1
|
Antequera D, Sande L, Mato EG, Romualdi D, Carrero L, Municio C, Diz P, Carro E. Salivary lactoferrin levels in Down Syndrome: a case-control study. Brain Behav Immun Health 2025; 46:100999. [PMID: 40343107 PMCID: PMC12060471 DOI: 10.1016/j.bbih.2025.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/14/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025] Open
Abstract
Individuals with Down Syndrome (DS) have a high age-dependent risk of developing Alzheimer's disease (AD). In addition to genetic causes, this high risk involves dysregulated immune-inflammatory system. Low lactoferrin levels, one of the main antimicrobial proteins present in saliva, has been associated with AD. Here, we evaluated whether salivary lactoferrin levels change across the life span of individuals with DS. The study included 152 participants, 72 subjects with DS and 80 euploid individuals, and were divided into those under and over 45 years of age, accordingly with the age-dependent risk of AD. Median of salivary lactoferrin were higher among DS individual, in parallel to salivary total protein, but there were no differences in the ratio of lactoferrin to total protein in saliva between groups. Only DS individuals had higher median salivary lactoferrin levels in the age group under 45 years. Meanwhile non-significant differences were detected for the ratio salivary lactoferrin levels to total salivary protein between groups under 45 years, those levels were lower in DS subjects over 45 years old compared with the age-matched control group. Furthermore, the ratio of salivary lactoferrin levels to total protein in DS was associated with cognitive decline being lower in demented groups compared with mild and moderate cognitive impairment groups. In summary, this study indicates that salivary lactoferrin was dysregulated in DS, with significant lower ratio of salivary lactoferrin levels to total salivary proteins in individuals with DS over 45 years old, a population with a gradually increasing risk of AD.
Collapse
Affiliation(s)
- Desireé Antequera
- Neurobiology of Alzheimer's Disease Unit, Functional Unit for Research Into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Spain
| | - Lucía Sande
- Grupo de Investigación en Odontología Médico-Quirúrgica (OMEQUI), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Eliane García Mato
- Grupo de Investigación en Odontología Médico-Quirúrgica (OMEQUI), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Deborah Romualdi
- Neurobiology of Alzheimer's Disease Unit, Functional Unit for Research Into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Spain
- Programa de Doctorado en Ciencias Biomédicas y Salud Pública, IMIENS, Universidad Nacional de Educación a Distancia (UNED), Spain
| | - Laura Carrero
- Neurobiology of Alzheimer's Disease Unit, Functional Unit for Research Into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Spain
| | - Cristina Municio
- Neurobiology of Alzheimer's Disease Unit, Functional Unit for Research Into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Spain
| | - Pedro Diz
- Grupo de Investigación en Odontología Médico-Quirúrgica (OMEQUI), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Eva Carro
- Neurobiology of Alzheimer's Disease Unit, Functional Unit for Research Into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Spain
| |
Collapse
|
2
|
Obeagu EI, Obeagu GU. Exploring the intricate relationship between peptic ulcers and immunohematological responses: A narrative review. Medicine (Baltimore) 2025; 104:e42187. [PMID: 40228282 PMCID: PMC11999392 DOI: 10.1097/md.0000000000042187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
Peptic ulcers have long been a focus of medical research due to their significant impact on public health worldwide. Traditionally attributed to factors such as Helicobacter pylori infection and excessive gastric acid secretion, recent scientific endeavors have increasingly unveiled the pivotal role of immunohematological responses in the pathogenesis and clinical course of peptic ulcers. This review aims to synthesize and analyze the intricate relationship between peptic ulcers and immunohematological responses, shedding light on the complex interplay between the immune system and ulcer development, progression, and healing. Immunological factors, encompassing inflammatory mediators, immune cells, and the host response to H pylori, play a substantial role in the multifaceted landscape of peptic ulcers. Inflammation orchestrated by cytokines and chemokines derived from immune cells intricately contributes to mucosal damage and repair processes. Moreover, the chronic nature of H pylori infection triggers a cascade of immune responses, involving both innate and adaptive immunity, which significantly influences the course of ulceration. This paper consolidates current knowledge while highlighting the need for further research elucidating the intricate immunological pathways involved in peptic ulcer pathogenesis. The integration of immunology into the broader context of peptic ulcer disease presents opportunities for innovative therapeutic interventions aimed at modulating immune responses for improved clinical outcomes and enhanced patient care. Ultimately, unraveling the intricate relationship between peptic ulcers and immunohematological responses holds significant promise in advancing the understanding and management of this prevalent gastrointestinal disorder.
