1
|
Hu Y, Li Z, Hao C, Lu H, Xing Y, Liu K, Jin X, Wei Z. Identification of an immunodominant neutralizing epitope of porcine astrovirus type 5 capsid protein. Virol Sin 2025:S1995-820X(25)00025-2. [PMID: 40096890 DOI: 10.1016/j.virs.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/11/2025] [Indexed: 03/19/2025] Open
Affiliation(s)
- Yixin Hu
- College of Veterinary Medicine, Henan Agriculture University, Zhengzhou, 450046, China; Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, 450046, China
| | - Zehui Li
- College of Veterinary Medicine, Henan Agriculture University, Zhengzhou, 450046, China; Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, 450046, China
| | - Chenlin Hao
- College of Veterinary Medicine, Henan Agriculture University, Zhengzhou, 450046, China; Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, 450046, China
| | - Hao Lu
- College of Veterinary Medicine, Henan Agriculture University, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, China; Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, 450046, China
| | - Yunfei Xing
- College of Veterinary Medicine, Henan Agriculture University, Zhengzhou, 450046, China; Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, 450046, China
| | - Kexin Liu
- College of Veterinary Medicine, Henan Agriculture University, Zhengzhou, 450046, China; Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, 450046, China
| | - Xiaohui Jin
- College of Veterinary Medicine, Henan Agriculture University, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, China; Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, 450046, China.
| | - Zhanyong Wei
- College of Veterinary Medicine, Henan Agriculture University, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, China; Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Li B, Tao J, Li X, Cheng J, Shi Y, Tang P, Liu H. Relevancy Prediction of the Emerging Pathogens with Porcine Diarrhea by Logistic Regression Model. Microorganisms 2025; 13:528. [PMID: 40142424 PMCID: PMC11944762 DOI: 10.3390/microorganisms13030528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Porcine viral diarrhea has always been one of the main obstacles to the healthy development of the pig industry in China with its variety of pathogens and complexity of co-infections. Analysis of the dominant mixed-infection model is a fundamental step in boosting the prevention and control of porcine diarrhea. In this study, 3256 porcine fecal samples were collected from 17 pig herds in Shanghai, China, from 2015 to 2023 to identify novel pathogenic infection patterns. The results confirmed that porcine astrovirus (PAstV), porcine sapelovirus (PSV), and porcine epidemic diarrhea virus (PEDV) were the top three agents with positive rates of 28.47%, 20.71%, and 20.23%, respectively. Porcine rotavirus (PoRV) and transmissible gastroenteritis virus (TGEV) accounted for only 8.12% and 1.12%, respectively. Importantly, mixed infection rates were high and complicated. The double infection rate was higher than that of a single infection. Next, the mixed-infection model of PEDV and emerging diarrheal pathogens was explored. The predominant dual-infection models were PEDV/PKoV (porcine kobuvirus) (14.18%), PEDV/PAstV (10.02%), and PEDV/PSV (9.29%). The predominant triple infection models were PEDV/PKoV/PAstV (18.93%), PEDV/PSV/PAstV (10.65%), and PEDV/PKoV/PSV (7.10%). The dominant quadruple-infection model was PEDV/PAstV/PSV/PKoV (46.82%). In conclusion, PEDV is mainly mix-infected with PAstV, PSV, and PKoV in clinical settings. Furthermore, multiple-factor logistic regression analysis confirmed that PAstV, PKoV, bovine viral diarrhea virus (BVDV), and PEDV were closely related to porcine diarrhea. PEDV/PKoV, PEDV/porcine sapovirus (PoSaV), PKoV/BVDV, PoSaV/BVDV, and porcine deltacoronavirus (PDCoV)/PoSaV had great co-infection dominance, which will be helpful for porcine co-infection research.
