1
|
Cabral AS, Lacerda FDF, Leite VLM, de Miranda FM, da Silva AB, Dos Santos BA, Lima JLDC, Teixeira LM, Neves FPG. CRISPR-Cas systems in enterococci. Braz J Microbiol 2024; 55:3945-3957. [PMID: 39438415 PMCID: PMC11711564 DOI: 10.1007/s42770-024-01549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Enterococci are members of the microbiota of humans and other animals. They can also be found in the environment, associated with food, healthcare infections, and hospital settings. Due to their wide distribution, they are inserted in the One Health context. The selective pressure caused by the extensive use of antimicrobial agents in humans, animals, and agriculture has increased the frequency of resistance to various drugs among enterococcal species. CRISPR-Cas system, an important prokaryotic defense mechanism against the entry of mobile genetic elements, may prevent the acquisition of genes involved in antimicrobial resistance and virulence. This system has been increasingly used as a gene editing tool, which can be used as a way to recognize and inactivate genes of interest. Here, we conduct a review on CRISPR systems found in enterococci, considering their occurrence, structure and organization, mechanisms of action and use as a genetic engineering technology. Type II-A CRISPR-Cas systems were shown to be the most frequent among enterococcal species, and the orphan CRISPR2 was the most commonly found system (54.1%) among enterococcal species, especially in Enterococcus faecalis. Distribution of CRISPR systems varied among species. CRISPR systems had 1 to 20 spacers, with size between 23 and 37 bp and direct repeat sequences from 25 to 37 bp. Several applications of the CRISPR-Cas biotechnology have been described in enterococci, mostly in vitro, using this editing tool to target resistance- and virulence-related genes.
Collapse
Affiliation(s)
- Amanda Seabra Cabral
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Fernanda de Freitas Lacerda
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Vitor Luis Macena Leite
- Instituto de Microbiologia, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Filipe Martire de Miranda
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Amanda Beiral da Silva
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Bárbara Araújo Dos Santos
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Jailton Lobo da Costa Lima
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Lúcia Martins Teixeira
- Instituto de Microbiologia, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Felipe Piedade Gonçalves Neves
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil.
| |
Collapse
|
2
|
Liu S, Yang X, Li R, Wang S, Han Z, Yang M, Zhang Y. IS6 family insertion sequences promote optrA dissemination between plasmids varying in transfer abilities. Appl Microbiol Biotechnol 2024; 108:132. [PMID: 38229329 DOI: 10.1007/s00253-023-12858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 01/18/2024]
Abstract
Plasmids are the primary vectors for intercellular transfer of the oxazolidinone and phenicol cross-resistance gene optrA, while insertion sequences (ISs) are mobile genetic elements that can mobilize plasmid-borne optrA intracellularly. However, little is known about how the IS-mediated intracellular mobility facilitates the dissemination of the optrA gene between plasmid categories that vary in transfer abilities, including non-mobilizable, mobilizable, and conjugative plasmids. Here, we performed a holistic genomic study of 52 optrA-carrying plasmids obtained from searches guided by the Comprehensive Antibiotic Resistance Database. Among the 132 ISs identified within 10 kbp from the optrA gene in the plasmids, IS6 family genes were the most prevalent (86/132). Homologous gene arrays containing IS6 family genes were shared between different plasmids, especially between mobilizable and conjugative plasmids. All these indicated the central role of IS6 family genes in disseminating plasmid-borne optrA. Thirty-three of the 52 plasmids were harbored by Enterococcus faecalis found mainly in humans and animals. By Nanopore sequencing and inverse PCR, the potential of the enterococcal optrA to be transmitted from a mobilizable plasmid to a conjugative plasmid mediated by IS6 family genes was further confirmed in Enterococcus faecalis strains recovered from the effluents of anaerobic digestion systems for treating chicken manure. Our findings highlight the increased intercellular transfer abilities and dissemination risk of plasmid-borne optrA gene caused by IS-mediated intracellular mobility, and underscore the importance of routinely monitoring the dynamic genetic contexts of clinically important antibiotic resistance genes to effectively control this critical public health threat. KEY POINTS: • IS6 was prevalent in optrA-plasmids varying in intercellular transfer abilities. • Enterococcal optrA-plasmids were widespread among human, animal, and the environment. • IS6 elevated the dissemination risk of enterococcal optrA-plasmids.
