1
|
Wu X, Wang F, Xu X, Liang Q, Yang Y, Tang Y, Li J. Exploring the association between pulmonary function and air pollution exposure in healthy children in Jinan, Shandong Province: based on a cross-sectional study. Transl Pediatr 2025; 14:409-421. [PMID: 40225072 PMCID: PMC11983001 DOI: 10.21037/tp-24-438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/27/2025] [Indexed: 04/15/2025] Open
Abstract
Background Previous studies have focused on the effects of air pollution on lung function in children with respiratory diseases, and there is insufficient evidence on healthy children. This cross-sectional study therefore aimed to investigate the relationship between air pollutants and lung function in healthy children. Methods We collected lung function measurements between December 2016 and December 2020 from a total of 780 healthy children aged 7-11 years old in an elementary school in Jinan City. Air pollutant data, including particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5) and ≤10 µm (PM10), sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) and ozone (O3), were collected from the nearest monitoring stations to the school. Multiple linear regression models were developed to assess the relationship between pollutants and children's lung function indices. Results Increasing pollutant concentrations were associated with decreases in forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), peak expiratory flow (PEF), forced expiratory flow at 25% (FEF25) and forced expiratory flow at 75% (FEF75). In addition, this effect had a lag effect and a cumulative lag effect, especially at lag 3 d, with significant decreases in FEV1 and PEF. Specifically, for every 10 µg/m3 increase in the concentrations of PM2.5, PM10, SO2, NO2, and CO, the FEV1 decreased by 1.05 mL [95% confidence interval (CI): -2.02, -0.08], 1.18 mL (95% CI: -1.94, -0.42), 4.96 mL (95% CI: -8.08, -1.84), 4.94 mL (95% CI: -7.59, -2.28), and 0.11 mL (95% CI: -0.20, -0.01), respectively. For every 10 µg/m3 increase in PM10, SO2, NO2, and CO, PEF decreased by 3.80 mL (95% CI: -6.51, -1.08), 16.73 mL (95% CI: -27.83, -5.63), 17 mL (95% CI: -26.44, -7.55), and 0.39 mL (95% CI: -0.72, -0.05), respectively. Boys' lung function was more sensitive to pollutants than girls'. Conclusions Short-term exposure to air pollutants is harmful to children's health and appropriate protective measures should be taken to minimize the adverse effects of air pollution on children's health.
Collapse
Affiliation(s)
- Xinglu Wu
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Fei Wang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Xin Xu
- School of Stomatology, Shandong Second Medical University, Weifang, China
| | - Qian Liang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Yanqing Yang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Yunfeng Tang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Jing Li
- School of Public Health, Shandong Second Medical University, Weifang, China
| |
Collapse
|
2
|
Huang KC, Pan HY, Hsieh TM, Chen CC, Cheng FJ. Association between air pollutants and blood cell counts in pediatric patients with asthma: a retrospective observational study. BMC Public Health 2025; 25:306. [PMID: 39856641 PMCID: PMC11760106 DOI: 10.1186/s12889-025-21517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Asthma is a common respiratory disease in children, and air pollution is a risk factor for pediatric asthma. However, how air pollution affects blood cells in pediatric patients with asthma remains unclear. METHODS This retrospective observational study, performed in 2007-2018 at a medical center, enrolled non-trauma patients aged < 17 years who visited the emergency department and had asthma. Medical records and blood cell counts, including absolute neutrophil count (ANC), eosinophil count, and platelet count were extracted. The concentrations of PM2.5, PM10, sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) were measured from 11 air-monitoring stations in Kaohsiung City. RESULTS One-unit increases in PM2.5 (regression coefficient: 25.618; S.E.: 5.937; p < 0.001), PM10 (19.97; 3.541; p < 0.001), NO2 (70.681; 15.857; p < 0.001), SO2 (81.694; 30.339; p = 0.007), and O3 (23.42; 8.831; p = 0.022) on lag 0-6 (7 d average) correlated positively with ANC. One-unit increases in PM2.5 (0.859; 0.357; p = 0.016), PM10 (0.728; 0.213; p = 0.001), and SO2 (4.086; 1.811; p = 0.024) on lag 0-6 correlated positively with eosinophil count. Additionally, one-unit increases in PM2.5 (0.302; 0.101; p = 0.003) and PM10 (0.229; 0.06; p < 0.001) on lag 0-6 correlated positively with platelet count. In a two-pollutant model, the impacts of PM2.5 and PMC on ANC and platelet count remained statistically significant after adjusting for other air pollutants. Additionally, PMC correlated significantly with eosinophil count after adjusting for PM2.5, NO2, SO2, and O3. Quartile increases in PM2.5 and PMC levels correlated positively with ANC, eosinophil count, and platelet count (all p for trend < 0.05). CONCLUSIONS PM2.5, PMC, and NO2 were independently and positively associated with ANC, PMC was positively associated with eosinophil count, and PM2.5 and PMC were positively associated with platelet count in pediatric patients with asthma. Our results highlight the relationship between air pollution and blood cell counts in pediatric patients with asthma.