Collapse
|
3
|
Liu W, Song Y, Wang R, Wan Z, Li R, Wang X. Card9 deficiency exacerbates vulvovaginal candidiasis by impairing the IL-17 production and vaginal epithelial barrier. Med Mycol 2025; 63:myaf026. [PMID: 40118504 DOI: 10.1093/mmy/myaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/01/2025] [Accepted: 03/20/2025] [Indexed: 03/23/2025] Open
Abstract
Vulvovaginal candidiasis (VVC) is an inflammation caused by Candida albicans with a higher recurrence rate in individuals deficient in Card9. This study aimed to elucidate the mechanisms underlying this increased susceptibility. Estrogen-treated Card9-/- mice infected with C. albicans were used to model Card9 deficiency-related VVC. Our findings indicate that Card9 deficiency leads to a reduction in Th17 cells, interleukin (IL)-17-producing γδ T cells, and IL-17A secretion, weakens epithelial tight junctions, and reduces antimicrobial peptide secretion, leading to persistent fungal invasion. This persistent invasion results in excessive neutrophil recruitment and activation of NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) and absent in melanoma 2 inflammasomes (AIM2), causing mucosal damage. In conclusion, Card9 deficiency compromises the vaginal epithelial barrier, prolongs C. albicans infection, and increases inflammation, highlighting the critical role of Card9 in maintaining immune function of vaginal mucosa.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China
- Research Center for Medical Mycology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China
- Research Center for Medical Mycology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Ruojun Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China
- Research Center for Medical Mycology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Zhe Wan
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China
- Research Center for Medical Mycology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China
- Research Center for Medical Mycology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Xiaowen Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China
- Research Center for Medical Mycology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| |
Collapse
|
4
|
Hickman HD, Moutsopoulos NM. Viral infection and antiviral immunity in the oral cavity. Nat Rev Immunol 2025; 25:235-249. [PMID: 39533045 DOI: 10.1038/s41577-024-01100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Individual tissues have distinct antiviral properties garnered through various mechanisms, including physical characteristics, tissue-resident immune cells and commensal organisms. Although the oral mucosa has long been appreciated as a critical barrier tissue that is exposed to a continuous barrage of pathogens, many fundamental aspects of the antiviral immune response in this tissue remain unknown. Several viral pathogens, such as herpesviruses and human papillomaviruses, have been acknowledged both historically and at present for infections in the oral cavity that result in substantial clinical burden. However, recent viral outbreaks, including those with SARS-CoV-2 and mpox, featured oral symptoms even though these viruses are not generally considered oral pathogens. Ensuing studies have shown that the oral cavity is an important locale for viral infection and potential transmission of newly emergent or re-emergent pathogens, highlighting the need for an increased understanding of the mechanisms of antiviral immunity at this site. In this Review, we provide a broad overview of antiviral immune responses in the oral cavity and discuss common viral infections and their manifestations in the oral mucosa. In addition, we present current mouse models for the study of oral viral infections.
Collapse
Affiliation(s)
- Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Yun S, Kang SH, Ryu J, Kim K, Lee KY, Lee JJ, Hong JY, Son GH. The Role of Beta-Defensin 2 in Preventing Preterm Birth with Chorioamnionitis: Insights into Inflammatory Responses and Epithelial Barrier Protection. Int J Mol Sci 2025; 26:2127. [PMID: 40076749 PMCID: PMC11900102 DOI: 10.3390/ijms26052127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Antimicrobial peptides, such as beta-defensin 2 (BD2), are vital in controlling infections and immune responses. In this study, we investigated the expression and role of BD2 in the amniotic membrane and human amniotic epithelial cells (hAECs) from patients with preterm birth and chorioamnionitis, focusing on its regulation of inflammatory cytokines and its protective effect on the epithelial barrier. Our results show increased BD2 expression in chorioamnionitis, and Lipopolysaccharide (LPS)-induced inflammation increased BD2 release from hAECs in a dose- and time-dependent manner. BD2 treatment effectively modulated the inflammatory response by reducing pro-inflammatory cytokines (IL-6, IL-1β) and enhancing the release of the anti-inflammatory cytokine IL-10. Additionally, BD2 helps preserve epithelial barrier integrity by restoring E-cadherin expression and reducing Snail expression in inflamed hAECs. In an LPS-induced preterm birth mouse model, BD2 treatment delayed preterm delivery and reduced inflammatory cytokine levels. These results suggest that BD2 plays a protective role in preventing preterm birth by regulating inflammation and maintaining epithelial barrier function, highlighting its therapeutic potential for inflammation-related preterm birth.
Collapse
Affiliation(s)
- Sangho Yun
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.); (S.-H.K.); (J.J.L.)
| | - Shin-Hae Kang
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.); (S.-H.K.); (J.J.L.)
| | - Jiwon Ryu
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (J.R.); (K.K.); (K.-Y.L.)
| | - Kyoungseon Kim
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (J.R.); (K.K.); (K.-Y.L.)
| | - Keun-Young Lee
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (J.R.); (K.K.); (K.-Y.L.)
| | - Jae Jun Lee
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.); (S.-H.K.); (J.J.L.)
- Departments of Anesthesiology and Pain Medicine, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Ji Young Hong
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.); (S.-H.K.); (J.J.L.)
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Sacred Heart Hospital, Hallym University Medical Center, Chuncheon 24253, Republic of Korea
| | - Ga-Hyun Son
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.); (S.-H.K.); (J.J.L.)
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (J.R.); (K.K.); (K.-Y.L.)
| |
Collapse
|
6
|
Scavuzzi BM, Shanmugam S, Yang M, Yao J, Hager H, Kaur B, Jia L, Abcouwer SF, Zacks DN. Remote Preconditioning Provides Protection Against Retinal Cell Death From Retinal Detachment. Invest Ophthalmol Vis Sci 2025; 66:34. [PMID: 39937497 PMCID: PMC11827864 DOI: 10.1167/iovs.66.2.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Purpose Remote preconditioning involves injury to a tissue that results in protection to a subsequent injury in a distal tissue. Here, we investigated the impact of remote preconditioning on retinal detachment (RD) injury, hypothesizing that a previous contralateral RD would protect the fellow retina against inflammation and cell death following its detachment. Methods RD was created in adult C57BL/6J mice with subretinal sodium hyaluronate injection. Preconditioning involved RD in the right eye at 1, 3, 7, or 28 days before left eye detachment, whereas the control group only received RD to the left eye. Retinas were harvested 24 hours post-left eye detachment in both groups. Cell death was assessed using Cell Death Detection ELISA and mRNA expression was evaluated via qRT-PCR. Results Contralateral RD promoted a transient protection against retinal cell death from 1 to 3 days and waned by 7 days compared with control RD retinas with intact fellow retinas. Contralateral RD significantly protected against post-RD cell death (P = 0.0002) and caspase 3 cleavage (P = 0.0449), compared with control RD retinas with intact fellow retinas 1-day post-RD. Detached fellow retinas from the preconditioning group expressed significantly less Tnfa (P = 0.0066), Cxcl10 (P = 0.0099), and Fas (P = 0.0223) mRNAs, compared with the detached retinas of the control group. In contrast, upregulation of type-I-IFN pathway genes, including Irf7 (P = 0.0106) and Ifit1 (P = 0.0740), following RD was higher in the preconditioning group. Conclusions RD in one eye produces a transient remote preconditioning effect that protects the fellow retina against retinal cell death following subsequent RD.