Collapse
Affiliation(s)
- Benqiang Li
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (B.L.); (J.T.); (X.L.); (J.C.); (Y.S.); (P.T.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Jie Tao
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (B.L.); (J.T.); (X.L.); (J.C.); (Y.S.); (P.T.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Xin Li
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (B.L.); (J.T.); (X.L.); (J.C.); (Y.S.); (P.T.)
| | - Jinghua Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (B.L.); (J.T.); (X.L.); (J.C.); (Y.S.); (P.T.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Ying Shi
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (B.L.); (J.T.); (X.L.); (J.C.); (Y.S.); (P.T.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Pan Tang
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (B.L.); (J.T.); (X.L.); (J.C.); (Y.S.); (P.T.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (B.L.); (J.T.); (X.L.); (J.C.); (Y.S.); (P.T.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| |
Collapse
|
3
|
He J, Shi K, Shi Y, Yin Y, Feng S, Long F, Qu S, Song X. Development of a Quadruplex RT-qPCR for the Detection of Porcine Astrovirus, Porcine Sapovirus, Porcine Norovirus, and Porcine Rotavirus A. Pathogens 2024; 13:1052. [PMID: 39770312 PMCID: PMC11728830 DOI: 10.3390/pathogens13121052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/05/2025] Open
Abstract
Porcine astrovirus (PoAstV), porcine sapovirus (PoSaV), porcine norovirus (PoNoV), and porcine rotavirus A (PoRVA) are newly discovered important porcine diarrhea viruses with a wide range of hosts and zoonotic potential, and their co-infections are often found in pig herds. In this study, the specific primers and probes were designed targeting the ORF1 gene of PoAstV, PoSaV, and PoNoV, and the VP6 gene of PoRVA. The recombinant standard plasmids were constructed, the reaction conditions (concentration of primers and probes, annealing temperature, and reaction cycle) were optimized, and the specificity, sensitivity, and reproducibility were analyzed to establish a quadruplex real-time quantitative RT-PCR (RT-qPCR) assay for the detection of these four diarrheal viruses. The results demonstrated that the assay effectively tested PoAstV, PoSaV, PoNoV, and PoRVA without cross-reactivity with other swine viruses, and had limits of detection (LODs) of 138.001, 135.167, 140.732, and 132.199 (copies/reaction) for PoAstV, PoSaV, PoNoV, and PoRVA, respectively, exhibiting high specificity and sensitivity. Additionally, it displayed good reproducibility, with coefficients of variation (CVs) of 0.09-1.24% for intra-assay and 0.08-1.03% for inter-assay. The 1578 clinical fecal samples from 14 cities in Guangxi Province, China, were analyzed via the developed assay. The results indicated that the clinical samples from Guangxi Province exhibited the prevalence of PoAstV (35.93%, 567/1578), PoSaV (8.37%, 132/1578), PoNoV (2.98%, 47/1578), and PoRVA (14.32%, 226/1578), and had a notable incidence of mixed infections of 18.31% (289/1578). Simultaneously, the 1578 clinical samples were analyzed with the previously established assays, and the coincidence rates of these two approaches exceeded 99.43%. This study developed an efficient and precise diagnostic method for the detection and differentiation of PoAstV, PoSaV, PoNoV, and PoRVA, enabling the successful diagnosis of these four diseases.
Collapse
Affiliation(s)
- Junxian He
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (Y.S.)
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (Y.S.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Y.Y.); (S.F.); (F.L.); (S.Q.)
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (Y.S.)
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Y.Y.); (S.F.); (F.L.); (S.Q.)
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Y.Y.); (S.F.); (F.L.); (S.Q.)
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Y.Y.); (S.F.); (F.L.); (S.Q.)
| | - Sujie Qu
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Y.Y.); (S.F.); (F.L.); (S.Q.)