Collapse
Affiliation(s)
- Shihai Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shaolin Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Zaidi SEZ, Zaheer R, Zovoilis A, McAllister TA. Enterococci as a One Health indicator of antimicrobial resistance. Can J Microbiol 2024; 70:303-335. [PMID: 38696839 DOI: 10.1139/cjm-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The rapid increase of antimicrobial-resistant bacteria in humans and livestock is concerning. Antimicrobials are essential for the treatment of disease in modern day medicine, and their misuse in humans and food animals has contributed to an increase in the prevalence of antimicrobial-resistant bacteria. Globally, antimicrobial resistance is recognized as a One Health problem affecting humans, animals, and environment. Enterococcal species are Gram-positive bacteria that are widely distributed in nature. Their occurrence, prevalence, and persistence across the One Health continuum make them an ideal candidate to study antimicrobial resistance from a One Health perspective. The objective of this review was to summarize the role of enterococci as an indicator of antimicrobial resistance across One Health sectors. We also briefly address the prevalence of enterococci in human, animal, and environmental settings. In addition, a 16S RNA gene-based phylogenetic tree was constructed to visualize the evolutionary relationship among enterococcal species and whether they segregate based on host environment. We also review the genomic basis of antimicrobial resistance in enterococcal species across the One Health continuum.
Collapse
Affiliation(s)
- Sani-E-Zehra Zaidi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
4
|
Lysitsas M, Triantafillou E, Spyrou V, Billinis C, Valiakos G. Phenotypic Investigation of Florfenicol Resistance and Molecular Detection of floR Gene in Canine and Feline MDR Enterobacterales. Vet Sci 2024; 11:71. [PMID: 38393089 PMCID: PMC10892669 DOI: 10.3390/vetsci11020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Florfenicol is a promising antibiotic for use in companion animals, especially as an alternative agent for infections caused by MDR bacteria. However, the emergence of resistant strains could hinder this potential. In this study, florfenicol resistance was investigated in a total of 246 MDR Enterobacterales obtained from canine and feline clinical samples in Greece over a two-year period (October 2020 to December 2022); a total of 44 (17,9%) florfenicol-resistant strains were recognized and further investigated. Most of these isolates originated from urine (41.9%) and soft tissue (37.2%) samples; E. coli (n = 14) and Enterobacter cloacae (n = 12) were the predominant species. The strains were examined for the presence of specific florfenicol-related resistance genes floR and cfr. In the majority of the isolates (31/44, 70.5%), the floR gene was detected, whereas none carried cfr. This finding creates concerns of co-acquisition of plasmid-mediated florfenicol-specific ARGs through horizontal transfer, along with several other resistance genes. The florfenicol resistance rates in MDR isolates seem relatively low but considerable for a second-line antibiotic; thus, in order to evaluate the potential of florfenicol to constitute an alternative antibiotic in companion animals, continuous monitoring of antibiotic resistance profiles is needed in order to investigate the distribution of florfenicol resistance under pressure of administration of commonly used agents.
Collapse
Affiliation(s)
- Marios Lysitsas
- Faculty of Veterinary Science, University of Thessaly, 431 00 Karditsa, Greece; (M.L.); (C.B.)
| | | | - Vassiliki Spyrou
- Department of Animal Science, University of Thessaly, 413 34 Larissa, Greece;
| | - Charalambos Billinis
- Faculty of Veterinary Science, University of Thessaly, 431 00 Karditsa, Greece; (M.L.); (C.B.)
| | - George Valiakos
- Faculty of Veterinary Science, University of Thessaly, 431 00 Karditsa, Greece; (M.L.); (C.B.)
| |
Collapse
|
5
|
Farias BO, Montenegro KS, Nascimento APA, Magaldi M, Gonçalves-Brito AS, Flores C, Moreira TC, Neves FPG, Bianco K, Clementino MM. First Report of a Wastewater Treatment-Adapted Enterococcus faecalis ST21 Harboring vanA Gene in Brazil. Curr Microbiol 2023; 80:313. [PMID: 37542533 DOI: 10.1007/s00284-023-03418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 08/07/2023]
Abstract
Enterococcus faecalis has emerged as an important opportunistic pathogen due to its increasing resistance to antimicrobials, mainly to vancomycin, which leads substantial cases of therapeutic failures. Wastewater treatment plants (WWTP), in turn, are considered hotpots in the spread of antimicrobial resistance according to One Health perspective. In this study, we present the first report of a vancomycin-resistant E. faecalis strain recovered from treated effluent in Brazil. For this purpose, the whole-genome sequencing (WGS) was carried out aiming to elucidate its molecular mechanisms of antimicrobial resistance and its phylogenetic relationships amongst strains from other sources and countries. According to Multilocus Sequence Typing (MLST) analysis this strain belongs to ST21. The WGS pointed the presence of vanA operon, multiple antibiotic resistance and virulence genes, and a significant pathogenic potential for humans. The phylogenomic analysis of E. faecalis 6805 was performed with ST21 representatives from the PubMLST database, including the E. faecalis IE81 strain from clinical sample in Brazil, which had its genome sequenced in this study. Our results demonstrated a strain showing resistance to vancomycin in treated effluent. To the best of our knowledge, this is an unprecedented report of vanA-carrying E. faecalis ST21. Furthermore, it is the first description of a vanA-harboring strain of this species from environmental sample in Brazil. Our data highlight the role of WWTP in the spread of AMR, since these environments are favorable for the selection of multidrug-resistant pathogens and the treated effluents, carrying antibiotic resistance genes, are directed to receiving water bodies.
