1
|
Kumar N, Mattoo SS, Sanghvi S, Ellendula MP, Mahajan S, Planner C, Bednash JS, Khan M, Ganesan LP, Singh H, Lafuse WP, Wozniak DJ, Rajaram MVS. Pseudomonas aeruginosa- mediated cardiac dysfunction is driven by extracellular vesicles released during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624948. [PMID: 39651123 PMCID: PMC11623511 DOI: 10.1101/2024.11.22.624948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Pseudomonas aeruginosa (P.a.) is a gram-negative, opportunistic bacterium abundantly present in the environment. Often P.a. infections cause severe pneumonia, if left untreated. Surprisingly, up to 30% of patients admitted to the hospital for community- acquired pneumonia develop adverse cardiovascular complications such as myocardial infarction, arrhythmia, left ventricular dysfunction, and heart failure. However, the underlying mechanism of infection-mediated cardiac dysfunction is not yet known. Recently, we demonstrated that P.a. infection of the lungs led to severe cardiac electrical abnormalities and left ventricular dysfunction with limited P.a. dissemination to the heart tissue. To understand the mechanism of cardiac dysfunction during P.a. infection, we utilized both in vitro and in vivo models. Our results revealed that inflammatory cytokines contribute but are not solely responsible for severe contractile dysfunction in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Instead, exposure of hiPSC-CMs with conditioned media from P.a. infected human monocyte-derived macrophages (hMDMs) was sufficient to cause severe contractile dysfunction and arrhythmia in hiPSC-CMs. Specifically, exosomes released from infected hMDMs and bacterial outer membrane vesicles (OMVs) are the major drivers of cardiomyocyte contractile dysfunction. By using LC-MS/MS, we identified bacterial proteins, including toxins that are packaged in the exosomes and OMVs, which are responsible for contractile dysfunction. Furthermore, we demonstrated that systemic delivery of bacterial OMVs to mice caused severe cardiac dysfunction, mimicking the natural bacterial infection. In summary, we conclude that OMVs released during infection enter circulation and drive cardiac dysfunction.
Collapse
|
2
|
Williams ZJ, Pezzanite LM, Chow L, Rockow M, Dow SW. Evaluation of stem-cell therapies in companion animal disease models: a concise review (2015-2023). Stem Cells 2024; 42:677-705. [PMID: 38795363 DOI: 10.1093/stmcls/sxae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/25/2024] [Indexed: 05/27/2024]
Abstract
Companion animals in veterinary medicine develop multiple naturally occurring diseases analogous to human conditions. We previously reported a comprehensive review on the feasibility, safety, and biologic activity of using novel stem cell therapies to treat a variety of inflammatory conditions in dogs and cats (2008-2015) [Hoffman AM, Dow SW. Concise review: stem cell trials using companion animal disease models. Stem Cells. 2016;34(7):1709-1729. https://doi.org/10.1002/stem.2377]. The purpose of this review is to provide an updated summary of current studies in companion animal disease models that have evaluated stem cell therapeutics that are relevant to human disease. Here we have reviewed the literature from 2015 to 2023 for publications on stem cell therapies that have been evaluated in companion animals, including dogs, cats, and horses. The review excluded case reports or studies performed in experimentally induced models of disease, studies involving cancer, or studies in purpose-bred laboratory species such as rodents. We identified 45 manuscripts meeting these criteria, an increase from 19 that were described in the previous review [Hoffman AM, Dow SW. Concise review: stem cell trials using companion animal disease models. Stem Cells. 2016;34(7):1709-1729. https://doi.org/10.1002/stem.2377]. The majority of studies were performed in dogs (n = 28), with additional studies in horses (n = 9) and cats (n = 8). Disease models included those related to musculoskeletal disease (osteoarthritis and tendon/ligament injury), neurologic disease (canine cognitive dysfunction, intervertebral disc disease, spinal cord injury) gingival/dental disease (gingivostomatitis), dermatologic disease (atopic dermatitis), chronic multi-drug resistant infections, ophthalmic disease (keratoconjunctivitis sicca, eosinophilic keratitis, immune-mediated keratitis), cardiopulmonary disease (asthma, degenerative valve disease, dilated cardiomyopathy), gastrointestinal disease (inflammatory bowel disease, chronic enteropathy), and renal disease (chronic kidney disease). The majority of studies reported beneficial responses to stem cell treatment, with the exception of those related to more chronic processes such as spinal cord injury and chronic kidney disease. However, it should also be noted that 22 studies were open-label, baseline-controlled trials and only 12 studies were randomized and controlled, making overall study interpretation difficult. As noted in the previous review, improved regulatory oversight and consistency in manufacturing of stem cell therapies are needed. Enhanced understanding of the temporal course of disease processes using advanced-omics approaches may further inform mechanisms of action and help define appropriate timing of interventions. Future directions of stem-cell-based therapies could include use of stem-cell-derived extracellular vesicles, or cell conditioning approaches to direct cells to specific pathways that are tailored to individual disease processes and stages of illness.