Collapse
Affiliation(s)
- Bruna Miglioranza Scavuzzi
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Mengling Yang
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Jingyu Yao
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Bhavneet Kaur
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Lin Jia
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Steven F. Abcouwer
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - David N. Zacks
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
7
|
Fujii D, Nango H, Ohtani M. Aged garlic extract enhances the production of β‑defensin 4 via activation of the Wnt/β‑catenin pathway in mouse gingiva. Exp Ther Med 2025; 29:41. [PMID: 39781190 PMCID: PMC11707986 DOI: 10.3892/etm.2024.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/23/2024] [Indexed: 01/12/2025] Open
Abstract
Periodontal disease is recognized as a chronic multifactorial inflammatory condition initiated by dysbiosis within subgingival plaque biofilms. Antimicrobial peptides exhibit a wide spectrum of antimicrobial action, and thus, provide one of the first lines of host defense against oral pathogens. Aged garlic extract (AGE) is effective for preventing the progression of periodontal disease. The present study examined whether AGE affects the production of antimicrobial peptides in mouse gingiva. Reverse transcription-quantitative PCR analysis demonstrated that oral administration of AGE in mice increased the mRNA level of Defb4 in gingival tissue, while the levels of Defb1, Defb14 and Cramp remained unaffected. AGE also upregulated the protein levels of β-defensin 4. To explore the underlying mechanism of the increased β-defensin 4 production induced by AGE, a comprehensive phosphoproteomic analysis in gingival tissues was performed. Proteomic profiling revealed activation of the canonical Wnt/β-catenin pathway in gingiva of mice treated with AGE. Treatment of mouse gingival epithelial GE1 cells with AGE resulted in an increase of β-defensin 4 in the culture medium. In support of proteomics experiments, LF3, a specific inhibitor of Wnt/β-catenin signaling, suppressed the AGE-induced production of β-defensin 4. In addition, β-catenin protein was found to accumulate within the nucleus in cells treated with AGE. In conclusion, the present findings suggested that AGE enhanced the production of β-defensin 4 in mouse gingiva through the canonical Wnt signal transduction pathway.
Collapse
Affiliation(s)
- Daiki Fujii
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima 739-1195, Japan
| | - Hiroshi Nango
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima 739-1195, Japan
| | - Masahiro Ohtani
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima 739-1195, Japan
| |
Collapse
|
8
|
Heller D, Nery GB, Bachi ALL, Al-Hashimi I. Positive Role of Saliva in the Oral Microbiome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:103-118. [PMID: 40111688 DOI: 10.1007/978-3-031-79146-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Saliva plays a pivotal role in shaping the oral microbiome and maintaining oral homeostasis and health. This chapter explores the importance of saliva in promoting eubiosis of the oral microbiome and its implications for oral and systemic health. Saliva is a dynamic fluid rich in antimicrobial components and buffering agents that contribute to the microbial balance and homeostasis within the oral cavity. It provides a cleansing mechanism that facilitates the removal of bacteria and debris and limits the growth and colonization of microorganisms. The salivary antimicrobial proteins and peptides, in combination with antibodies, predominantly secretory immunoglobulin A (sIgA), are crucial for combating microbial pathogens and preventing oral infections. Saliva also possesses a buffering mechanism that regulates the pH levels within the oral cavity, which creates an environment that is inimical for the growth of acid-producing pathogens and promotes remineralization of the teeth. Furthermore, salivary proteins and glycoproteins form an inter-face (tissue coat) over the oral mucosa and teeth to protect the oral tissue from external environmental insults, maintain tissue integrity, and promote wound healing. Understanding the positive role of saliva in the oral microbiome provides an insight into potential novel strategies for promoting oral health and combating microbial dysbiosis. Recognizing the multifaceted roles of saliva as a guardian (gatekeeper) of oral microbial balance, we can unlock the therapeutic potential of saliva in enhancing the well-being of the body and averting oral and systemic diseases.
