää M, Tripathi V, Bontempi E. Novel coronavirus disease 2019 (COVID-19) pandemic: From transmission to control with an interdisciplinary vision. ENVIRONMENTAL RESEARCH 2021; 197:111126. [PMID: 33831411 DOI: 10.1016/j.envres.2021a.111126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/09/2021] [Accepted: 04/01/2021] [Indexed: 05/18/2023]
Abstract
There a lot of review papers addressing specific COVID-19 research sectors, then devoted to specialists. This review provides an in-depth summary of the available information about SARS-CoV-2 and the corresponding disease (also known as COVID-19), with a multi-disciplinary approach. After the paper introduction, the first section treats the virological characteristics of SARS-CoV-2, the medical implications of the infection, and the human susceptivity. Great attention is devoted to the factor affecting the infection routes, distinguishing among the possible human-to-human, environmental-to-human, and pollution-to-human transmission mechanisms. The second section is devoted to reporting the impact of SARS-CoV-2 not only on the healthcare systems but also on the economy and society. The third section is devoted to non-pharmaceutical behaviours against COVID-19. In this context, this review section presents an analysis of the European second wave allowing not only to focalize the importance of some restrictions, but also the relevance of social acceptance of some measures. The data reassumed in this work are very useful for interdisciplinary researchers that work in a team to find the basic available information about all the aspects connected with this pandemic (from virus diffusion mechanism to health information, from economic and social impacts to measures to reduce the pandemic spread), with great attention to social acceptance of restriction measures and of vaccines (that currently results to be insufficient to achieve community immunity). Then, this review paper highlights the fundamental role of the trans-multi-disciplinary research that is devoted not only to understand the basics of the pandemic to propose solutions but has also the commitment to find strategies to increase population resilience. For this aim, the authors strongly suggest the establishment of an international health-care trans-multi-disciplinary workforce devoted to investigate, mitigate, and control also future viral events.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion, University of the Negev, Beer-Sheva, 84105, Israel
| | - Carlo Cabreros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101, Diliman, Quezon City, Philippines
| | - Joyabrata Mal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Florencio Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101, Diliman, Quezon City, Philippines; Department of Chemical Engineering, College of Engineering, University of the Philippines, 1101, Diliman, Quezon City, Philippines
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; School of Chemical and Metallurgical Engineering, University of the Witwatersrand, 2050, Johannesburg, South Africa
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India.
| | - Elza Bontempi
- INSTM and Chemistry for Technologies, University of Brescia, Via Branze 38, 25123, Brescia, Italy.
| |
Collapse
|
8
|
Peng HT, Rhind SG, Beckett A. Convalescent Plasma for the Prevention and Treatment of COVID-19: A Systematic Review and Quantitative Analysis. JMIR Public Health Surveill 2021; 7:e25500. [PMID: 33825689 PMCID: PMC8245055 DOI: 10.2196/25500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic, caused by a novel coronavirus termed SARS-CoV-2, has spread quickly worldwide. Convalescent plasma (CP) obtained from patients following recovery from COVID-19 infection and development of antibodies against the virus is an attractive option for either prophylactic or therapeutic treatment, since antibodies may have direct or indirect antiviral activities and immunotherapy has proven effective in principle and in many clinical reports. OBJECTIVE We seek to characterize the latest advances and evidence in the use of CP for COVID-19 through a systematic review and quantitative analysis, identify knowledge gaps in this setting, and offer recommendations and directives for future research. METHODS PubMed, Web of Science, and Embase were continuously searched for studies assessing the use of CP for COVID-19, including clinical studies, commentaries, reviews, guidelines or protocols, and in vitro testing of CP antibodies. The screening process and data extraction were performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Quality appraisal of all clinical studies was conducted using a universal tool independent of study designs. A meta-analysis of case-control and randomized controlled trials (RCTs) was conducted using a random-effects model. RESULTS Substantial literature has been published covering various aspects of CP therapy for COVID-19. Of the references included in this review, a total of 243 eligible studies including 64 clinical studies, 79 commentary articles, 46 reviews, 19 guidance and protocols, and 35 in vitro testing of CP antibodies matched the criteria. Positive results have been mostly observed so far when using CP for the treatment of COVID-19. There were remarkable heterogeneities in the CP therapy with respect to patient demographics, donor antibody titers, and time and dose of CP administration. The studies assessing the safety of CP treatment reported low incidence of adverse events. Most clinical studies, in particular case reports and case series, had poor quality. Only 1 RCT was of high quality. Randomized and nonrandomized data were found in 2 and 11 studies, respectively, and were included for meta-analysis, suggesting that CP could reduce mortality and increase viral clearance. Despite promising pilot studies, the benefits of CP treatment can only be clearly established through carefully designed RCTs. CONCLUSIONS There is developing support for CP therapy, particularly for patients who are critically ill or mechanically ventilated and resistant to antivirals and supportive care. These studies provide important lessons that should inform the planning of well-designed RCTs to generate more robust knowledge for the efficacy of CP in patients with COVID-19. Future research is necessary to fill the knowledge gap regarding prevention and treatment for patients with COVID-19 with CP while other therapeutics are being developed.