Collapse
Affiliation(s)
- Zoë J Williams
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Lynn M Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Meagan Rockow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Steven W Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
3
|
Lanci A, Iacono E, Merlo B. Therapeutic Application of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Domestic Animals. Animals (Basel) 2024; 14:2147. [PMID: 39123673 PMCID: PMC11310970 DOI: 10.3390/ani14152147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Recently, the therapeutic potential of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) has been extensively studied in both human and veterinary medicine. EVs are nano-sized particles containing biological components commonly found in other biological materials. For that reason, EV isolation and characterization are critical to draw precise conclusions during their investigation. Research on EVs within veterinary medicine is still considered in its early phases, yet numerous papers were published in recent years. The conventional adult tissues for deriving MSCs include adipose tissue and bone marrow. Nonetheless, alternative sources such as synovial fluid, endometrium, gingiva, and milk have also been intermittently used. Fetal adnexa are amniotic membrane/fluid, umbilical cord and Wharton's jelly. Cells derived from fetal adnexa exhibit an intermediate state between embryonic and adult cells, demonstrating higher proliferative and differentiative potential and longer telomeres compared to cells from adult tissues. Summarized here are the principal and recent preclinical and clinical studies performed in domestic animals such as horse, cattle, dog and cat. To minimize the use of antibiotics and address the serious issue of antibiotic resistance as a public health concern, they will undoubtedly also be utilized in the future to treat infections in domestic animals. A number of concerns, including large-scale production with standardization of EV separation and characterization techniques, must be resolved for clinical application.
Collapse
Affiliation(s)
- Aliai Lanci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40100 Bologna, Italy
| | - Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40100 Bologna, Italy
| |
Collapse
|
4
|
Jafari A, Mirzaei Y, Mer AH, Rezaei-Tavirani M, Jafari Z, Niknejad H. Comparison of the effects of preservation methods on structural, biological, and mechanical properties of the human amniotic membrane for medical applications. Cell Tissue Bank 2024; 25:305-323. [PMID: 37840108 DOI: 10.1007/s10561-023-10114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Amniotic membrane (AM), the innermost layer of the placenta, is an exceptionally effective biomaterial with divers applications in clinical medicine. It possesses various biological functions, including scar reduction, anti-inflammatory properties, support for epithelialization, as well as anti-microbial, anti-fibrotic and angio-modulatory effects. Furthermore, its abundant availability, cost-effectiveness, and ethical acceptability make it a compelling biomaterial in the field of medicine. Given the potential unavailability of fresh tissue when needed, the preservation of AM is crucial to ensure a readily accessible and continuous supply for clinical use. However, preserving the properties of AM presents a significant challenge. Therefore, the establishment of standardized protocols for the collection and preservation of AM is vital to ensure optimal tissue quality and enhance patient safety. Various preservation methods, such as cryopreservation, lyophilization, and air-drying, have been employed over the years. However, identifying a preservation method that effectively safeguards AM properties remains an ongoing endeavor. This article aims to review and discuss different sterilization and preservation procedures for AM, as well as their impacts on its histological, physical, and biochemical characteristics.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ali Hussein Mer