Collapse
Affiliation(s)
- Beatriz O Farias
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ, 4365, Brazil
| | - Kaylanne S Montenegro
- Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Ana Paula A Nascimento
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mariana Magaldi
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Andressa S Gonçalves-Brito
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ, 4365, Brazil
| | - Claudia Flores
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Thais C Moreira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Felipe P G Neves
- Departamento de Microbiologia E Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N. São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Kayo Bianco
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
- Fiocruz Genomic Network, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ, 4365, Brazil.
- COVID-19 Monitoring Network in Wastewater, São Paulo, Brazil.
| | - Maysa M Clementino
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ, 4365, Brazil
- COVID-19 Monitoring Network in Wastewater, São Paulo, Brazil
| |
Collapse
|
6
|
Monteiro Marques J, Coelho M, Santana AR, Pinto D, Semedo-Lemsaddek T. Dissemination of Enterococcal Genetic Lineages: A One Health Perspective. Antibiotics (Basel) 2023; 12:1140. [PMID: 37508236 PMCID: PMC10376465 DOI: 10.3390/antibiotics12071140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Enterococcus spp. are commensals of the gastrointestinal tracts of humans and animals and colonize a variety of niches such as water, soil, and food. Over the last three decades, enterococci have evolved as opportunistic pathogens, being considered ESKAPE pathogens responsible for hospital-associated infections. Enterococci's ubiquitous nature, excellent adaptative capacity, and ability to acquire virulence and resistance genes make them excellent sentinel proxies for assessing the presence/spread of pathogenic and virulent clones and hazardous determinants across settings of the human-animal-environment triad, allowing for a more comprehensive analysis of the One Health continuum. This review provides an overview of enterococcal fitness and pathogenic traits; the most common clonal complexes identified in clinical, veterinary, food, and environmental sources; as well as the dissemination of pathogenic genomic traits (virulome, resistome, and mobilome) found in high-risk clones worldwide, across the One Health continuum.
Collapse
Affiliation(s)
- Joana Monteiro Marques
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Mariana Coelho
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Andressa Rodrigues Santana
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Daniel Pinto
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Teresa Semedo-Lemsaddek
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
7
|
Jeremia L, Deprez BE, Dey D, Conn GL, Wuest WM. Ribosome-targeting antibiotics and resistance via ribosomal RNA methylation. RSC Med Chem 2023; 14:624-643. [PMID: 37122541 PMCID: PMC10131624 DOI: 10.1039/d2md00459c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
The rise of multidrug-resistant bacterial infections is a cause of global concern. There is an urgent need to both revitalize antibacterial agents that are ineffective due to resistance while concurrently developing new antibiotics with novel targets and mechanisms of action. Pathogen associated resistance-conferring ribosomal RNA (rRNA) methyltransferases are a growing threat that, as a group, collectively render a total of seven clinically-relevant ribosome-targeting antibiotic classes ineffective. Increasing frequency of identification and their growing prevalence relative to other resistance mechanisms suggests that these resistance determinants are rapidly spreading among human pathogens and could contribute significantly to the increased likelihood of a post-antibiotic era. Herein, with a view toward stimulating future studies to counter the effects of these rRNA methyltransferases, we summarize their prevalence, the fitness cost(s) to bacteria of their acquisition and expression, and current efforts toward targeting clinically relevant enzymes of this class.