Collapse
Affiliation(s)
- Kuo-Chen Huang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Dapi Road, Niaosong Township, Kaohsiung County 833, Kaohsiung City, Taiwan
| | - Hsiu-Yung Pan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Dapi Road, Niaosong Township, Kaohsiung County 833, Kaohsiung City, Taiwan
| | - Ting-Min Hsieh
- Division of Trauma, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Chih-Cheng Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Dapi Road, Niaosong Township, Kaohsiung County 833, Kaohsiung City, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan.
| |
Collapse
|
3
|
Agarwal S, Tomar N, Makwana M, Patra S, Chopade BA, Gupta V. Air pollution, dysbiosis and diseases: pneumonia, asthma, COPD, lung cancer and irritable bowel syndrome. Future Microbiol 2024; 19:1497-1513. [PMID: 39345043 PMCID: PMC11492635 DOI: 10.1080/17460913.2024.2401263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
With substantial effects on human health, air pollution has become a major global concern. Air pollution has been linked to numerous gastrointestinal and respiratory diseases with increasing mortalities. The gut and respiratory dysbiosis brought about by air pollution has recently received much attention. This review attempts to provide an overview of the types of air pollutants, their sources, their impact on the respiratory and gut dysbiotic patterns and their correlation with five major diseases including pneumonia, asthma, COPD, lung cancer and irritable bowel syndrome. Deeper insights into the links between pollutants, dysbiosis and disease may pave the way for novel diagnostic biomarkers for prognosis and early detection of these diseases, as well as ways to ease the disease burden.
Collapse
Affiliation(s)
- Shelja Agarwal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Nandini Tomar
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Meet Makwana
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Sandeep Patra
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Balu A Chopade
- AKS University, Satna, Madhya Pradesh, India
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| |
Collapse
|
4
|
Zhang S, Li X, Zhang L, Zhang Z, Li X, Xing Y, Wenger JC, Long X, Bao Z, Qi X, Han Y, Prévôt ASH, Cao J, Chen Y. Disease types and pathogenic mechanisms induced by PM 2.5 in five human systems: An analysis using omics and human disease databases. ENVIRONMENT INTERNATIONAL 2024; 190:108863. [PMID: 38959566 DOI: 10.1016/j.envint.2024.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Atmospheric fine particulate matter (PM2.5) can harm various systems in the human body. Due to limitations in the current understanding of epidemiology and toxicology, the disease types and pathogenic mechanisms induced by PM2.5 in various human systems remain unclear. In this study, the disease types induced by PM2.5 in the respiratory, circulatory, endocrine, and female and male urogenital systems have been investigated and the pathogenic mechanisms identified at molecular level. The results reveal that PM2.5 is highly likely to induce pulmonary emphysema, reperfusion injury, malignant thyroid neoplasm, ovarian endometriosis, and nephritis in each of the above systems respectively. The most important co-existing gene, cellular component, biological process, molecular function, and pathway in the five systems targeted by PM2.5 are Fos proto-oncogene (FOS), extracellular matrix, urogenital system development, extracellular matrix structural constituent conferring tensile strength, and ferroptosis respectively. Differentially expressed genes that are significantly and uniquely targeted by PM2.5 in each system are BTG2 (respiratory), BIRC5 (circulatory), NFE2L2 (endocrine), TBK1 (female urogenital) and STAT1 (male urogenital). Important disease-related cellular components, biological processes, and molecular functions are specifically induced by PM2.5. For example, response to wounding, blood vessel morphogenesis, body morphogenesis, negative regulation of response to endoplasmic reticulum stress, and response to type I interferon are the top uniquely existing biological processes in each system respectively. PM2.5 mainly acts on key disease-related pathways such as the PD-L1 expression and PD-1 checkpoint pathway in cancer (respiratory), cell cycle (circulatory), apoptosis (endocrine), antigen processing and presentation (female urogenital), and neuroactive ligand-receptor interaction (male urogenital). This study provides a novel analysis strategy for elucidating PM2.5-related disease types and is an important supplement to epidemiological investigation. It clarifies the risks of PM2.5 exposure, elucidates the pathogenic mechanisms, and provides scientific support for promoting the precise prevention and treatment of PM2.5-related diseases.