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (Y.S.)
| |
Collapse
|
4
|
Tao J, Cheng J, Shi Y, Li B, Tang P, Jiao J, Liu H. NLRX1 Mediates the Disruption of Intestinal Mucosal Function Caused by Porcine Astrovirus Infection via the Extracellular Regulated Protein Kinases/Myosin Light-Chain Kinase (ERK/MLCK) Pathway. Cells 2024; 13:913. [PMID: 38891045 PMCID: PMC11171766 DOI: 10.3390/cells13110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Porcine astrovirus (PAstV) has a potential zoonotic risk, with a high proportion of co-infection occurring with porcine epidemic diarrhea virus (PEDV) and other diarrheal pathogens. Despite its high prevalence, the cellular mechanism of PAstV pathogenesis is ill-defined. Previous proteomics analyses have revealed that the differentially expressed protein NOD-like receptor X1 (NLRX1) located in the mitochondria participates in several important antiviral signaling pathways in PAstV-4 infection, which are closely related to mitophagy. In this study, we confirmed that PAstV-4 infection significantly up-regulated NLRX1 and mitophagy in Caco-2 cells, while the silencing of NLRX1 or the treatment of mitophagy inhibitor 3-MA inhibited PAstV-4 replication. Additionally, PAstV-4 infection triggered the activation of the extracellular regulated protein kinases/ myosin light-chain kinase (ERK/MLCK) pathway, followed by the down-regulation of tight-junction proteins (occludin and ZO-1) as well as MUC-2 expression. The silencing of NLRX1 or the treatment of 3-MA inhibited myosin light-chain (MLC) phosphorylation and up-regulated occludin and ZO-1 proteins. Treatment of the ERK inhibitor PD98059 also inhibited MLC phosphorylation, while MLCK inhibitor ML-7 mitigated the down-regulation of mucosa-related protein expression induced by PAstV-4 infection. Yet, adding PD98059 or ML-7 did not affect NLRX1 expression. In summary, this study preliminarily explains that NLRX1 plays an important role in the disruption of intestinal mucosal function triggered by PAstV-4 infection via the ERK/MLC pathway. It will be helpful for further antiviral drug target screening and disease therapy.
Collapse
Affiliation(s)
- Jie Tao
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Jinghua Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Ying Shi
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Benqiang Li
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Pan Tang
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Jiajie Jiao
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| |
Collapse
|
5
|
Li Z, Wu X, Zhang Y, Li Q, Gao J, Hu Y, Yuan J, Hu H, Jin X, Wei Z. Isolation and Pathogenicity of a Chinese Porcine Astrovirus Type 5 Strain HNPDS-01 and Its Influence on Cecum Microbiota in Piglets. Transbound Emerg Dis 2024; 2024:5777097. [PMID: 40303176 PMCID: PMC12016781 DOI: 10.1155/2024/5777097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 05/02/2025]
Abstract
Astroviruses have frequently been found in mammals and poultry, but only a few have been successfully isolated for extensive research. Here, we isolated a strain of porcine astrovirus type 5 (PAstV 5) on LLC-porcine kidney (LLC-PK) cells, from the intestinal contents of diarrhea piglets, namely PAstV 5-HNPDS-01. The complete genome sequence length of this strain was 6,419 nt, which has 77.2%-91.1% nucleotide homology with other PAstV 5 strains and 45.0%-50.0% nucleotide homology with other mammalian astroviruses. The recombination analysis indicated that the recombination events were occurred in ORF 2 region (4,444-5,323 nt) in PAstV 5-HNPDS-01 strain. Subsequently, the pathogenicity of PAstV 5-HNPDS-01 was evaluated in 5-day-old piglets. It showed that the PAstV 5-HNPDS-01 could cause mild diarrhea, growth retardation, minor damage to intestinal villi clinically. Meanwhile, PAstV 5-HNPDS-01 infection could affect the microbiota diversity and composition of cecum in piglet from phylum to genus level. After infected with PAstV 5, there was a significant downregulation of beneficial bacteria, including Faecalibacterium, Bacteroides, Lactobacillus, and Prevotella, while harmful bacteria such as Subdoligranulun showed a significant upregulation. These results provided a research basis for pathogenic mechanisms, vaccine development, and beneficial symbiotic bacteria development for PAstV 5 infection.