Collapse
Affiliation(s)
- Learnmore Jeremia
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Benjamin E Deprez
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| | - William M Wuest
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| |
Collapse
|
8
|
AbdAlhafiz AI, Elleboudy NS, Aboshanab KM, Aboulwafa MM, Hassouna NA. Phenotypic and genotypic characterization of linezolid resistance and the effect of antibiotic combinations on methicillin-resistant Staphylococcus aureus clinical isolates. Ann Clin Microbiol Antimicrob 2023; 22:23. [PMID: 37013561 PMCID: PMC10069030 DOI: 10.1186/s12941-023-00574-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 03/12/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Methicillin-Resistant Staphylococcus aureus (MRSA) causes life-threatening infections, with narrow therapeutic options including: vancomycin and linezolid. Accordingly, this study aimed to characterize phenotypically and genotypically, the most relevant means of linezolid resistance among some MRSA clinical isolates. METHODS A total of 159 methicillin-resistant clinical isolates were collected, of which 146 were indentified microscopically and biochemically as MRSA. Both biofilm formation and efflux pump activity were assessed for linezolid-resistant MRSA (LR-MRSA) using the microtiter plate and carbonyl cyanide 3-chlorophenylhydrazone (CCCP) methods, respectively. Linezolid resistance was further characterized by polymerase chain reaction (PCR) amplification and sequencing of domain V of 23 S rRNA; rplC; rplD;and rplV genes. Meanwhile, some resistance genes were investigated: cfr; cfr(B); optrA; msrA;mecA; and vanA genes. To combat LR-MRSA, the effect of combining linezolid with each of 6 different antimicrobials was investigated using the checkerboard assay. RESULTS Out of the collected MRSA isolates (n = 146), 5.48% (n = 8) were LR-MRSA and 18.49% (n = 27) were vancomycin-resistant (VRSA). It is worth noting that all LR-MRSA isolates were also vancomycin-resistant. All LR-MRSA isolates were biofilm producers (r = 0.915, p = 0.001), while efflux pumps upregulation showed no significant contribution to development of resistance (t = 1.374, p = 0.212). Both mecA and vanA genes were detected in 92.45% (n = 147) and 6.92% (n = 11) of methicillin-resistant isolates, respectively. In LR-MRSA isolates, some 23 S rRNA domain V mutations were observed: A2338T and C2610G (in 5 isolates); T2504C and G2528C (in 2 isolates); and G2576T (in 1 isolate). Amino acids substitutions were detected: in L3 protein (rplC gene) of (3 isolates) and in L4 protein (rplD gene) of (4 isolates). In addition, cfr(B) gene was detected (in 3 isolates). In 5 isolates, synergism was recorded when linezolid was combined with chloramphenicol, erythromycin, or ciprofloxacin. Reversal of linezolid resistance was observed in some LR-MRSA isolates when linezolid was combined with gentamicin or vancomycin. CONCLUSIONS LR-MRSA biofilm producers' phenotypes evolved in the clinical settings in Egypt. Various antibiotic combinations with linezolid were evaluated in vitro and showed synergistic effects.
Collapse
Affiliation(s)
- Asmaa I AbdAlhafiz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nooran S Elleboudy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohammad M Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
- Faculty of Pharmacy, King Salman International University, South Sinai, Ras-Sudr, Egypt.
| | - Nadia A Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
9
|
Abdullahi IN, Lozano C, Juárez-Fernández G, Höfle U, Simón C, Rueda S, Martínez A, Álvarez-Martínez S, Eguizábal P, Martínez-Cámara B, Zarazaga M, Torres C. Nasotracheal enterococcal carriage and resistomes: detection of optrA-, poxtA- and cfrD-carrying strains in migratory birds, livestock, pets, and in-contact humans in Spain. Eur J Clin Microbiol Infect Dis 2023; 42:569-581. [PMID: 36890281 PMCID: PMC10105672 DOI: 10.1007/s10096-023-04579-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
This study determined the carriage rates and antimicrobial resistance (AMR) genes of enterococci from nasotracheal samples of three healthy animal species and in-contact humans. Nasal samples were collected from 27 dog-owning households (34 dogs, 41 humans) and 4 pig-farms (40 pigs, 10 pig-farmers), and they were processed for enterococci recovery (MALDI-TOF-MS identification). Also, a collection of 144 enterococci previously recovered of tracheal/nasal samples from 87 white stork nestlings were characterized. The AMR phenotypes were determined in all enterococci and AMR genes were studied by PCR/sequencing. MultiLocus-Sequence-Typing was performed for selected isolates. About 72.5% and 60% of the pigs and pig-farmers, and 29.4% and 4.9%, of healthy dogs and owners were enterococci nasal carriers, respectively. In storks, 43.5% of tracheal and 69.2% of nasal samples had enterococci carriages. Enterococci carrying multidrug-resistance phenotype was identified in 72.5%/40.0%/50.0%/23.5%/1.1% of pigs/pig-farmers/dogs/dogs' owners/storks, respectively. Of special relevance was the detection of linezolid-resistant enterococci (LRE) in (a) 33.3% of pigs (E. faecalis-carrying optrA and/or cfrD of ST59, ST330 or ST474 lineages; E. casseliflavus-carrying optrA and cfrD); (b) 10% of pig farmers (E. faecalis-ST330-carrying optrA); (c) 2.9% of dogs (E. faecalis-ST585-carrying optrA); and (d) 1.7% of storks (E. faecium-ST1736-carrying poxtA). The fexA gene was found in all optrA-positive E. faecalis and E. casseliflavus isolates, while fexB was detected in the poxtA-positive E. faecium isolate. The enterococci diversity and AMR rates from the four hosts reflect differences in antimicrobial selection pressure. The detection of LRE carrying acquired and transferable genes in all the hosts emphasizes the need to monitor LRE using a One-Health approach.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain
| | - Guillermo Juárez-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain
| | - Ursula Höfle
- Spanish Wildlife Research Institute IREC (CSIC-UCLM-JCCM), SaBio (Health and Biotechnology) Research Group, Ciudad Real, Spain
| | - Carmen Simón
- Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - Silvia Rueda
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain
| | - Angela Martínez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain
| | - Sandra Álvarez-Martínez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain
| | - Paula Eguizábal
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain
| | - Beatriz Martínez-Cámara
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, 26006, Spain.
