1
|
Yi Q, Xiong L. From sensory organs to internal pathways: A comprehensive review of amino acid sensing in Drosophila. Comp Biochem Physiol A Mol Integr Physiol 2025; 303:111828. [PMID: 39983896 DOI: 10.1016/j.cbpa.2025.111828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Organisms require various nutrients to provide energy, support growth, and maintain metabolic balance. Amino acid is among the most basic nutrients, serving as fundamental building blocks for protein synthesis while playing vital roles in growth, development, and reproduction. Understanding the mechanisms by which organisms perceive amino acids is key to unraveling how they select appropriate food sources and adapt to environmental challenges. The fruit fly, Drosophila melanogaster, serves as a powerful model for understanding fundamental genetic and physiological processes. This review focuses on recent advances in amino acid sensing mechanisms in Drosophila melanogaster and their relevance to feeding behavior, nutrient homeostasis, and adaptive responses, and integrates insights into peripheral sensory systems, such as the legs and proboscis, as well as internal regulatory mechanisms within the gut, fat body, and brain. It highlights key molecular players, including ionotropic receptors, gut-derived hormones, neuropeptides, and the microbiome-gut-brain axis. Additionally, the manuscript identifies knowledge gaps and proposes directions for future research, providing a comprehensive overview of this dynamic field.
Collapse
Affiliation(s)
- Quan Yi
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liangyao Xiong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Vachias C, Tourlonias C, Grelée L, Gueguen N, Renaud Y, Venugopal P, Richard G, Pouchin P, Brasset E, Mirouse V. Gap junctions allow transfer of metabolites between germ cells and somatic cells to promote germ cell growth in the Drosophila ovary. PLoS Biol 2025; 23:e3003045. [PMID: 39965028 PMCID: PMC11864552 DOI: 10.1371/journal.pbio.3003045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/26/2025] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
Gap junctions allow the exchange of small molecules between cells. How this function could be used to promote cell growth is not yet fully understood. During Drosophila ovarian follicle development, germ cells, which are surrounded by epithelial somatic cells, undergo massive growth. We found that this growth depends on gap junctions between these cell populations, with a requirement for Innexin4 and Innexin2, in the germ cells and the somatic cells, respectively. Translatomic analyses revealed that somatic cells express enzymes and transporters involved in amino acid metabolism that are absent in germ cells. Among them, we identified a putative amino acid transporter required for germline growth. Its ectopic expression in the germline can partially compensate for its absence or the one of Innexin2 in somatic cells. Moreover, affecting either gap junctions or the import of some amino acids in somatic cells induces P-bodies in the germ cells, a feature usually associated with an arrest of translation. Finally, in somatic cells, innexin2 expression and gap junction assembly are regulated by the insulin receptor/PI3K kinase pathway, linking the growth of the two tissues. Overall, these results support the view that metabolic transfer through gap junction promotes cell growth and illustrate how such a mechanism can be integrated into a developmental program, coupling growth control by extrinsic systemic signals with the intrinsic coordination between cell populations.
Collapse
Affiliation(s)
- Caroline Vachias
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Camille Tourlonias
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Louis Grelée
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Nathalie Gueguen
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Parvathy Venugopal
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Graziella Richard
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Pierre Pouchin
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Emilie Brasset
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Vincent Mirouse
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
3
|
Obata F, Miura M. Regulatory Mechanisms of Aging Through the Nutritional and Metabolic Control of Amino Acid Signaling in Model Organisms. Annu Rev Genet 2024; 58:19-41. [PMID: 38857535 DOI: 10.1146/annurev-genet-111523-102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Life activities are supported by the intricate metabolic network that is fueled by nutrients. Nutritional and genetic studies in model organisms have determined that dietary restriction and certain mutations in the insulin signaling pathway lead to lifespan extension. Subsequently, the detailed mechanisms of aging as well as various nutrient signaling pathways and their relationships have been investigated in a wide range of organisms, from yeast to mammals. This review summarizes the roles of nutritional and metabolic signaling in aging and lifespan with a focus on amino acids, the building blocks of organisms. We discuss how lifespan is affected by the sensing, transduction, and metabolism of specific amino acids and consider the influences of life stage, sex, and genetic background on the nutritional control of aging. Our goal is to enhance our understanding of how nutrients affect aging and thus contribute to the biology of aging and lifespan.