Collapse
Affiliation(s)
- Zehui Li
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xingyi Wu
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yunfei Zhang
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Qianqian Li
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Junlong Gao
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yixin Hu
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Jin Yuan
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, Henan, China
| | - Hui Hu
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, Henan, China
- Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou 450002, Henan, China
| | - Xiaohui Jin
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, Henan, China
| | - Zhanyong Wei
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, Henan, China
- Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou 450002, Henan, China
| |
Collapse
|
6
|
Zhang Q, Wen D, Liu Q, Opriessnig T, Yu X, Jiang Y. Universal primer multiplex PCR assay for detection and genotyping of porcine astroviruses. J Virol Methods 2023; 322:114822. [PMID: 37729969 DOI: 10.1016/j.jviromet.2023.114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/03/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Porcine astroviruses (PAstV) are members of the family Astroviridae, Mamastravirus genus and have been identified to have five genotypes (PAstV1-5). These viruses are highly prevalent in pigs and can cause enteric disease as well as neurological or respiratory symptoms depending on their genotypes. At present, the epidemiological impacts of some PAstV genotypes on pigs are largely unknown and hence continuously monitoring of these PAstVs may be needed. The purpose of this research was to develop an improved and efficient detection tool for PAstVs and to evaluate the developed method using clinical samples. Initially, a set of five chimeric primers (CP), each comprising genotype specific primer pairs with an identical universal adapter at the 5' end, and a universal primer (UP) that is identical to universal adapter sequence, were designed. With these tools in place, a novel multiplex PCR system with universal primer was established for the simultaneous detection of the five types of PAstV. This method can specifically detect PAstV genotypes, with a limit of detection (LOD) of 5 copies/μL for each genotype irrespective of single or mixed target template. Using this new assay, 273 pig fecal samples were investigated for further assay evaluation. Among all samples, the positive rate was 70.0% with PAstV4 in 56.8% of the samples, PAstV2 in 38.8%, PAstV1 in 16.8%, and PAstV5 in 11.0%. More than one PAstV in a sample were detected in 39.2% of the samples. The consistency rate between the novel multiplex PCR and singleplex PCRs was 96.4-100%. Given its rapidity, specificity and sensitivity, the novel multiplex PCR is a useful approach for demonstrating single or mixed genotype infections of PAstV.
Collapse
Affiliation(s)
- Qiuya Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Dan Wen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qin Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tanja Opriessnig
- Vaccines and Diagnostics Department, Moredun Research Institute, Penicuik, Midlothian, UK; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Xiaoya Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yonghou Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
7
|
Sawant P, Kulkarni A, Mane R, Patil R, Lavania M. Metatranscriptomic assessment of diarrhoeic faeces reveals diverse RNA viruses in rotavirus group A infected piglets and calves from India. Front Cell Infect Microbiol 2023; 13:1258660. [PMID: 37965252 PMCID: PMC10642067 DOI: 10.3389/fcimb.2023.1258660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023] Open
Abstract
RNA viruses are a major group contributing to emerging infectious diseases and neonatal diarrhoea, causing morbidity and mortality in humans and animals. Hence, the present study investigated the metatranscriptomic-derived faecal RNA virome in rotavirus group A (RVA)-infected diarrheic piglets and calves from India. The viral genomes retrieved belonged to Astroviridae in both species, while Reoviridae and Picornaviridae were found only in piglets. The nearly complete genomes of porcine RVA (2), astrovirus (AstV) (6), enterovirus G (EVG) (2), porcine sapelovirus (PSV) (2), Aichivirus C (1), and porcine teschovirus (PTV) (1) were identified and characterised. In the piglet, AstVs of PAstV2 (MAstV-26) and PAstV4 (MAstV-31) lineages were predominant, followed by porcine RVA, EVG, PSV, Aichivirus C, teschovirus (PTV-17) in decreasing order of sequence reads. In contrast, AstV accounted for the majority of reads in bovines and belonged to MAstV-28 and a proposed MAstV-35. Both RVA G4P[6] strains exhibited prototype Gottfried strains like a genotypic constellation of G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1. Ten out of eleven genes were of porcine origin, while the VP7 gene clustered with G4-lineage-1, consisting of human strains, suggesting a natural porcine-human reassortant. In the recombination analysis, multiple recombination events were detected in the PAstV4 and PAstV2 genomes, pointing out that these viruses were potential recombinants. Finally, the study finds diverse RNA virome in Indian piglets and calves for the first time, which may have contributed to diarrhoea. In the future, the investigation of RNA virome in animals will help in revealing pathogen diversity in multifactorial diseases, disease outbreaks, monitoring circulating viruses, viral discovery, and evaluation of their zoonotic potential.