Collapse
Affiliation(s)
- Débora Heller
- Universidade Cruzeiro do Sul, São Paulo, Brazil
- UT Health San Antonio, San Antonio, TX, USA
| | | | | | | |
Collapse
|
9
|
Kumari P, Yadav S, Sarkar S, Satheeshkumar PK. Cleavage of cell junction proteins as a host invasion strategy in leptospirosis. Appl Microbiol Biotechnol 2024; 108:119. [PMID: 38204132 PMCID: PMC10781872 DOI: 10.1007/s00253-023-12945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 01/12/2024]
Abstract
Infection and invasion are the prerequisites for developing the disease symptoms in a host. While the probable mechanism of host invasion and pathogenesis is known in many pathogens, very little information is available on Leptospira invasion/pathogenesis. For causing systemic infection Leptospira must transmigrate across epithelial barriers, which is the most critical and challenging step. Extracellular and membrane-bound proteases play a crucial role in the invasion process. An extensive search for the proteins experimentally proven to be involved in the invasion process through cell junction cleavage in other pathogens has resulted in identifying 26 proteins. The similarity searches on the Leptospira genome for counterparts of these 26 pathogenesis-related proteins identified at least 12 probable coding sequences. The proteins were either extracellular or membrane-bound with a proteolytic domain to cleave the cell junction proteins. This review will emphasize our current understanding of the pathogenic aspects of host cell junction-pathogenic protein interactions involved in the invasion process. Further, potential candidate proteins with cell junction cleavage properties that may be exploited in the diagnostic/therapeutic aspects of leptospirosis will also be discussed. KEY POINTS: • The review focussed on the cell junction cleavage proteins in bacterial pathogenesis • Cell junction disruptors from Leptospira genome are identified using bioinformatics • The review provides insights into the therapeutic/diagnostic interventions possible.
Collapse
Affiliation(s)
- Preeti Kumari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Suhani Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sresha Sarkar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Padikara K Satheeshkumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
10
|
Cinatl J, Wass MN, Michaelis M. Multiple mechanisms enable broad-spectrum activity of the Pelargonium sidoides root extract EPs 7630 against acute respiratory tract infections. Front Pharmacol 2024; 15:1455870. [PMID: 39469622 PMCID: PMC11513585 DOI: 10.3389/fphar.2024.1455870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
There is clinical evidence showing that the Pelargonium sidoides root extract EPs 7630 is a safe and effective treatment for a range of acute infectious respiratory illnesses. Moreover, EPs 7630 has been shown to reduce the use of antibiotics, which is important in the context of rising antibiotic resistance levels. A wide range of mechanisms appears to contribute to the beneficial effects of EPs 7630, e.g. antibacterial, antiviral, immunomodulatory, and epithelial barrier effects. This broad spectrum of pharmacological activities seems to enable the clinical activity of EPs 7630 against multiple respiratory infections. In particular, the combination of antiviral and immunomodulatory effects may enable EPs 7630 to tackle acute viral respiratory infections both in early stages of the disease process, which are driven by virus replication, as well as in later stages, which are caused by an overshooting immune response. Hence, EPs 7630 is a prime example of a plant extract with evidence-based clinical efficacy, including a solid understanding of the underlying mechanisms of action. The example of EPs 7630 demonstrates that plant extracts have a potential role as evidence-based clinical treatments and that they deserve pre-clinical and clinical testing and investigation in the same way as any other drug class.
Collapse
Affiliation(s)
- Jindrich Cinatl
- Interdisciplinary Laboratory for Tumour and Virus Research, Dr Petra Joh Research Institute, Frankfurt am Main, Germany
| | - Mark N. Wass
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Martin Michaelis
- Interdisciplinary Laboratory for Tumour and Virus Research, Dr Petra Joh Research Institute, Frankfurt am Main, Germany
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
11
|
Chiba N, Tada R, Ohnishi T, Matsuguchi T. TLR4/7-mediated host-defense responses of gingival epithelial cells. J Cell Biochem 2024; 125:e30576. [PMID: 38726711 DOI: 10.1002/jcb.30576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 07/12/2024]
Abstract
Gingival epithelial cells (GECs) are physical and immunological barriers against outward pathogens while coping with a plethora of non-pathogenic commensal bacteria. GECs express several members of Toll-like receptors (TLRs) and control subsequent innate immune responses. TLR4 senses lipopolysaccharide (LPS) while TLR7/8 recognizes single-strand RNA (ssRNA) playing important roles against viral infection. However, their distinct roles in GECs have not been fully demonstrated. Here, we analyzed biological responses of GECs to LPS and CL075, a TLR7/8 agonist. GE1, a mouse gingival epithelial cell line, constitutively express TLR4 and TLR7, but not TLR8, like primary skin keratinocytes. Stimulation of GE1 cells with CL075 induced cytokine, chemokine, and antimicrobial peptide expressions, the pattern of which is rather different from that with LPS: higher mRNA levels of interferon (IFN) β, CXCL10, and β-defensin (BD) 14 (mouse homolog of human BD3); lower levels of tumor necrosis factor (TNF), CCL5, CCL11, CCL20, CXCL2, and CX3CL1. As for the intracellular signal transduction of GE1 cells, CL075 rapidly induced significant AKT phosphorylation but failed to activate IKKα/β-NFκB pathway, whereas LPS induced marked IKKα/β-NFκB activation without significant AKT phosphorylation. In contrast, both CL075 and LPS induced rapid IKKα/β-NFκB activation and AKT phosphorylation in a macrophage cell line. Furthermore, specific inhibition of AKT activity abrogated CL075-induced IFNβ, CXCL10, and BD14 mRNA expression in GE1 cells. Thus, TLR4/7 ligands appear to induce rather different host-defense responses of GECs through distinct intracellular signaling mechanisms.