Collapse
Affiliation(s)
- Fumiaki Obata
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan;
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan;
| |
Collapse
|
4
|
Fu W, Liu G, Kim SH, Kim B, Kim OS, Ma G, Yang Y, Liu D, Zhu S, Kang JS, Kim O. Effects of 625 nm light-emitting diode irradiation on preventing ER stress-induced apoptosis via GSK-3β phosphorylation in MC3T3-E1. Photochem Photobiol 2024; 100:1408-1418. [PMID: 38214077 DOI: 10.1111/php.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
Prolonged endoplasmic reticulum (ER) stress contributes to cell apoptosis and interferes with bone homeostasis. Although photobiomodulation (PBM) might be used for ER stress-induced diseases, the role of PBM in relieving cell apoptosis remains unknown. During ER stress, glycogen synthase kinase-3β (GSK-3β) is critical; however, its functions in PBM remain uncertain. Thus, this study aimed to investigate the role of GSK-3β in 625 nm light-emitting diode irradiation (LEDI) relieving tunicamycin (TM)-induced apoptosis. Based on the results, pre-625 nm LEDI (Pre-IR) phosphorylated GSK-3β via ROS production. Compared with the TM group, Pre-IR + TM group reduced the phosphorylation of the α-subunit of eukaryotic translation initiation factor 2 (eIF-2α) and B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax)/Bcl-2 ratio through regulating GSK-3β. Furthermore, a similar tendency was observed between Pre-IR + TM and Pre-LiCl+TM groups in preventing TM-induced early and late apoptosis. In summary, this study suggests that the Pre-IR treatment in TM-induced ER stress is beneficial for preventing cell apoptosis via GSK-3β phosphorylation.
Collapse
Affiliation(s)
- Wenqi Fu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Guo Liu
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - Sun-Hun Kim
- Department of Oral Anatomy, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - Byunggook Kim
- Department of Oral Medicine, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Ok-Su Kim
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Guowu Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian, China
| | - Ying Yang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
- Dental Implant Center, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Danyang Liu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Siyu Zhu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jae-Seok Kang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Okjoon Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
5
|
Kosakamoto H, Sakuma C, Okada R, Miura M, Obata F. Context-dependent impact of the dietary non-essential amino acid tyrosine on Drosophila physiology and longevity. SCIENCE ADVANCES 2024; 10:eadn7167. [PMID: 39213345 PMCID: PMC11364096 DOI: 10.1126/sciadv.adn7167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Dietary protein intake modulates growth, reproduction, and longevity by stimulating amino acid (AA)-sensing pathways. Essential AAs are often considered as limiting nutrients during protein scarcity, and the role of dietary non-essential AAs (NEAAs) is less explored. Although tyrosine has been reported to be crucial for sensing protein restriction in Drosophila larvae, its effect on adult physiology and longevity remains unclear. Here, using a synthetic diet, we perform a systematic investigation of the effect of single NEAA deprivation on nutrient-sensing pathways, reproductive ability, starvation resistance, feeding behavior, and life span in adult female flies. Specifically, dietary tyrosine deprivation decreases internal tyrosine levels and fecundity, influences AA-sensing machineries, and extends life span. These nutritional responses are not observed under higher total AA intake or in infertile female flies, suggesting a context-dependent influence of dietary tyrosine. Our findings highlight the unique role of tyrosine as a potentially limiting nutrient, underscoring its value for dietary interventions aimed at enhancing health span.
Collapse
Affiliation(s)
- Hina Kosakamoto
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Chisako Sakuma
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Rina Okada
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fumiaki Obata
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Fulton TL, Johnstone JN, Tan JJ, Balagopal K, Dedman A, Chan AY, Johnson TK, Mirth CK, Piper MDW. Transiently restricting individual amino acids protects Drosophila melanogaster against multiple stressors. Open Biol 2024; 14:240093. [PMID: 39106944 PMCID: PMC11303031 DOI: 10.1098/rsob.240093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 08/09/2024] Open
Abstract
Nutrition and resilience are linked, though it is not yet clear how diet confers stress resistance or the breadth of stressors that it can protect against. We have previously shown that transiently restricting an essential amino acid can protect Drosophila melanogaster against nicotine poisoning. Here, we sought to characterize the nature of this dietary-mediated protection and determine whether it was sex, amino acid and/or nicotine specific. When we compared between sexes, we found that isoleucine deprivation increases female, but not male, nicotine resistance. Surprisingly, we found that this protection afforded to females was not replicated by dietary protein restriction and was instead specific to individual amino acid restriction. To understand whether these beneficial effects of diet were specific to nicotine or were generalizable across stressors, we pre-treated flies with amino acid restriction diets and exposed them to other types of stress. We found that some of the diets that protected against nicotine also protected against oxidative and starvation stress, and improved survival following cold shock. Interestingly, we found that a diet lacking isoleucine was the only diet to protect against all these stressors. These data point to isoleucine as a critical determinant of robustness in the face of environmental challenges.