| |
Collapse
|
10
|
Rani V, Prakash A, Mannan MAU, Das P, Haridas H, Gaindaa R. Emergence of OptrA Gene Mediated Linezolid Resistance among Enterococcus Faecium: A Pilot Study from a Tertiary Care Hospital, India. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:242-256. [PMID: 38751656 PMCID: PMC11092898 DOI: 10.22088/ijmcm.bums.12.3.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 03/05/2024] [Indexed: 05/18/2024]
Abstract
E. faecium is the third most common cause of nosocomial infections. Linezolid (LNZ) is a reserve antibiotic recommended for infections caused by vancomycin resistant E. faecium (VREfm). The aim of the present study was to investigate the prevalence of optrA gene among linezolid resistant E. faecium (LREfm) and to study the molecular epidemiology using pulse field gel electrophoresis (PFGE). Clinically significant LREfm were identified and antimicrobial susceptibility was performed by disc diffusion. Minimum inhibitory concentration (MIC) of linezolid, vancomycin, daptomycin and quinupristin/dalfopristin was determined by E-test. PCR and PCR-RFPL were performed for the detection of optrA/cfr gene and G2576T mutation respectively. Molecular epidemiology was studied by PFGE. A total of 1081 clinically significant Enterococci species were isolated which included E. faecium 63.5% (n=687) and E. faecalis 36.5% (n=394). LREfm (30/687) were further studied. Multidrug resistance and vancomycin resistance was 100% and 80%, respectively. Linezolid MIC range was 8-256µg/ml and the most common mechanism of resistance was optrA gene (83.3%) followed by G2576T mutation (33.3%). PFGE analysis demonstrated 4 major clones. The optrA gene mediated linezolid resistance was high and PFGE suggests resistance was emerging in the different background strains irrespective of resistance mechanism. Studies are required to investigate factors driving the emergence of linezolid resistance. The review suggests that this is the first report of optrA-mediated resistance in E. faecium from India.
Collapse
Affiliation(s)
- Vandana Rani
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States of America.
| | - Mohammad Amin-ul Mannan
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
- Division of Infectious Disease, The Lundquist Institute, UCLA Harbor Medical Center, Los Angeles, California 90502, USA.
| | - Priyanka Das
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Hitha Haridas
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Rajni Gaindaa
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| |
Collapse
|
11
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
12
|
Yang X, Zhang T, Lei CW, Wang Q, Huang Z, Chen X, Wang HN. Florfenicol and oxazolidone resistance status in livestock farms revealed by short- and long-read metagenomic sequencing. Front Microbiol 2022; 13:1018901. [PMID: 36338088 PMCID: PMC9632178 DOI: 10.3389/fmicb.2022.1018901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Antibiotic resistance genes (ARGs) as a novel type of environmental pollutant pose a health risk to humans. Oxazolidinones are one of the most important antibiotics for the treatment of Gram-positive bacterial infections in humans. Although oxazolidinones are not utilized in the livestock industry, florfenicol is commonly used on farms to treat bacterial infections, which may contribute to the spread of the cfr, optrA, and poxtA genes on farms. Using metagenomics sequencing, we looked into the antibiotic resistome context of florfenicol and oxazolidinone in 10 large-scale commercial farms in China. We identified 490 different resistance genes and 1,515 bacterial genera in the fecal samples obtained from 10 farms. Florfenicol-resistant Kurthia, Escherichia, and Proteus were widely present in these samples. The situation of florfenicol and oxazolidone resistance in pig farms is even more severe. The total number of genes and the abundance of drug resistance genes were higher in pigs than in chickens, including optrA and poxtA. All the samples we collected had a high abundance of fexA and floR. Through nanopore metagenomic analysis of the genetic environment, we found that plasmids, integrative and conjugative element (ICE), and transposons (Tn7-like and Tn558) may play an important role in the spread of floR, cfr, and optrA. Our findings suggest that florfenicol and oxazolidinone resistance genes have diverse genetic environments and are at risk of co-transmission with, for example, tetracycline and aminoglycoside resistance genes. The spread of florfenicol- and oxazolidinone-resistant bacteria on animal farms should be continuously monitored.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong-Ning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Sun W, Liu H, Liu J, Jiang Q, Pan Y, Yang Y, Zhu X, Ge J. Detection of optrA and poxtA genes in linezolid resistant Enterococcus isolates from fur animals in China. Lett Appl Microbiol 2022; 75:1590-1595. [PMID: 36056605 DOI: 10.1111/lam.13826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