- Department of Nusring, Mergasour Technical Institute, Erbil Polytechnic University, Erbil, Iraq
| | | | - Zahra Jafari
- 9th Dey Manzariye Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Gugjoo MB, Sakeena Q, Wani MY, Abdel-Baset Ismail A, Ahmad SM, Shah RA. Mesenchymal stem cells: A promising antimicrobial therapy in veterinary medicine. Microb Pathog 2023; 182:106234. [PMID: 37442216 DOI: 10.1016/j.micpath.2023.106234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/18/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Growing antimicrobial resistance (AMR) is a threat to human and animal populations citing the limited available options. Alternative antimicrobial options or functional enhancement of currently available antimicrobials remains only options. One of the potential options seems stem cells especially the mesenchymal stem cells (MSCs) that show antimicrobial properties. These cells additionally have pro-healing effects that may plausibly improve healing outcomes. MSCs antimicrobial actions are mediated either through direct cell-cell contact or their secretome that enhances innate immune mediated antimicrobial activities. These cells synergistically enhance efficacy of currently available antimicrobials especially against the biofilms. Reciprocal action from antimicrobials on the MSCs functionality remains poorly understood. Currently, the main limitation with MSCs based therapy is their limited efficacy. This demands further understanding and can be enhanced through biotechnological interventions. One of the interventional options is the 'priming' to enhance MSCs resistance and specific expression potential. The available literature shows potential antimicrobial actions of MSCs both ex vivo as well as in vivo. The studies on veterinary species are very promising although limited by number and extensiveness in details for their utility as standard therapeutic agents. The current review aims to discuss the role of animals in AMR and the potential antimicrobial actions of MSCs in veterinary medicine. The review also discusses the limitations in their utilization as standard therapeutics.
Collapse
Affiliation(s)
| | - Qumaila Sakeena
- Division of Veterinary Surgery & Radiology, FVSc & AH, Shuhama, J&K, 190006, India
| | - Mohd Yaqoob Wani
- Directorate of Extension Education, SKUAST-K, Shalimar, J&K, 190025, India
| | - Ahmed Abdel-Baset Ismail
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, 44511, Egypt
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, FVSc & AH, Shuhama, J&K, 190006, India
| | - Riaz Ahmad Shah
- Division of Animal Biotechnology, FVSc & AH, Shuhama, J&K, 190006, India
| |
Collapse
|
6
|
Lange-Consiglio A, Gaspari G, Funghi F, Capra E, Cretich M, Frigerio R, Bosi G, Cremonesi F. Amniotic Mesenchymal-Derived Extracellular Vesicles and Their Role in the Prevention of Persistent Post-Breeding Induced Endometritis. Int J Mol Sci 2023; 24:ijms24065166. [PMID: 36982240 PMCID: PMC10049450 DOI: 10.3390/ijms24065166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Persistent post-breeding induced endometritis (PPBIE) is considered a major cause of subfertility in mares. It consists of persistent or delayed uterine inflammation in susceptible mares. There are many options for the treatment of PPBIE, but in this study, a novel approach aimed at preventing the onset of PPBIE was investigated. Stallion semen was supplemented with extracellular vesicles derived from amniotic mesenchymal stromal cells (AMSC-EVs) at the time of insemination to prevent or limit the development of PPBIE. Before use in mares, a dose–response curve was