Collapse
Affiliation(s)
- Pradeep Sawant
- Enteric Viruses Group, Indian Council of Medical Research (ICMR) - National Institute of Virology, Pune, India
| | - Abhijeet Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Rajkumar Mane
- Enteric Viruses Group, Indian Council of Medical Research (ICMR) - National Institute of Virology, Pune, India
| | - Renu Patil
- Enteric Viruses Group, Indian Council of Medical Research (ICMR) - National Institute of Virology, Pune, India
| | - Mallika Lavania
- Enteric Viruses Group, Indian Council of Medical Research (ICMR) - National Institute of Virology, Pune, India
| |
Collapse
|
8
|
Vaishali, Gupta R, Kumar M, Bansal N, Vivek, Kumar P, Kumar P, Jindal N. Coinfection of porcine astrovirus and other porcine viruses in diarrheic pigs in Haryana, India. Arch Virol 2023; 168:246. [PMID: 37676345 DOI: 10.1007/s00705-023-05865-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023]
Abstract
In this study, 306 rectal swabs from diarrheal pigs of various ages (0-3 weeks, 3-6 weeks, and >6 weeks) were collected from 54 piggery units in different climatic zones in Haryana state, India. These samples were tested for the presence of porcine astrovirus (PAstV), porcine rotavirus group A (PRV-A), and classical swine fever virus (CSFV) by reverse transcription polymerase chain reaction (RT-PCR), and porcine circovirus 2 (PCV-2) by polymerase chain reaction (PCR). Out of the 306 samples tested, 153 (50%), 108 (35.3%), 32 (10.6%), and three (0.9%) tested positive for PAstV, PCV-2, PRV-A, and CSFV, respectively. A single infection was detected in 135 samples, while mixed infections were found in 77 samples: 70 with two viruses and seven samples with more than two. PAstV was detected most frequently (55.31%) in pigs aged 3-6 weeks. PCV-2 was more predominant in pigs aged 0-3 weeks (36.53%), whereas PRV-A was more common in pigs aged 3-6 weeks (11.3%). CSFV was observed in the age group of 0-3 weeks (1.92%). Phylogenetic analysis revealed the circulation of lineages 2 and 4 of PAstV in this region. Thus, it can be concluded that one or more than one virus is circulating in piggery units in Haryana, India.
Collapse
Affiliation(s)
- Vaishali
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Renu Gupta
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Mohit Kumar
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Nitish Bansal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Vivek
- Department of Veterinary Medicine, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Parveen Kumar
- Department of Veterinary Microbiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Pawan Kumar
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Naresh Jindal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India.