Abstract
The emergence of linezolid-resistant (LR) enterococci found in food of animal origin arouses attention, but little is known about LR enterococci in fur animals. A total of 342 E. faecalis and 265 E. faecium strains isolated from fur animals in China from 2015 to 2017 were investigated to determine if linezolid-resistant (LR) enterococci (≥16 μg ml-1 ) are present. Overall, two E. faecalis and twelve E. faecium among these isolates were resistant to linezolid. In addition, all LR isolates were classified as multidrug-resistant (MDR) isolates. We further explore the resistance genes of the LR enterococci, four E. faecalis and two E. faecium isolates contained optrA gene. Two of them co-harbored optrA and poxtA genes. We detected virulence genes in LR enterococci were the following: asa1, cylA, esp, gelE and hyl, among which the highest carrying rate gene was asa1. Besides, all of the LR enterococci we tested had the biofilm-forming ability. It is worth noting that we detected a novel ST type ST2010 from E. faecium 82-2. These data show LR enterococci exist in fur animals and have unique characteristics.
Collapse
Affiliation(s)
- Weijiao Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hanghang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jingjing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingqin Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xinyi Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.,Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, 150030, China
| |
Collapse
|
14
|
Brenciani A, Morroni G, Schwarz S, Giovanetti E. Oxazolidinones: mechanisms of resistance and mobile genetic elements involved. J Antimicrob Chemother 2022; 77:2596-2621. [PMID: 35989417 DOI: 10.1093/jac/dkac263] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The oxazolidinones (linezolid and tedizolid) are last-resort antimicrobial agents used for the treatment of severe infections in humans caused by MDR Gram-positive bacteria. They bind to the peptidyl transferase centre of the bacterial ribosome inhibiting protein synthesis. Even if the majority of Gram-positive bacteria remain susceptible to oxazolidinones, resistant isolates have been reported worldwide. Apart from mutations, affecting mostly the 23S rDNA genes and selected ribosomal proteins, acquisition of resistance genes (cfr and cfr-like, optrA and poxtA), often associated with mobile genetic elements [such as non-conjugative and conjugative plasmids, transposons, integrative and conjugative elements (ICEs), prophages and translocatable units], plays a critical role in oxazolidinone resistance. In this review, we briefly summarize the current knowledge on oxazolidinone resistance mechanisms and provide an overview on the diversity of the mobile genetic elements carrying oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gianluca Morroni
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
15
|
Impact of Antibiotics as Waste, Physical, Chemical, and Enzymatical Degradation: Use of Laccases. Molecules 2022; 27:molecules27144436. [PMID: 35889311 PMCID: PMC9319608 DOI: 10.3390/molecules27144436] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The first traces of Tetracycline (TE) were detected in human skeletons from Sudan and Egypt, finding that it may be related to the diet of the time, the use of some dyes, and the use of soils loaded with microorganisms, such as Streptomyces spp., among other microorganisms capable of producing antibiotics. However, most people only recognise authors dating between 1904 and 1940, such as Ehrlich, Domagk, and Fleming. Antibiotics are the therapeutic option for countless infections treatment; unfortunately, they are the second most common group of drugs in wastewaters worldwide due to failures in industrial waste treatments (pharmaceutics, hospitals, senior residences) and their irrational use in humans and animals. The main antibiotics problem lies in delivered and non-prescribed human use, use in livestock as growth promoters, and crop cultivation as biocides (regulated activities that have not complied in some places). This practice has led to the toxicity of the environment as antibiotics generate eutrophication, water pollution, nutrient imbalance, and press antibiotic resistance. In addition, the removal of antibiotics is not a required process in global wastewater treatment standards. This review aims to raise awareness of the negative impact of antibiotics as residues and physical, chemical, and biological treatments for their degradation. We discuss the high cost of physical and chemical treatments, the risk of using chemicals that worsen the situation, and the fact that each antibiotic class can be transformed differently with each of these treatments and generate new compounds that could be more toxic than the original ones; also, we discuss the use of enzymes for antibiotic degradation, with emphasis on laccases.