Collapse
Affiliation(s)
- Shumin Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xiaomeng Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Liru Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Zhengliang Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; School of Public Health, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xuan Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; School of Public Health, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yan Xing
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - John C Wenger
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Xin Long
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhier Bao
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xin Qi
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yan Han
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - André S H Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, Villigen, PSI 5232, Switzerland
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
5
|
Bush A, Byrnes CA, Chan KC, Chang AB, Ferreira JC, Holden KA, Lovinsky-Desir S, Redding G, Singh V, Sinha IP, Zar HJ. Social determinants of respiratory health from birth: still of concern in the 21st century? Eur Respir Rev 2024; 33:230222. [PMID: 38599675 PMCID: PMC11004769 DOI: 10.1183/16000617.0222-2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/20/2024] [Indexed: 04/12/2024] Open
Abstract
Respiratory symptoms are ubiquitous in children and, even though they may be the harbinger of poor long-term outcomes, are often trivialised. Adverse exposures pre-conception, antenatally and in early childhood have lifetime impacts on respiratory health. For the most part, lung function tracks from the pre-school years at least into late middle age, and airflow obstruction is associated not merely with poor respiratory outcomes but also early all-cause morbidity and mortality. Much would be preventable if social determinants of adverse outcomes were to be addressed. This review presents the perspectives of paediatricians from many different contexts, both high and low income, including Europe, the Americas, Australasia, India, Africa and China. It should be noted that there are islands of poverty within even the highest income settings and, conversely, opulent areas in even the most deprived countries. The heaviest burden of any adverse effects falls on those of the lowest socioeconomic status. Themes include passive exposure to tobacco smoke and indoor and outdoor pollution, across the entire developmental course, and lack of access even to simple affordable medications, let alone the new biologicals. Commonly, disease outcomes are worse in resource-poor areas. Both within and between countries there are avoidable gross disparities in outcomes. Climate change is also bearing down hardest on the poorest children. This review highlights the need for vigorous advocacy for children to improve lifelong health. It also highlights that there are ongoing culturally sensitive interventions to address social determinants of disease which are already benefiting children.
Collapse
Affiliation(s)
- Andrew Bush
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London and Royal Brompton Hospital, London, UK
| | - Catherine A Byrnes
- Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Starship Children's Health and Kidz First Hospital, Auckland, New Zealand
| | - Kate C Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anne B Chang
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane and Menzies School of Health Research, Darwin, Australia
| | - Juliana C Ferreira
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Karl A Holden
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Stephanie Lovinsky-Desir
- Department of Pediatrics and Environmental Health Sciences, Columbia University Medical Center, New York, NY, USA
| | - Gregory Redding
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Varinder Singh
- Department of Pediatrics, Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| | - Ian P Sinha
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Lu Y, Jie X, Zou F, Wang D, Da H, Li H, Zhao H, He J, Liu J, Fan X, Liu Y. Investigation analysis of the acute asthma risk factor and phenotype based on relational analysis with outdoor air pollutants in Xi'an, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:75. [PMID: 38367077 DOI: 10.1007/s10653-023-01816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/08/2023] [Indexed: 02/19/2024]
Abstract
Asthma is a common chronic heterogeneous disease. Outdoor air pollutants are an important cause of acute asthma. Until now, the association between the risk of acute asthma and outdoor air pollutants is unclear. And the relationship between the different phenotypes of asthma and outdoor air pollutants has not been reported. Thus, an analysis of the association between outdoor air pollutants and daily acute asthma inpatient and outpatient visits in Xi'an, China, from January 1 to December 31, 2018, was conducted. A total of 3395 people were included in the study. The statistical analysis and relational analysis based on the logistic regression were used for illustrating the relatedness of the acute asthma risk factor and phenotype with outdoor air pollutants, while the age, gender, pollen peak and non-pollen peak periods, high type 2 (T2) asthma and non-high T2 asthma were also stratified. Results showed that particulate matter with particle size below 10 μm and 2.5 μm (PM10 and PM2.5), sulfur dioxide(SO2), nitrogen dioxide(NO2), and carbon monoxide(CO) increase the risk of acute asthma and that air pollutants have a lagged effect on asthma patients. PM10, NO2, CO, and Ozone (O3) are associated with an increased risk of acute attacks of high T2 asthma. PM10, PM2.5, SO2, NO2 and CO are associated with an increased risk of acute asthma in males of 0-16 years old. PM10 and PM2.5 are more harmful to asthma patients with abnormal lung function.