| |
Collapse
|
9
|
Puente H, Arguello H, Cortey M, Gómez-García M, Mencía-Ares O, Pérez-Perez L, Díaz I, Carvajal A. Detection and genetic characterization of enteric viruses in diarrhoea outbreaks from swine farms in Spain. Porcine Health Manag 2023; 9:29. [PMID: 37349807 DOI: 10.1186/s40813-023-00326-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND The aim of this work was to study the prevalence and distribution of Porcine astrovirus (PAstV), Porcine kobuvirus (PKoV), Porcine torovirus (PToV), Mammalian orthoreovirus (MRV) and Porcine mastadenovirus (PAdV) as well as their association with widely recognized virus that cause diarrhoea in swine such as coronavirus (CoVs) and rotavirus (RVs) in diarrhoea outbreaks from Spanish swine farms. Furthermore, a selection of the viral strains was genetically characterized. RESULTS PAstV, PKoV, PToV, MRV and PAdV were frequently detected. Particularly, PAstV and PKoV were detected in almost 50% and 30% of the investigated farms, respectively, with an age-dependent distribution; PAstV was mainly detected in postweaning and fattening pigs, while PKoV was more frequent in sucking piglets. Viral co-infections were detected in almost half of the outbreaks, combining CoVs, RVs and the viruses studied, with a maximum of 5 different viral species reported in three investigated farms. Using a next generation sequencing approach, we obtained a total of 24 ARN viral genomes (> 90% genome sequence), characterizing for first time the full genome of circulating strains of PAstV2, PAstV4, PAstV5 and PToV on Spanish farms. Phylogenetic analyses showed that PAstV, PKoV and PToV from Spanish swine farms clustered together with isolates of the same viral species from neighboring pig producing countries. CONCLUSIONS Although further studies to evaluate the role of these enteric viruses in diarrhoea outbreaks are required, their wide distribution and frequent association in co-infections cannot be disregard. Hence, their inclusion into routine diagnostic panels for diarrhoea in swine should be considered.
Collapse
Affiliation(s)
- Héctor Puente
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain.
| | - Héctor Arguello
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- INDEGSAL, Universidad de León, León, Spain
| | - Martí Cortey
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Manuel Gómez-García
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Oscar Mencía-Ares
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Lucía Pérez-Perez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Ivan Díaz
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Bellaterra, Spain
| | - Ana Carvajal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- INDEGSAL, Universidad de León, León, Spain
| |
Collapse
|
10
|
Dong Q, Zhu X, Wang L, Zhang W, Lu L, Li J, Zhong S, Ma C, Ouyang K, Chen Y, Wei Z, Qin Y, Peng H, Huang W. Replication of Porcine Astrovirus Type 1-Infected PK-15 Cells In Vitro Affected by RIG-I and MDA5 Signaling Pathways. Microbiol Spectr 2023; 11:e0070123. [PMID: 37140381 PMCID: PMC10269537 DOI: 10.1128/spectrum.00701-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
The interferon (IFN) system is an extremely powerful antiviral response in animal cells. The subsequent effects caused by porcine astrovirus type 1 (PAstV1) IFN activation are important for the host's response to viral infections. Here, we show that this virus, which causes mild diarrhea, growth retardation, and damage of the villi of the small intestinal mucosa in piglets, induces an IFN response upon infection of PK-15 cells. Although IFN-β mRNA was detected within infected cells, this response usually occurs during the middle stages of infection, after genome replication has taken place. Treatment of PAstV1-infected cells with the interferon regulatory factor 3 (IRF3) inhibitor BX795 decreased IFN-β expression, whereas the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) inhibitor BAY11-7082 did not. These findings indicate that PAstV induced the production of IFN-β via IRF3-mediated rather than NF-κB-mediated signaling pathways in PK-15 cells. Moreover, PAstV1 increased the protein expression levels of retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) in PK-15 cells. The knockdown of RIG-I and MDA5 decreased the expression levels of IFN-β and the viral loads and increased the infectivity of PAstV1. In conclusion, PAstV1 induced the production of IFN-β via the RIG-I and MDA5 signaling pathways, and the IFN-β produced during PAstV1 infection inhibited viral replication. These results will help provide new evidence that PAstV1-induced IFNs may protect against PAstV replication and pathogenesis. IMPORTANCE Astroviruses (AstVs) are widespread and can infect multiple species. Porcine astroviruses produce mainly gastroenteritis and neurological diseases in pigs. However, astrovirus-host interactions are less well studied, particularly with respect to their antagonism of IFN. Here, we report that PAstV1 acts via IRF3 transcription pathway activation of IFN-β. In addition, the knockdown of RIG-I and MDA5 attenuated the production of IFN-β induced by PAstV1 in PK-15 cells and increased efficient viral replication in vitro. We believe that these findings will help us to better understand the mechanism of how AstVs affect the host IFN response.