Collapse
Affiliation(s)
- Tahlia L. Fulton
- School of Biological Sciences, Monash University, Clayton, Victoria3800, Australia
| | - Joshua N. Johnstone
- School of Biological Sciences, Monash University, Clayton, Victoria3800, Australia
| | - Jing J. Tan
- School of Biological Sciences, Monash University, Clayton, Victoria3800, Australia
| | - Krithika Balagopal
- School of Biological Sciences, Monash University, Clayton, Victoria3800, Australia
| | - Amy Dedman
- School of Biological Sciences, Monash University, Clayton, Victoria3800, Australia
| | - Andrea Y. Chan
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria3800, Australia
| | - Travis K. Johnson
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria3086, Australia
| | - Christen K. Mirth
- School of Biological Sciences, Monash University, Clayton, Victoria3800, Australia
| | - Matthew D. W. Piper
- School of Biological Sciences, Monash University, Clayton, Victoria3800, Australia
| |
Collapse
|
7
|
Zhang W, Ye Y, Sun Y, Li Y, Ge M, Chen K, Yang L, Chen G, Zhou J. Protein Restriction Effects on Healthspan and Lifespan in Drosophila melanogaster Are Additive With a Longevity-Promoting Diet. J Gerontol A Biol Sci Med Sci 2023; 78:2251-2259. [PMID: 37738989 PMCID: PMC10692430 DOI: 10.1093/gerona/glad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 09/24/2023] Open
Abstract
Aging of the organism is associated diminished response to external stimuli including weakened immune function, resulting in diseases that impair health and lifespan. Several dietary restriction modalities have been reported to improve health and lifespan in different animal models, but it is unknown whether any of the lifespan-extending dietary treatments could be combined to achieve an additive effect. Here, we investigated the effects of halving amino acids components in the HUNTaa diet, a synthetic medium known to extend lifespan in Drosophila. We found that dietary restriction by halving the entire amino acid components (DR group) could further extend lifespan and improve resistance to oxidative stress, desiccation stress, and starvation than flies on HUNTaa diet alone (wt group). Transcriptome analysis of Drosophila at 40, 60, and 80 days of age revealed that genes related to cell proliferation and metabolism decreased with age in the wt group, whereas background stimulus response and amino acid metabolism increased with age. However, these trends differed in the DR group, that is, the DR flies had downregulated stress response genes, including reduced background immune activation. Infection experiments demonstrated that these flies survived longer after feeding infection with Serratia marcescens and Enterococcus faecalis, suggesting that these flies had stronger immune function, and therefore reduced immune senescence. These results demonstrated that halving the entire amino acid components in the HUNTaa diet further extended health and lifespan and suggested that lifespan-extending diet and dietary restriction treatment could be combined to achieve additive beneficial results.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yunshuang Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Yinan Sun
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yongxuan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mingxia Ge
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Kangning Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Liping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Guijun Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Jumin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Kunming, Yunnan, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, China
| |
Collapse
|
8
|
Johnstone JN, Mirth CK, Johnson TK, Schittenhelm RB, Piper MDW. GCN2 mediates access to stored amino acids for somatic maintenance during Drosophila ageing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566972. [PMID: 38014136 PMCID: PMC10680771 DOI: 10.1101/2023.11.14.566972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Many mechanistic theories of ageing argue that a progressive failure of somatic maintenance, the use of energy and resources to prevent and repair damage to the cell, underpins ageing. To sustain somatic maintenance an organism must acquire dozens of essential nutrients from the diet, including essential amino acids (EAAs), which are physiologically limiting for many animals. In Drosophila , adulthood deprivation of each individual EAA yields vastly different lifespan trajectories, and adulthood deprivation of one EAA, phenylalanine (Phe), has no associated lifespan cost; this is despite each EAA being strictly required for growth and reproduction. Moreover, survival under any EAA deprivation depends entirely on the conserved AA sensor GCN2, a component of the integrated stress response (ISR), suggesting that a novel ISR-mediated mechanism sustains lifelong somatic maintenance during EAA deprivation. Here we investigated this mechanism, finding that flies chronically deprived of dietary Phe continue to incorporate Phe into new proteins, and that challenging flies to increase the somatic requirement for Phe shortens lifespan under Phe deprivation. Further, we show that autophagy is required for full lifespan under Phe deprivation, and that activation of the ISR can partially rescue the shortened lifespan of GCN2 -nulls under Phe deprivation. We therefore propose a mechanism by which GCN2, via the ISR, activates autophagy during EAA deprivation, breaking down a larvally-acquired store of EAAs to support somatic maintenance. These data refine our understanding of the strategies by which flies sustain lifelong somatic maintenance, which determines length of life in response to changes in the nutritional environment.