Collapse
Affiliation(s)
- Yiyi Lu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
- Department of Respiratory and Critical Care Medicine, Ganzhou Institute of Respiratory Diseases, Ganzhou Fifth People's Hospital, Ganzhou, 341007, Jiangxi Province, China
| | - Xueyan Jie
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Fan Zou
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Dan Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Hongju Da
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Hongxin Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Hongyan Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Jin He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Jianghao Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Xinping Fan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| |
Collapse
|
7
|
Nguyen TTN, Vu TD, Vuong NL, Pham TVL, Le TH, Tran MD, Nguyen TL, Künzli N, Morgan G. Effect of ambient air pollution on hospital admission for respiratory diseases in Hanoi children during 2007-2019. ENVIRONMENTAL RESEARCH 2024; 241:117633. [PMID: 37980997 DOI: 10.1016/j.envres.2023.117633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Air pollution poses a threat to children's respiratory health. This study aims to quantify the association between short-term air pollution exposure and respiratory hospital admissions among children in Hanoi, Vietnam, and estimate the population-attributable burden using local data. A case-crossover analysis was conducted based on the individual records where each case is their own control. The health data was obtained from 13 hospitals in Hanoi and air pollution data was collected from four monitoring stations from 2007 to 2019. We used conditional logistic regression to estimate Percentage Change (PC) and 95% Confidence Interval (CI) in odd of hospital admissions per 10 μg/m3 increase in daily average particulate matter (e.g. PM1, PM2.5, PM10), Sulfur Dioxide (SO2), Nitrogen Dioxide (NO2), 8-h maximum Ozone and per 1000 μg/m3 increase in daily mean of Carbon Monoxide (CO). We also calculated the number and fraction of admissions attributed to air pollution in Hanoi by using the coefficient at lag 0. A 10 μg/m3 increase in the concentration of PM10, PM2.5, PM1, SO2, NO2, O3 8-h maximum and 1000 μg/m3 increase in CO concentration was associated with 0.6%, 1.2%, 1.4%, 0.8%, 1.6%, 0.3%, and 1.7% increase in odd of admission for all respiratory diseases among children under 16 years at lag 0-2. All PM metrics and NO2 are associated with childhood admission for pneumonia and bronchitis. Admissions due to asthma and upper respiratory diseases are related to increments in NO2 and CO. For attributable cases, PM2.5 concentrations in Hanoi exceeding the World Health Organization Air Quality Guidelines accounted for 1619 respiratory hospital admissions in Hanoi children in 2019. Our findings show that air pollution has a detrimental impact on the respiratory health of Hanoi children and there will be important health benefits from improved air quality management planning to reduce air pollution in Vietnam.
Collapse
Affiliation(s)
- Thi Trang Nhung Nguyen
- Hanoi University of Public Health, Hanoi, Viet Nam; Vietnam National Children's Hospital, Hanoi, Viet Nam.