Collapse
Affiliation(s)
- Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ryohei Tada
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
12
|
Dishaw LJ, Litman GW, Liberti A. Tethering of soluble immune effectors to mucin and chitin reflects a convergent and dynamic role in gut immunity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230078. [PMID: 38497268 PMCID: PMC10945408 DOI: 10.1098/rstb.2023.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/04/2023] [Indexed: 03/19/2024] Open
Abstract
The immune system employs soluble effectors to shape luminal spaces. Antibodies are soluble molecules that effect immunological responses, including neutralization, opsonization, antibody-dependent cytotoxicity and complement activation. These molecules are comprised of immunoglobulin (Ig) domains. The N-terminal Ig domains recognize antigen, and the C-terminal domains facilitate their elimination through phagocytosis (opsonization). A less-recognized function mediated by the C-terminal Ig domains of the IgG class of antibodies (Fc region) involves the formation of multiple low-affinity bonds with the mucus matrix. This association anchors the antibody molecule to the matrix to entrap potential pathogens. Even though invertebrates are not known to have antibodies, protochordates have a class of secreted molecules containing Ig domains that can bind bacteria and potentially serve a similar purpose. The VCBPs (V region-containing chitin-binding proteins) possess a C-terminal chitin-binding domain that helps tether them to chitin-rich mucus gels, mimicking the IgG-mediated Fc trapping of microbes in mucus. The broad functional similarity of these structurally divergent, Ig-containing, secreted effectors makes a case for a unique form of convergent evolution within chordates. This opinion essay highlights emerging evidence that divergent secreted immune effectors with Ig-like domains evolved to manage immune recognition at mucosal surfaces in strikingly similar ways. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- L. J. Dishaw
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Children's Research Institute, St. Petersburg, FL 33701, USA
| | - G. W. Litman
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Children's Research Institute, St. Petersburg, FL 33701, USA
| | - A. Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, 80122 Naples, Italy
| |
Collapse
|
13
|
Long C, Zhou X, Xia F, Zhou B. Intestinal Barrier Dysfunction and Gut Microbiota in Non-Alcoholic Fatty Liver Disease: Assessment, Mechanisms, and Therapeutic Considerations. BIOLOGY 2024; 13:243. [PMID: 38666855 PMCID: PMC11048184 DOI: 10.3390/biology13040243] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a type of metabolic stress liver injury closely related to insulin resistance (IR) and genetic susceptibility without alcohol consumption, which encompasses a spectrum of liver disorders ranging from simple hepatic lipid accumulation, known as steatosis, to the more severe form of steatohepatitis (NASH). NASH can progress to cirrhosis and hepatocellular carcinoma (HCC), posing significant health risks. As a multisystem disease, NAFLD is closely associated with systemic insulin resistance, central obesity, and metabolic disorders, which contribute to its pathogenesis and the development of extrahepatic complications, such as cardiovascular disease (CVD), type 2 diabetes mellitus, chronic kidney disease, and certain extrahepatic cancers. Recent evidence highlights the indispensable roles of intestinal barrier dysfunction and gut microbiota in the onset and progression of NAFLD/NASH. This review provides a comprehensive insight into the role of intestinal barrier dysfunction and gut microbiota in NAFLD, including intestinal barrier function and assessment, inflammatory factors, TLR4 signaling, and the gut-liver axis. Finally, we conclude with a discussion on the potential therapeutic strategies targeting gut permeability and gut microbiota in individuals with NAFLD/NASH, such as interventions with medications/probiotics, fecal transplantation (FMT), and modifications in lifestyle, including exercise and diet.
Collapse
Affiliation(s)
- Changrui Long
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoyan Zhou
- Department of Cardiovascular, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China;
| | - Fan Xia
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| |
Collapse
|
14
|
Abcouwer SF, Miglioranza Scavuzzi B, Kish PE, Kong D, Shanmugam S, Le XA, Yao J, Hager H, Zacks DN. The mouse retinal pigment epithelium mounts an innate immune defense response following retinal detachment. J Neuroinflammation 2024; 21:74. [PMID: 38528525 PMCID: PMC10964713 DOI: 10.1186/s12974-024-03062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
The retinal pigment epithelium (RPE) maintains photoreceptor viability and function, completes the visual cycle, and forms the outer blood-retinal barrier (oBRB). Loss of RPE function gives rise to several monogenic retinal dystrophies and contributes to age-related macular degeneration. Retinal detachment (RD) causes separation of the neurosensory retina from the underlying RPE, disrupting the functional and metabolic relationships between these layers. Although the retinal response to RD is highly studied, little is known about how the RPE responds to loss of this interaction. RNA sequencing (RNA-Seq) was used to compare normal and detached RPE in the C57BL6/J mouse. The naïve mouse RPE transcriptome was compared to previously published RPE signature gene lists and from the union of these 14 genes (Bmp4, Crim1, Degs1, Gja1, Itgav, Mfap3l, Pdpn, Ptgds, Rbp1, Rnf13, Rpe65, Slc4a2, Sulf1 and Ttr) representing a core signature gene set applicable across rodent and human RPE was derived. Gene ontology enrichment analysis (GOEA) of the mouse RPE transcriptome identified expected RPE features and functions, such as pigmentation, phagocytosis, lysosomal and proteasomal degradation of proteins, and barrier function. Differentially expressed genes (DEG) at 1 and 7 days post retinal detachment (dprd) were defined as mRNA with a significant (padj≤0.05) fold change (FC) of 0.67 ≥ FC ≥ 1.5 in detached versus naïve RPE. The RPE transcriptome exhibited dramatic changes at 1 dprd, with 2297 DEG identified. The KEGG pathways and biological process GO groups related to innate immune responses were significantly enriched. Lipocalin 2 (Lcn2) and several chemokines were upregulated, while numerous genes related to RPE functions, such as pigment synthesis, visual cycle, phagocytosis, and tight junctions were downregulated at 1 dprd. The response was largely transient, with only 18 significant DEG identified at 7 dprd, including upregulation of complement gene C4b. Validation studies confirmed RNA-Seq results. Thus, the RPE quickly downregulates cell-specific functions and mounts an innate immune defense response following RD. Our data demonstrate that the RPE contributes to the inflammatory response to RD and may play a role in attraction of immune cells to the subretinal space.