produced to evaluate the effect of AMSC-EVs on spermatozoa, and an optimal concentration of 400 × 106 EVs with 10 × 106 spermatozoa/mL was identified. At this concentration, sperm mobility parameters were not negatively affected. Sixteen susceptible mares were enrolled and inseminated with semen (n = 8; control group) or with semen supplemented with EVs (n = 8; EV group). The supplementation of AMSC-EVs to semen resulted in a reduction in polymorphonuclear neutrophil (PMN) infiltration as well as intrauterine fluid accumulation (IUF; p < 0.05). There was a significant reduction in intrauterine cytokine levels (p < 0.05) for TNF-α and IL-6 and an increase in anti-inflammatory IL-10 in mares in the EV group, suggesting successful modulation of the post-insemination inflammatory response. This procedure may be useful for mares susceptible to PPBIE.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università, 6, 26900 Lodi, Italy
- Correspondence: ; Tel.: +39-025-033-4150
| | - Giulia Gaspari
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università, 6, 26900 Lodi, Italy
| | | | - Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Consiglio Nazionale delle Ricerche (CNR), 26900 Lodi, Italy
| | - Marina Cretich
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Consiglio Nazionale delle Ricerche (CNR), 20133 Milan, Italy
| | - Roberto Frigerio
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Consiglio Nazionale delle Ricerche (CNR), 20133 Milan, Italy
| | - Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università, 6, 26900 Lodi, Italy
| | - Fausto Cremonesi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università, 6, 26900 Lodi, Italy
| |
Collapse
|
7
|
Allogenic umbilical cord blood-mesenchymal stem cells are more effective than antibiotics in alleviating subclinical mastitis in dairy cows. Theriogenology 2022; 187:141-151. [DOI: 10.1016/j.theriogenology.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023]
|
8
|
Uberti B, Plaza A, Henríquez C. Pre-conditioning Strategies for Mesenchymal Stromal/Stem Cells in Inflammatory Conditions of Livestock Species. Front Vet Sci 2022; 9:806069. [PMID: 35372550 PMCID: PMC8974404 DOI: 10.3389/fvets.2022.806069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) therapy has been a cornerstone of regenerative medicine in humans and animals since their identification in 1968. MSCs can interact and modulate the activity of practically all cellular components of the immune response, either through cell-cell contact or paracrine secretion of soluble mediators, which makes them an attractive alternative to conventional therapies for the treatment of chronic inflammatory and immune-mediated diseases. Many of the mechanisms described as necessary for MSCs to modulate the immune/inflammatory response appear to be dependent on the animal species and source. Although there is evidence demonstrating an in vitro immunomodulatory effect of MSCs, there are disparate results between the beneficial effect of MSCs in preclinical models and their actual use in clinical diseases. This discordance might be due to cells' limited survival or impaired function in the inflammatory environment after transplantation. This limited efficacy may be due to several factors, including the small amount of MSCs inoculated, MSC administration late in the course of the disease, low MSC survival rates in vivo, cryopreservation and thawing effects, and impaired MSC potency/biological activity. Multiple physical and chemical pre-conditioning strategies can enhance the survival rate and potency of MSCs; this paper focuses on hypoxic conditions, with inflammatory cytokines, or with different pattern recognition receptor ligands. These different pre-conditioning strategies can modify MSCs metabolism, gene expression, proliferation, and survivability after transplantation.