| | - Tri Duc Vu
- Hanoi University of Public Health, Hanoi, Viet Nam; Vietnam National Children's Hospital, Hanoi, Viet Nam
| | - Nhu Luan Vuong
- Northern Center for Environmental Monitoring, Hanoi, Viet Nam
| | | | - Tu Hoang Le
- Hanoi University of Public Health, Hanoi, Viet Nam
| | | | | | - Nino Künzli
- Swiss Tropical and Public Health, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Geoffrey Morgan
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Centre for Safe Air, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
8
|
Lou C, Chen Z, Bai Y, Chai T, Guan Y, Wu B. Exploring the Microbial Community Structure in the Chicken House Environment by Metagenomic Analysis. Animals (Basel) 2023; 14:55. [PMID: 38200786 PMCID: PMC10778276 DOI: 10.3390/ani14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The environmental conditions of chicken houses play an important role in the growth and development of these animals. The chicken house is an essential place for the formation of microbial aerosols. Microbial aerosol pollution and transmission can affect human and animal health. In this work, we continuously monitored fine particulate matter (PM2.5) in the chicken house environment for four weeks and studied the microbial community structure in the aerosols of the chicken house environment through metagenomic sequencing. Our results found that bacteria, fungi, viruses, and archaea were the main components of PM2.5 in the chicken house environment, accounting for 89.80%, 1.08%, 2.06%, and 0.49%, respectively. Conditional pathogens are a type of bacteria that poses significant harm to animals themselves and to farm workers. We screened ten common conditional pathogens and found that Staphylococcus had the highest relative abundance, while Clostridium contained the most microbial species, up to 456. Basidiomycetes and Ascomycota in fungi showed dramatic changes in relative abundance, and other indexes showed no significant difference. Virulence factors (VF) are also a class of molecules produced by pathogenic microbes that can cause host diseases. The top five virulence factors were found in four groups: FbpABC, HitABC, colibactin, acinetobactin, and capsule, many of which are used for the iron uptake system. In the PM2.5 samples, eight avian viruses were the most significant discoveries, namely Fowl aviadovirus E, Fowl aviadovirus D, Avian leukosis virus, Avian endogenous retrovirus EAV-HP, Avian dependent parvovirus 1, Fowl adenovus, Fowl aviadovirus B, and Avian sarcoma virus. The above results significantly improve our understanding of the microbial composition of PM2.5 in chicken houses, filling a gap on virus composition; they also indicate a potential threat to poultry and to human health. This work provides an important theoretical basis for animal house environmental monitoring and protection.
Collapse
Affiliation(s)
- Cheng Lou
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.L.); (Z.C.); (Y.B.); (Y.G.)
| | - Zhuo Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.L.); (Z.C.); (Y.B.); (Y.G.)
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.L.); (Z.C.); (Y.B.); (Y.G.)
| | - Tongjie Chai
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271000, China;
| | - Yuling Guan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.L.); (Z.C.); (Y.B.); (Y.G.)
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.L.); (Z.C.); (Y.B.); (Y.G.)
| |
Collapse
|
9
|
Zhang W, Ling J, Zhang R, Dong J, Zhang L, Chen R, Ruan Y. Short-term effects of air pollution on hospitalization for acute lower respiratory infections in children: a time-series analysis study from Lanzhou, China. BMC Public Health 2023; 23:1629. [PMID: 37626307 PMCID: PMC10463321 DOI: 10.1186/s12889-023-16533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Short-term exposure to air pollution is associated with acute lower respiratory infections (ALRI) in children. We investigated the relationship between hospitalization for ALRI in children and air pollutant concentrations from January 1, 2014 to December 31, 2020 in Lanzhou City. METHODS We collected data on air pollutant concentrations and children's hospitalization data during the study period. A time series regression analysis was used to assess the short-term effects of air pollutants on ALRI in children, and subgroup analyses and sensitivity analyses were performed. RESULTS A total of 51,206 children with ALRI were studied, including 40,126 cases of pneumonia and 11,080 cases of bronchiolitis. The results of the study revealed that PM2.5, PM10, SO2 and NO2 were significantly associated with hospitalization for ALRI in children aged 0-14 years. For each 10 µg/m3 increase in air pollutant concentration in lag0-7, the relative risk of ALRI hospitalization in children due to PM2.5, PM10, SO2 and NO2 increased by 1.089 (95%CI:1.075, 1.103), 1.018 (95%CI:1.014, 1.021), 1.186 (95%CI:1.154. 1.219) and 1.149 (95%CI:1.130, 1.168), respectively. CONCLUSIONS PM2.5, PM10, SO2 and NO2 short-term exposures were positively associated with ALRI, pneumonia and bronchiolitis hospitalizations in Lanzhou, China. Local governments should make efforts to improve urban ambient air quality conditions to reduce hospitalization rates for childhood respiratory diseases.
Collapse
Affiliation(s)
- Wancheng Zhang
- School of Public Health, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jianglong Ling
- School of Public Health, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Runping Zhang
- School of Public Health, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jiyuan Dong
- School of Public Health, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Li Zhang
- School of Public Health, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Rentong Chen
- School of Public Health, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Ye Ruan
- School of Public Health, Lanzhou University, Lanzhou, 730000, P. R. China.
| |
Collapse
|