Collapse
Affiliation(s)
- Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
| | - Bruna Miglioranza Scavuzzi
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Phillip E Kish
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Dejuan Kong
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Xuan An Le
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Jingyu Yao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| |
Collapse
|
15
|
Ciurea A, Stanomir A, Șurlin P, Micu IC, Pamfil C, Leucuța DC, Rednic S, Rasperini G, Soancă A, Țigu AB, Roman A, Picoș A, Delean AG. Insights into the Relationship between Periodontitis and Systemic Sclerosis Based on the New Periodontitis Classification (2018): A Cross-Sectional Study. Diagnostics (Basel) 2024; 14:540. [PMID: 38473012 DOI: 10.3390/diagnostics14050540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
(1) Background: This study aimed to assess the periodontitis burden in systemic sclerosis patients and the possible association between them, and the degree to which some potential risk factors and two potential diagnostic biomarkers may account for this association. (2) Methods: This cross-sectional study included a test group (systemic sclerosis patients) and a control group (non-systemic sclerosis patients). Both groups benefited from medical, periodontal examination and saliva sampling to determine the salivary flow rate and two inflammatory biomarkers (calprotectin, psoriasin). A systemic sclerosis severity scale was established. (3) Results: In the studied groups, comparable periodontitis rates of 88.68% and 85.85%, respectively, were identified. There were no significant differences in the severity of periodontitis among different systemic sclerosis severity, or in the positivity for anti-centromere and anti-SCL70 antibodies. Musculoskeletal lesions were significantly more common in stage III/IV periodontitis (n = 33, 86.84%) than in those in stage I/II (n = 1, 100%, and n = 3, 37.5%, respectively) (p = 0.007). Comparable levels of the inflammatory mediators were displayed by the two groups. There were no significant differences in calprotectin and psoriasin levels between diffuse and limited forms of systemic sclerosis. (4) Conclusions: Within the limitations of the current study, no associations between systemic sclerosis and periodontitis, or between their risk factors, could be proven.
Collapse
Affiliation(s)
- Andreea Ciurea
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Emergency County Clinical Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Alina Stanomir
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Petra Șurlin
- Department of Periodontology, Faculty of Dental Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Iulia Cristina Micu
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cristina Pamfil
- Emergency County Clinical Hospital Cluj, 400006 Cluj-Napoca, Romania
- Department of Rheumatology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Daniel Corneliu Leucuța
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Simona Rednic
- Emergency County Clinical Hospital Cluj, 400006 Cluj-Napoca, Romania
- Department of Rheumatology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Giulio Rasperini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Foundation IRCCS Ca' Granda Policlinic, 20122 Milan, Italy
| | - Andrada Soancă
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Emergency County Clinical Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Adrian Bogdan Țigu
- Research Centre for Advanced Medicine (MEDFUTURE), Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Alexandra Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Emergency County Clinical Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Andrei Picoș
- Department of Prevention in Dental Medicine, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400083 Cluj-Napoca, Romania
| | - Ada Gabriela Delean
- Department of Odontology and Endodontics, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400001 Cluj-Napoca, Romania
| |
Collapse
|
16
|
Tsugami Y, Nii T, Isobe N. Effects of topical application of resveratrol on tight junction barrier and antimicrobial compound production in lactating goat mammary glands. Vet Res 2024; 55:20. [PMID: 38365712 PMCID: PMC10870570 DOI: 10.1186/s13567-024-01276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024] Open
Abstract
In mammary glands, the formation of less-permeable tight junctions (TJs) and the production of antimicrobial compounds like lactoferrin and defensins are important for preventing mastitis. Resveratrol, a polyphenol contained in red grapes, is known to protect mammary epithelial cells (MECs) from oxidative stress; however, oral administration of resveratrol causes a decrease in certain biological processes through conjugation and metabolic conversion. In this study, we determined the beneficial effects of resveratrol on TJs and antimicrobial compounds in cultured goat MECs by adding it to the medium, and in lactating goat mammary glands by topical application for percutaneous absorption. TJ barrier function was evaluated by transepithelial resistance and expression or localization pattern of claudins for culture model in vitro and by somatic cell count, Na+, albumin, and IgG in milk for topical application in vivo. Concentrations of antimicrobial compounds and cytokines were measured using ELISA. Activation of STAT3 was evaluated by Western blotting. Resveratrol strengthened TJ barrier function by upregulating claudin-3 in cultured MECs and topical application to udders reduced somatic cell count, Na+, albumin, and IgG in milk. Resveratrol increased β-defensin and S100A7 levels in cultured MECs and milk. In addition, resveratrol down-regulated cytokine production and STAT3 pathway. These findings suggest that the topical application of resveratrol to udders may be effective in preventing mastitis.
Collapse
Affiliation(s)
- Yusaku Tsugami
- National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan.
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| | - Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| |
Collapse
|
17
|
Ungor I, Apidianakis Y. Bacterial synergies and antagonisms affecting Pseudomonas aeruginosa virulence in the human lung, skin and intestine. Future Microbiol 2024; 19:141-155. [PMID: 37843410 DOI: 10.2217/fmb-2022-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Pseudomonas aeruginosa requires a significant breach in the host defense to cause an infection. While its virulence factors are well studied, its tropism cannot be explained only by studying its interaction with the host. Why are P. aeruginosa infections so rare in the intestine compared with the lung and skin? There is not enough evidence to claim specificity in virulence factors deployed by P. aeruginosa in each anatomical site, and host physiology differences between the lung and the intestine cannot easily explain the observed differences in virulence. This perspective highlights a relatively overlooked parameter in P. aeruginosa virulence, namely, potential synergies with bacteria found in the human skin and lung, as well as antagonisms with bacteria of the human intestine.