Collapse
Affiliation(s)
- Benjamin Uberti
- Instituto de Ciencias Clínicas, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Anita Plaza
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Henríquez
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- *Correspondence: Claudio Henríquez
| |
Collapse
|
9
|
Melgaço JG, Azamor T, Silva AMV, Linhares JHR, dos Santos TP, Mendes YS, de Lima SMB, Fernandes CB, da Silva J, de Souza AF, Tubarão LN, Brito e Cunha D, Pereira TBS, Menezes CEL, Miranda MD, Matos AR, Caetano BC, Martins JSCC, Calvo TL, Rodrigues NF, Sacramento CQ, Siqueira MM, Moraes MO, Missailidis S, Neves PCC, Ano Bom APD. Two-Step In Vitro Model to Evaluate the Cellular Immune Response to SARS-CoV-2. Cells 2021; 10:2206. [PMID: 34571855 PMCID: PMC8465121 DOI: 10.3390/cells10092206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
The cellular immune response plays an important role in COVID-19, caused by SARS-CoV-2. This feature makes use of in vitro models' useful tools to evaluate vaccines and biopharmaceutical effects. Here, we developed a two-step model to evaluate the cellular immune response after SARS-CoV-2 infection-induced or spike protein stimulation in peripheral blood mononuclear cells (PBMC) from both unexposed and COVID-19 (primo-infected) individuals (Step1). Moreover, the supernatants of these cultures were used to evaluate its effects on lung cell lines (A549) (Step2). When PBMC from the unexposed were infected by SARS-CoV-2, cytotoxic natural killer and nonclassical monocytes expressing inflammatory cytokines genes were raised. The supernatant of these cells can induce apoptosis of A549 cells (mock vs. Step2 [mean]: 6.4% × 17.7%). Meanwhile, PBMCs from primo-infected presented their memory CD4+ T cells activated with a high production of IFNG and antiviral genes. Supernatant from past COVID-19 subjects contributed to reduce apoptosis (mock vs. Step2 [ratio]: 7.2 × 1.4) and to elevate the antiviral activity (iNOS) of A549 cells (mock vs. Step2 [mean]: 31.5% × 55.7%). Our findings showed features of immune primary cells and lung cell lines response after SARS-CoV-2 or spike protein stimulation that can be used as an in vitro model to study the immunity effects after SARS-CoV-2 antigen exposure.
Collapse
Affiliation(s)
- Juliana G. Melgaço
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Tamiris Azamor
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Andréa M. V. Silva
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - José Henrique R. Linhares
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Tiago P. dos Santos
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Ygara S. Mendes
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Sheila M. B. de Lima
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Camilla Bayma Fernandes
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Jane da Silva
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Alessandro F. de Souza
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Luciana N. Tubarão
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Danielle Brito e Cunha
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Tamires B. S. Pereira
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Catarina E. L. Menezes
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Milene D. Miranda
- Laboratório de Vírus Respiratório e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (M.D.M.); (A.R.M.); (B.C.C.); (J.S.C.C.M.); (M.M.S.)
| | - Aline R. Matos
- Laboratório de Vírus Respiratório e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (M.D.M.); (A.R.M.); (B.C.C.); (J.S.C.C.M.); (M.M.S.)
| | - Braulia C. Caetano
- Laboratório de Vírus Respiratório e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (M.D.M.); (A.R.M.); (B.C.C.); (J.S.C.C.M.); (M.M.S.)
| | - Jéssica S. C. C. Martins
- Laboratório de Vírus Respiratório e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (M.D.M.); (A.R.M.); (B.C.C.); (J.S.C.C.M.); (M.M.S.)
| | - Thyago L. Calvo
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.L.C.); (M.O.M.)
| | - Natalia F. Rodrigues
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (N.F.R.); (C.Q.S.)
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Carolina Q. Sacramento
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (N.F.R.); (C.Q.S.)
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Marilda M. Siqueira
- Laboratório de Vírus Respiratório e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (M.D.M.); (A.R.M.); (B.C.C.); (J.S.C.C.M.); (M.M.S.)
| | - Milton O. Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.L.C.); (M.O.M.)
| | - Sotiris Missailidis
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Patrícia C. C. Neves
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Ana Paula D. Ano Bom
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| |
Collapse
|
10
|
Marrazzo P, Pizzuti V, Zia S, Sargenti A, Gazzola D, Roda B, Bonsi L, Alviano F. Microfluidic Tools for Enhanced Characterization of Therapeutic Stem Cells and Prediction of Their Potential Antimicrobial Secretome. Antibiotics (Basel) 2021; 10:750. [PMID: 34206190 PMCID: PMC8300685 DOI: 10.3390/antibiotics10070750] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is creating enormous attention on the development of new antibiotic-free therapy strategies for bacterial diseases. Mesenchymal stromal stem cells (MSCs) are the most promising candidates in current clinical trials and included in several cell-therapy protocols. Together with the well-known immunomodulatory and regenerative potential of the MSC secretome, these cells have shown direct and indirect anti-bacterial effects. However, the low reproducibility and standardization of MSCs from different sources are the current limitations prior to the purification of cell-free secreted antimicrobial peptides and exosomes. In order to improve MSC characterization, novel label-free functional tests, evaluating the biophysical properties of the cells, will be advantageous for their cell profiling, population sorting, and quality control. We discuss the potential of emerging microfluidic technologies providing new insights into density, shape, and size of live cells, starting from heterogeneous or 3D cultured samples. The prospective application of these technologies to studying MSC populations may contribute to developing new biopharmaceutical strategies with a view to naturally overcoming bacterial defense mechanisms.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| | - Valeria Pizzuti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| | - Silvia Zia
- Stem Sel S.r.l., 40127 Bologna, Italy; (S.Z.); (B.R.)