Collapse
Affiliation(s)
- Henry T Peng
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Shawn G Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Andrew Beckett
- St. Michael's Hospital, Toronto, ON, Canada
- Royal Canadian Medical Services, Ottawa, ON, Canada
| |
Collapse
|
9
|
Hendricks CL, Herd C, Nel M, Tintinger G, Pepper MS. The COVID-19 Treatment Landscape: A South African Perspective on a Race Against Time. Front Med (Lausanne) 2021; 8:604087. [PMID: 33681243 PMCID: PMC7933453 DOI: 10.3389/fmed.2021.604087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
The pandemic caused by SARS-CoV-2 has infected more than 94 million people worldwide (as of 17 January 2020). Severe disease is believed to be secondary to the cytokine release syndrome (CRS or "cytokine storm") which causes local tissue damage as well as multi-organ dysfunction and thrombotic complications. Due to the high mortality rates in patients receiving invasive ventilation, practice has changed from "early-intubation" for acute respiratory distress syndrome (ARDS) to a trial of non-invasive ventilation (NIV) or high flow nasal cannula (HFNC) oxygen. Reports indicating the benefit of NIV and HFNC have been encouraging and have led to more than 20,000 such devices being manufactured and ready for roll-out in South Africa (SA) as of July 2020. The need to identify drugs with clear clinical benefits has led to an array of clinical trials, most of which are repurposing drugs for COVID-19. The treatment landscape reflects the need to target both the virus and its effects such as the CRS and thrombotic complications. Conflicting results have the potential to confuse the implementation of coordinated treatment strategies and guidelines. The purpose of this review is to address pertinent areas in the current literature on the available medical treatment options for COVID-19. Remdesivir, tocilizumab, and dexamethasone are some of the treatment options that have shown the most promise, but further randomized trials are required to particularly address timing and dosages to confidently create standardized protocols. For the SA population, two healthcare sectors exist. In the private sector, patients with medical insurance may have greater access to a wider range of treatment options than those in the public sector. The latter serves >80% of the population, and resource constraints require the identification of drugs with the most cost-effective use for the greatest number of affected patients.
Collapse
Affiliation(s)
- Candice Laverne Hendricks
- Department of Medical Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| | - Candice Herd
- Department of Medical Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| | - Marcel Nel
- Department of Medical Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| | - Gregory Tintinger
- Department of Internal Medicine, University of Pretoria, Pretoria, South Africa
| | - Michael Sean Pepper
- Department of Medical Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Chilamakuri R, Agarwal S. COVID-19: Characteristics and Therapeutics. Cells 2021; 10:206. [PMID: 33494237 PMCID: PMC7909801 DOI: 10.3390/cells10020206] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Novel coronavirus (COVID-19 or 2019-nCoV or SARS-CoV-2), which suddenly emerged in December 2019 is still haunting the entire human race and has affected not only the healthcare system but also the global socioeconomic balances. COVID-19 was quickly designated as a global pandemic by the World Health Organization as there have been about 98.0 million confirmed cases and about 2.0 million confirmed deaths, as of January 2021. Although, our understanding of COVID-19 has significantly increased since its outbreak, and multiple treatment approaches and pharmacological interventions have been tested or are currently under development to mitigate its risk-factors. Recently, some vaccine candidates showed around 95% clinical efficacy, and now receiving emergency use approvals in different countries. US FDA recently approved BNT162 and mRNA-1273 vaccines developed by Pfizer/BioNTech and Moderna Inc. for emergency use and vaccination in the USA. In this review, we present a succinct overview of the SARS-CoV-2 virus structure, molecular mechanisms of infection, COVID-19 epidemiology, diagnosis, and clinical manifestations. We also systematize different treatment strategies and clinical trials initiated after the pandemic outbreak, based on viral infection and replication mechanisms. Additionally, we reviewed the novel pharmacological intervention approaches and vaccine development strategies against COVID-19. We speculate that the current pandemic emergency will trigger detailed studies of coronaviruses, their mechanism of infection, development of systematic drug repurposing approaches, and novel drug discoveries for current and future pandemic outbreaks.