Collapse
|
9
|
Bresgen N, Kovacs M, Lahnsteiner A, Felder TK, Rinnerthaler M. The Janus-Faced Role of Lipid Droplets in Aging: Insights from the Cellular Perspective. Biomolecules 2023; 13:912. [PMID: 37371492 PMCID: PMC10301655 DOI: 10.3390/biom13060912] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
It is widely accepted that nine hallmarks-including mitochondrial dysfunction, epigenetic alterations, and loss of proteostasis-exist that describe the cellular aging process. Adding to this, a well-described cell organelle in the metabolic context, namely, lipid droplets, also accumulates with increasing age, which can be regarded as a further aging-associated process. Independently of their essential role as fat stores, lipid droplets are also able to control cell integrity by mitigating lipotoxic and proteotoxic insults. As we will show in this review, numerous longevity interventions (such as mTOR inhibition) also lead to strong accumulation of lipid droplets in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mammalian cells, just to name a few examples. In mammals, due to the variety of different cell types and tissues, the role of lipid droplets during the aging process is much more complex. Using selected diseases associated with aging, such as Alzheimer's disease, Parkinson's disease, type II diabetes, and cardiovascular disease, we show that lipid droplets are "Janus"-faced. In an early phase of the disease, lipid droplets mitigate the toxicity of lipid peroxidation and protein aggregates, but in a later phase of the disease, a strong accumulation of lipid droplets can cause problems for cells and tissues.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Melanie Kovacs
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Angelika Lahnsteiner
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Thomas Klaus Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| |
Collapse
|
10
|
Zhao C, Guo H, Hou Y, Lei T, Wei D, Zhao Y. Multiple Roles of the Stress Sensor GCN2 in Immune Cells. Int J Mol Sci 2023; 24:ijms24054285. [PMID: 36901714 PMCID: PMC10002013 DOI: 10.3390/ijms24054285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The serine/threonine-protein kinase general control nonderepressible 2 (GCN2) is a well-known stress sensor that responds to amino acid starvation and other stresses, making it critical to the maintenance of cellular and organismal homeostasis. More than 20 years of research has revealed the molecular structure/complex, inducers/regulators, intracellular signaling pathways and bio-functions of GCN2 in various biological processes, across an organism's lifespan, and in many diseases. Accumulated studies have demonstrated that the GCN2 kinase is also closely involved in the immune system and in various immune-related diseases, such as GCN2 acts as an important regulatory molecule to control macrophage functional polarization and CD4+ T cell subset differentiation. Herein, we comprehensively summarize the biological functions of GCN2 and discuss its roles in the immune system, including innate and adaptive immune cells. We also discuss the antagonism of GCN2 and mTOR pathways in immune cells. A better understanding of GCN2's functions and signaling pathways in the immune system under physiological, stressful, and pathological situations will be beneficial to the development of potential therapies for many immune-relevant diseases.
Collapse
Affiliation(s)
- Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangxiao Hou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Lei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302
| |
Collapse
|
11
|
Role of Essential Amino Acids in Age-Induced Bone Loss. Int J Mol Sci 2022; 23:ijms231911281. [PMID: 36232583 PMCID: PMC9569615 DOI: 10.3390/ijms231911281] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Age-induced osteoporosis is a global problem. Essential amino acids (EAAs) work as an energy source and a molecular pathway modulator in bone, but their functions have not been systematically reviewed in aging bone. This study aimed to discuss the contribution of EAAs on aging bone from in vitro, in vivo, and human investigations. In aged people with osteoporosis, serum EAAs were detected changing up and down, without a well-established conclusion. The supply of EAAs in aged people either rescued or did not affect bone mineral density (BMD) and bone volume. In most signaling studies, EAAs were proven to increase bone mass. Lysine, threonine, methionine, tryptophan, and isoleucine can increase osteoblast proliferation, activation, and differentiation, and decrease osteoclast activity. Oxidized L-tryptophan promotes bone marrow stem cells (BMSCs) differentiating into osteoblasts. However, the oxidation product of tryptophan called kynurenine increases osteoclast activity, and enhances the differentiation of adipocytes from BMSCs. Taken together, in terms of bone minerals and volume, more views consider EAAs to have a positive effect on aging bone, but the function of EAAs in bone metabolism has not been fully demonstrated and more studies are needed in this area in the future.
Collapse
|