Collapse
Affiliation(s)
- Izel Ungor
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| | - Yiorgos Apidianakis
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| |
Collapse
|
18
|
Atila D, Kumaravel V. Advances in antimicrobial hydrogels for dental tissue engineering: regenerative strategies for endodontics and periodontics. Biomater Sci 2023; 11:6711-6747. [PMID: 37656064 DOI: 10.1039/d3bm00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Dental tissue infections have been affecting millions of patients globally leading to pain, severe tissue damage, or even tooth loss. Commercial sterilizers may not be adequate to prevent frequent dental infections. Antimicrobial hydrogels have been introduced as an effective therapeutic strategy for endodontics and periodontics since they have the capability of imitating the native extracellular matrix of soft tissues. Hydrogel networks are considered excellent drug delivery platforms due to their high-water retention capacity. In this regard, drugs or nanoparticles can be incorporated into the hydrogels to endow antimicrobial properties as well as to improve their regenerative potential, once biocompatibility criteria are met avoiding high dosages. Herein, novel antimicrobial hydrogel formulations were discussed for the first time in the scope of endodontics and periodontics. Such hydrogels seem outstanding candidates especially when designed not only as simple volume fillers but also as smart biomaterials with condition-specific adaptability within the dynamic microenvironment of the defect site. Multifunctional hydrogels play a pivotal role against infections, inflammation, oxidative stress, etc. along the way of dental regeneration. Modern techniques (e.g., 3D and 4D-printing) hold promise to develop the next generation of antimicrobial hydrogels together with their limitations such as infeasibility of implantation.
Collapse
Affiliation(s)
- Deniz Atila
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Vignesh Kumaravel
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| |
Collapse
|
19
|
Lennard PR, Hiemstra PS, Nibbering PH. Complementary Activities of Host Defence Peptides and Antibiotics in Combating Antimicrobial Resistant Bacteria. Antibiotics (Basel) 2023; 12:1518. [PMID: 37887219 PMCID: PMC10604037 DOI: 10.3390/antibiotics12101518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Due to their ability to eliminate antimicrobial resistant (AMR) bacteria and to modulate the immune response, host defence peptides (HDPs) hold great promise for the clinical treatment of bacterial infections. Whereas monotherapy with HDPs is not likely to become an effective first-line treatment, combinations of such peptides with antibiotics can potentially provide a path to future therapies for AMR infections. Therefore, we critically reviewed the recent literature regarding the antibacterial activity of combinations of HDPs and antibiotics against AMR bacteria and the approaches taken in these studies. Of the 86 studies compiled, 56 featured a formal assessment of synergy between agents. Of the combinations assessed, synergistic and additive interactions between HDPs and antibiotics amounted to 84.9% of the records, while indifferent and antagonistic interactions accounted for 15.1%. Penicillin, aminoglycoside, fluoro/quinolone, and glycopeptide antibiotic classes were the most frequently documented as interacting with HDPs, and Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecium were the most reported bacterial species. Few studies formally evaluated the effects of combinations of HDPs and antibiotics on bacteria, and even fewer assessed such combinations against bacteria within biofilms, in animal models, or in advanced tissue infection models. Despite the biases of the current literature, the studies suggest that effective combinations of HDPs and antibiotics hold promise for the future treatment of infections caused by AMR bacteria.
Collapse
Affiliation(s)
- Patrick R. Lennard
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
- Institute of Immunology and Infection, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FE, UK
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Centre, Leiden 2333, The Netherlands
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden 2333, The Netherlands;
| | - Pieter S. Hiemstra
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Centre, Leiden 2333, The Netherlands
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden 2333, The Netherlands;
| |
Collapse
|
20
|
Naik S, Mohammed A. Consensus Gene Network Analysis Identifies the Key Similarities and Differences in Endothelial and Epithelial Cell Dynamics after Candida albicans Infection. Int J Mol Sci 2023; 24:11748. [PMID: 37511508 PMCID: PMC10380918 DOI: 10.3390/ijms241411748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Endothelial and epithelial cells are morphologically different and play a critical role in host defense during Candida albicans infection. Both cells respond to C. albicans infection by activating various signaling pathways and gene expression patterns. Their interactions with these pathogens can have beneficial and detrimental effects, and a better understanding of these interactions can help guide the development of new therapies for C. albicans infection. To identify the differences and similarities between human endothelial and oral epithelial cell transcriptomics during C. albicans infection, we performed consensus WGCNA on 32 RNA-seq samples by relating the consensus modules to endothelial-specific modules and analyzing the genes connected. This analysis resulted in the identification of 14 distinct modules. We demonstrated that the magenta module correlates significantly with C. albicans infection in each dataset. In addition, we found that the blue and cyan modules in the two datasets had opposite correlation coefficients with a C. albicans infection. However, the correlation coefficients and p-values between the two datasets were slightly different. Functional analyses of the hub of genes from endothelial cells elucidated the enrichment in TNF, AGE-RAGE, MAPK, and NF-κB signaling. On the other hand, glycolysis, pyruvate metabolism, amino acid, fructose, mannose, and vitamin B6 metabolism were enriched in epithelial cells. However, mitophagy, necroptosis, apoptotic processes, and hypoxia were enriched in both endothelial and epithelial cells. Protein-protein interaction analysis using STRING and CytoHubba revealed STAT3, SNRPE, BIRC2, and NFKB2 as endothelial hub genes, while RRS1, SURF6, HK2, and LDHA genes were identified in epithelial cells. Understanding these similarities and differences may provide new insights into the pathogenesis of C. albicans infections and the development of new therapeutic targets and interventional strategies.