Collapse
Affiliation(s)
| | - Saurabh Agarwal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA;
| |
Collapse
|
11
|
Siddique F, Abbas RZ, Mansoor MK, Alghamdi ES, Saeed M, Ayaz MM, Rahman M, Mahmood MS, Iqbal A, Manzoor M, Abbas A, Javaid A, Hussain I. An Insight Into COVID-19: A 21st Century Disaster and Its Relation to Immunocompetence and Food Antioxidants. Front Vet Sci 2021; 7:586637. [PMID: 33521076 PMCID: PMC7838355 DOI: 10.3389/fvets.2020.586637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) ranks third in terms of fatal coronavirus diseases threatening public health, coming after SARS-CoV (severe acute respiratory syndrome coronavirus), and MERS-CoV (Middle East respiratory syndrome coronavirus). SARS-CoV-2 (severe acute respiratory syndrome coronavirus type 2) causes COVID-19. On January 30, 2020, the World Health Organization (WHO) announced that the current outbreak of COVID-19 is the sixth global health emergency. As of December 3, 2020, 64 million people worldwide have been affected by this malaise, and the global economy has experienced a loss of more than $1 trillion. SARS-CoV-2 is a positive-sense single-stranded RNA virus belonging to the Betacoronavirus genus. The high nucleotide sequence identity of SARS-CoV-2 with the BatCoV RaTG13 genome has indicated that bats could be the possible host of SARS-CoV-2. SARS-CoV-2 penetrates the host cell via binding its spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor, which is similar to the mechanisms of SARS-CoV and MERS-CoV. COVID-19 can spread from person to person via respiratory droplets and airborne and contaminated fomites. Moreover, it poses a significant risk to smokers, the elderly, immunocompromised people, and those with preexisting comorbidities. Two main approaches are used to control viral infections, namely, vaccination, and biosecurity. Studies to analyze the antigenicity and immunogenicity of SARS-CoV-2 vaccine candidates are underway, and few vaccines may be available in the near future. In the current situation, the Human Biosecurity Emergency (HBE) may be the only way to cope effectively with the novel SARS-CoV-2 strain. Here, we summarize current knowledge on the origin of COVID-19 as well as its epidemiological relationship with humans and animals, genomic resemblance, immunopathogenesis, clinical-laboratory signs, diagnosis, control and prevention, and treatment. Moreover, we discuss the interventional effects of various nutrients on COVID-19 in detail. However, multiple possibilities are explored to fight COVID-19, and the greatest efforts targeted toward finding an effective vaccine in the near future. Furthermore, antioxidants, polyphenols, and flavonoids, both synthetic and natural, could play a crucial role in the fight against COVID-19.
Collapse
Affiliation(s)
- Faisal Siddique
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | | | - Etab Saleh Alghamdi
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Muhammad Saeed
- Department of Poultry Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Mazhar Ayaz
- Department of Parasitology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Moazur Rahman
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Asif Iqbal
- Department of Parasitology, Riphah International University, Lahore, Pakistan
| | - Maida Manzoor
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Asghar Abbas
- Department of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Asif Javaid
- Department of Animal Nutrition, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Irshad Hussain
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|