| | | | - Daniele Gazzola
- Cell Dynamics i.S.r.l., 40129 Bologna, Italy; (A.S.); (D.G.)
| | - Barbara Roda
- Stem Sel S.r.l., 40127 Bologna, Italy; (S.Z.); (B.R.)
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| |
Collapse
|
11
|
El-Sayed A, Kamel M. Bovine mastitis prevention and control in the post-antibiotic era. Trop Anim Health Prod 2021; 53:236. [PMID: 33788033 DOI: 10.1007/s11250-021-02680-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/22/2021] [Indexed: 01/17/2023]
Abstract
Mastitis is the most important disease in the dairy industry. Antibiotics are considered to be the first choice in the treatment of the disease. However, the problem of antibiotic residue and antimicrobial resistance, in addition to the impact of antibiotic abuse on public health, leads to many restrictions on uncontrolled antibiotic therapy in the dairy sector worldwide. Researchers have investigated novel therapeutic approaches to replace the use of antibiotics in mastitis control. These efforts, supported by the revolutionary development of nanotechnology, stem cell assays, molecular biological tools, and genomics, enabled the development of new approaches for mastitis-treatment and control. The present review discusses recent concepts to control mastitis such as breeding of mastitis-resistant dairy cows, the development of novel diagnostic and therapeutic tools, the application of communication technology as an educational and epidemiological tool, application of modern mastitis vaccines, cow drying protocols, teat disinfection, housing, and nutrition. These include the application of nanotechnology, stem cell technology, photodynamic and laser therapy or the use of traditional herbal medical plants, nutraceuticals, antibacterial peptides, bacteriocins, antibodies therapy, bacteriophages, phage lysins, and probiotics as alternatives to antibiotics.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
12
|
Russell KA, Garbin LC, Wong JM, Koch TG. Mesenchymal Stromal Cells as Potential Antimicrobial for Veterinary Use-A Comprehensive Review. Front Microbiol 2020; 11:606404. [PMID: 33335522 PMCID: PMC7736177 DOI: 10.3389/fmicb.2020.606404] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
The emergence of “superbugs” resistant to antimicrobial medications threatens populations both veterinary and human. The current crisis has come about from the widespread use of the limited number of antimicrobials available in the treatment of livestock, companion animal, and human patients. A different approach must be sought to find alternatives to or enhancements of present conventional antimicrobials. Mesenchymal stromal cells (MSC) have antimicrobial properties that may help solve this problem. In the first part of the review, we explore the various mechanisms at work across species that help explain how MSCs influence microbial survival. We then discuss the findings of recent equine, canine, and bovine studies examining MSC antimicrobial properties in which MSCs are found to have significant effects on a variety of bacterial species either alone or in combination with antibiotics. Finally, information on the influence that various antimicrobials may have on MSC function is reviewed. MSCs exert their effect directly through the secretion of various bioactive factors or indirectly through the recruitment and activation of host immune cells. MSCs may soon become a valuable tool for veterinarians treating antimicrobial resistant infections. However, a great deal of work remains for the development of optimal MSC production conditions and testing for efficacy on different indications and species.
Collapse
Affiliation(s)
- Keith A Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Livia C Garbin
- Clinical Veterinary Sciences Department, School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, West Indies
| | - Jonathan M Wong
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|