Collapse
|
16
|
Miguel-Arribas A, Wu LJ, Michaelis C, Yoshida KI, Grohmann E, Meijer WJJ. Conjugation Operons in Gram-Positive Bacteria with and without Antitermination Systems. Microorganisms 2022; 10:microorganisms10030587. [PMID: 35336162 PMCID: PMC8955417 DOI: 10.3390/microorganisms10030587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
Genes involved in the same cellular process are often clustered together in an operon whose expression is controlled by an upstream promoter. Generally, the activity of the promoter is strictly controlled. However, spurious transcription undermines this strict regulation, particularly affecting large operons. The negative effects of spurious transcription can be mitigated by the presence of multiple terminators inside the operon, in combination with an antitermination system. Antitermination systems modify the transcription elongation complexes and enable them to bypass terminators. Bacterial conjugation is the process by which a conjugative DNA element is transferred from a donor to a recipient cell. Conjugation involves many genes that are mostly organized in one or a few large operons. It has recently been shown that many conjugation operons present on plasmids replicating in Gram-positive bacteria possess a bipartite antitermination system that allows not only many terminators inside the conjugation operon to be bypassed, but also the differential expression of a subset of genes. Here, we show that some conjugation operons on plasmids belonging to the Inc18 family of Gram-positive broad host-range plasmids do not possess an antitermination system, suggesting that the absence of an antitermination system may have advantages. The possible (dis)advantages of conjugation operons possessing (or not) an antitermination system are discussed.
Collapse
Affiliation(s)
- Andrés Miguel-Arribas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Instituto de Biología Molecular Eladio Viñuela (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain;
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Medical Faculty, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK;
| | - Claudia Michaelis
- School of Life Sciences and Technology, Berlin University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany;
| | - Ken-ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan;
| | - Elisabeth Grohmann
- School of Life Sciences and Technology, Berlin University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany;
- Correspondence: (E.G.); (W.J.J.M.); Tel.: +49-30-4504-3942 (E.G.); +34-91-196-4539 (W.J.J.M.)
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Instituto de Biología Molecular Eladio Viñuela (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain;
- Correspondence: (E.G.); (W.J.J.M.); Tel.: +49-30-4504-3942 (E.G.); +34-91-196-4539 (W.J.J.M.)
| |
Collapse
|
17
|
Evidence of Linezolid Resistance and Virulence Factors in Enterococcus spp. Isolates from Wild and Domestic Ruminants, Italy. Antibiotics (Basel) 2022; 11:antibiotics11020223. [PMID: 35203825 PMCID: PMC8868082 DOI: 10.3390/antibiotics11020223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to evaluate the resistance patterns against selected critically and highly important antibiotics (quinupristin/dalfopristin, vancomycin, and linezolid) in 48 Enterococcus isolates obtained from wild (red deer and Apennine chamois) and domestic (cattle, sheep, and goats) ruminants living with varying degrees of sympatry in the protected area of Maiella National Park (central Italy). According to CLSI breakpoints, 9 out of 48 isolates (18.8%) showed resistance to at least one antibiotic. One Apennine chamois isolate was resistant to all tested antibiotics. The PCR screening of related resistance genes highlighted the occurrence of msrC or cfrD in seven Enterococcus resistant isolates. In addition, msrC and vanC genes were amplified in susceptible isolates. Specific sequences of virulence genes (gelE, ace, efa, asa1, and esp) related to pathogenic enterococci in humans were amplified in 21/48 isolates (43.75%), belonging mostly to wild animals (15/21; 71.42%). This is the first report of linezolid-resistant enterococci harboring virulence genes in Italian wildlife with special regard to the red deer and Apennine chamois species. The results allow us to evaluate the potential role of wild animals as indicators of antibiotic resistance in environments with different levels of anthropic pressure.