Collapse
Affiliation(s)
- Surabhi Naik
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Akram Mohammed
- Center for Biomedical Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| |
Collapse
|
21
|
Espinal P, Fusté E, Sierra JM, Jiménez-Galisteo G, Vinuesa T, Viñas M. Progress towards the clinical use of antimicrobial peptides: challenges and opportunities. Expert Opin Biol Ther 2023:1-10. [PMID: 37366927 DOI: 10.1080/14712598.2023.2226796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION To overcome the challenge of multidrug resistance, natural and synthetic peptides are candidates to become the basis of innovative therapeutics, featuring diverse mechanisms of action. Traditionally, the time elapsed from medical discoveries to their application is long. The urgency derived from the emergence of antibiotic resistance recommends an acceleration of research to put the new weapons in the hands of clinicians. AREAS COVERED This narrative review introduces ideas and suggestions of new strategies that may be used as a basis upon which to recommend reduced development times and to facilitate the arrival of new molecules in the fight against microbes. EXPERT OPINION Although studies on new innovative antimicrobial treatments are being conducted, sooner rather than later, more clinical trials, preclinical and translational research are needed to promote the development of innovative antimicrobial treatments for multidrug resistant infections. The situation is worrying, no less than that generated by pandemics such as the ones we have just experienced and conflicts such as world wars. Although from the point of view of human perception, resistance to antibiotics may not seem as serious as these other situations, it is possibly the hidden pandemic that most jeopardizes the future of medicine.
Collapse
Affiliation(s)
- Paula Espinal
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School, Campus Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ester Fusté
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School, Campus Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Public Health, Mental Health, And Maternal and Child Health Nursing, University of Barcelona and IDIBELL, Campus Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Sierra
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School, Campus Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Guadalupe Jiménez-Galisteo
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School, Campus Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Teresa Vinuesa
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School, Campus Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Miguel Viñas
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School, Campus Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
22
|
Yu K, Guo YY, Liuyu T, Wang P, Zhang ZD, Lin D, Zhong B. The deubiquitinase OTUD4 inhibits the expression of antimicrobial peptides in Paneth cells to support intestinal inflammation and bacterial infection. CELL INSIGHT 2023; 2:100100. [PMID: 37193092 PMCID: PMC10123543 DOI: 10.1016/j.cellin.2023.100100] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 05/18/2023]
Abstract
Dysfunction of the intestinal epithelial barrier causes microbial invasion that would lead to inflammation in the gut. Antimicrobial peptides (AMPs) are essential components of the intestinal epithelial barrier, while the regulatory mechanisms of AMPs expression are not fully characterized. Here, we report that the ovarian tumor family deubiquitinase 4 (OTUD4) in Paneth cells restricts the expression of AMPs and thereby promotes experimental colitis and bacterial infection. OTUD4 is upregulated in the inflamed mucosa of ulcerative colitis patients and in the colon of mice treated with dextran sulfate sodium salt (DSS). Knockout of OTUD4 promotes the expression of AMPs in intestinal organoids after stimulation with lipopolysaccharide (LPS) or peptidoglycan (PGN) and in the intestinal epithelial cells (IECs) of mice after DSS treatment or Salmonella typhimurium (S.t.) infection. Consistently, Vil-Cre;Otud4fl/fl mice and Def-Cre;Otud4fl/fl mice exhibit hyper-resistance to DSS-induced colitis and S.t. infection compared to Otud4fl/fl mice. Mechanistically, knockout of OTUD4 results in hyper K63-linked ubiquitination of MyD88 and increases the activation of NF-κB and MAPKs to promote the expression of AMPs. These findings collectively highlight an indispensable role of OTUD4 in Paneth cells to modulate AMPs production and indicate OTUD4 as a potential target for gastrointestinal inflammation and bacterial infection.
Collapse
Affiliation(s)
- Keying Yu
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Yu-Yao Guo
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Tianzi Liuyu
- Department of Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Peng Wang
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Zhi-Dong Zhang
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Bo Zhong
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
23
|
Dini I, De Biasi MG, Mancusi A. An Overview of the Potentialities of Antimicrobial Peptides Derived from Natural Sources. Antibiotics (Basel) 2022; 11:1483. [PMID: 36358138 PMCID: PMC9686932 DOI: 10.3390/antibiotics11111483] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial peptides (AMPs) are constituents of the innate immune system in every kind of living organism. They can act by disrupting the microbial membrane or without affecting membrane stability. Interest in these small peptides stems from the fear of antibiotics and the emergence of microorganisms resistant to antibiotics. Through membrane or metabolic disruption, they defend an organism against invading bacteria, viruses, protozoa, and fungi. High efficacy and specificity, low drug interaction and toxicity, thermostability, solubility in water, and biological diversity suggest their applications in food, medicine, agriculture, animal husbandry, and aquaculture. Nanocarriers can be used to protect, deliver, and improve their bioavailability effectiveness. High cost of production could limit their use. This review summarizes the natural sources, structures, modes of action, and applications of microbial peptides in the food and pharmaceutical industries. Any restrictions on AMPs' large-scale production are also taken into consideration.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | | | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|