Collapse
|
18
|
Schwarz S, Zhang W, Du XD, Krüger H, Feßler AT, Ma S, Zhu Y, Wu C, Shen J, Wang Y. Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Clin Microbiol Rev 2021; 34:e0018820. [PMID: 34076490 PMCID: PMC8262807 DOI: 10.1128/cmr.00188-20] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Seven mobile oxazolidinone resistance genes, including cfr, cfr(B), cfr(C), cfr(D), cfr(E), optrA, and poxtA, have been identified to date. The cfr genes code for 23S rRNA methylases, which confer a multiresistance phenotype that includes resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A compounds. The optrA and poxtA genes code for ABC-F proteins that protect the bacterial ribosomes from the inhibitory effects of oxazolidinones. The optrA gene confers resistance to oxazolidinones and phenicols, while the poxtA gene confers elevated MICs or resistance to oxazolidinones, phenicols, and tetracycline. These oxazolidinone resistance genes are most frequently found on plasmids, but they are also located on transposons, integrative and conjugative elements (ICEs), genomic islands, and prophages. In these mobile genetic elements (MGEs), insertion sequences (IS) most often flanked the cfr, optrA, and poxtA genes and were able to generate translocatable units (TUs) that comprise the oxazolidinone resistance genes and occasionally also other genes. MGEs and TUs play an important role in the dissemination of oxazolidinone resistance genes across strain, species, and genus boundaries. Most frequently, these MGEs also harbor genes that mediate resistance not only to antimicrobial agents of other classes, but also to metals and biocides. Direct selection pressure by the use of antimicrobial agents to which the oxazolidinone resistance genes confer resistance, but also indirect selection pressure by the use of antimicrobial agents, metals, or biocides (the respective resistance genes against which are colocated on cfr-, optrA-, or poxtA-carrying MGEs) may play a role in the coselection and persistence of oxazolidinone resistance genes.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Henrike Krüger
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Shizhen Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Congming Wu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
19
|
Rogers LA, Strong K, Cork SC, McAllister TA, Liljebjelke K, Zaheer R, Checkley SL. The Role of Whole Genome Sequencing in the Surveillance of Antimicrobial Resistant Enterococcus spp.: A Scoping Review. Front Public Health 2021; 9:599285. [PMID: 34178909 PMCID: PMC8222819 DOI: 10.3389/fpubh.2021.599285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Enterococcus spp. have arisen as important nosocomial pathogens and are ubiquitous in the gastrointestinal tracts of animals and the environment. They carry many intrinsic and acquired antimicrobial resistance genes. Because of this, surveillance of Enterococcus spp. has become important with whole genome sequencing emerging as the preferred method for the characterization of enterococci. A scoping review was designed to determine how the use of whole genome sequencing in the surveillance of Enterococcus spp. adds to our knowledge of antimicrobial resistance in Enterococcus spp. Scoping review design was guided by the PRISMA extension and checklist and JBI Reviewer's Guide for scoping reviews. A total of 72 articles were included in the review. Of the 72 articles included, 48.6% did not state an association with a surveillance program and 87.5% of articles identified Enterococcus faecium. The majority of articles included isolates from human clinical or screening samples. Significant findings from the articles included novel sequence types, the increasing prevalence of vancomycin-resistant enterococci in hospitals, and the importance of surveillance or screening for enterococci. The ability of enterococci to adapt and persist within a wide range of environments was also a key finding. These studies emphasize the importance of ongoing surveillance of enterococci from a One Health perspective. More studies are needed to compare the whole genome sequences of human enterococcal isolates to those from food animals, food products, the environment, and companion animals.
Collapse
Affiliation(s)
- Lindsay A. Rogers
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Kayla Strong
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Susan C. Cork
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Karen Liljebjelke
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Sylvia L. Checkley
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Furlan JPR, Ramos MS, Dos Santos LDR, Gallo IFL, Lopes R, Stehling EG. Appearance of mcr-9, bla KPC, cfr and other clinically relevant antimicrobial resistance genes in recreation waters and sands from urban beaches, Brazil. MARINE POLLUTION BULLETIN 2021; 167:112334. [PMID: 33839570 DOI: 10.1016/j.marpolbul.2021.112334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
The co-occurrence of mcr-like and carbapenemase-encoding genes have been reported mainly in humans and animals, whereas, in the environment, studies are gradually increasing due to the One Health approach. In this study, we investigated antimicrobial resistance genes (ARGs) in water and sand samples from marine environments in Brazil. Total DNA from 56 samples (33 sands and 23 waters) was obtained and 27 different ARGs were detected, highlighting the presence of mcr-9, blaKPC and cfr genes. Additionally, the microbiological analysis revealed that sand samples of all analyzed beaches were not recommended for primary use, whereas water samples from most beaches were classified as unsuitable for bathing. The presence of clinically relevant ARGs in urban beaches suggests the presence of antimicrobial-resistant bacteria. Furthermore, to the best of our knowledge, this is the first report of mcr-9 and cfr genes in the environment from Brazil and recreational areas worldwide.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Micaela Santana Ramos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Lucas David Rodrigues Dos Santos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Inara Fernanda Lage Gallo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Ralf Lopes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil.
| |
Collapse
|