Collapse
Affiliation(s)
- Qinting Dong
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Xinyue Zhu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Leping Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wenchao Zhang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Lifei Lu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Jun Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Shuhong Zhong
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Chunxia Ma
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| |
Collapse
|
11
|
Zhang Q, Liu Q, Opriessnig T, Wen D, Gu K, Jiang Y. Multiplex gel-based PCR assay for the simultaneous detection of 5 genotypes of porcine astroviruses. J Vet Diagn Invest 2023; 35:132-138. [PMID: 36573660 PMCID: PMC9999398 DOI: 10.1177/10406387221145329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Porcine astrovirus (PAstV) has been associated experimentally with diarrhea in piglets, but much more knowledge is needed about this virus. PAstV has high genetic variability, and 5 genotypes have been identified, namely PAstV1-5. To obtain information on the epidemiology of PAstV, we established a multiplex PAstV PCR assay to detect and differentiate the 5 PAstV genotypes simultaneously. The assay utilized specific primers for each genotype, producing fragments of 307, 353, 205, 253, and 467 bp, representing PAstV1-5, respectively. Our multiplex PCR assay amplified all 5 DNA fragments from single or mixed viral genomes without cross-reactions with other PAstV genotypes or other viruses in pigs. The limit of detection of the multiplex PCR assay was 5 × 102 copies/μL for PAstV1 and PAstV4, and 5 × 103 copies/μL for PAstV2, PAstV3, and PAstV5. We examined 76 pig fecal specimens with our multiplex PCR assay. PAstV was detected in 36 of 76 (47.4%) samples; ≥2 PAstVs were found in 20 of 76 (26.3%) samples. The multiplex PCR assay results were essentially the same as the results using a monoplex PAstV PCR assay, with a coincidence rate of >96%. Our multiplex PCR method provides a simple, sensitive, and specific detection tool for PAstV detection and epidemiologic surveys.
Collapse
Affiliation(s)
- Qiuya Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qin Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Dan Wen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Keda Gu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yonghou Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
12
|
Tao J, Li B, Cheng J, Shi Y, Qiao C, Lin Z, Liu H. Genomic Divergence Characterization and Quantitative Proteomics Exploration of Type 4 Porcine Astrovirus. Viruses 2022; 14:v14071383. [PMID: 35891364 PMCID: PMC9319226 DOI: 10.3390/v14071383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Porcine astrovirus (PAstV) has been identified as an important diarrheic pathogen with a broad global distribution. The PAstV is a potential pathogen to human beings and plays a role in public health. Until now, the divergence characteristics and pathogenesis of the PAstV are still not well known. In this study, the PAstV-4 strain PAstV/CH/2022/CM1 was isolated from the diarrheal feces of a piglet in Shanghai, which was identified to be a recombination of PAstV4/JPN (LC201612) and PAstV4/CHN (JX060808). A time tree based on the ORF2 protein of the astrovirus demonstrated that type 2–5 PAstV (PAstV-2 to 5) diverged from type 1 PAstV (PAstV-1) at a point from 1992 to 2000. To better understand the molecular basis of the virus, we sought to explore the host cell response to the PAstV/CH/2022/CM1 infection using proteomics. The results demonstrate that viral infection elicits global protein changes, and that the mitochondria seems to be a primary and an important target in viral infection. Importantly, there was crosstalk between autophagy and apoptosis, in which ATG7 might be the key mediator. In addition, the NOD-like receptor X1 (NLRX1) in the mitochondria was activated and participated in several important antiviral signaling pathways after the PAstV/CH/2022/CM1 infection, which was closely related to mitophagy. The NLRX1 may be a crucial protein for antagonizing a viral infection through autophagy, but this has yet to be validated. In conclusion, the data in this study provides more information for understanding the virus genomic characterization and the potential antiviral targets in a PAstV infection.
Collapse
Affiliation(s)
- Jie Tao
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (J.C.); (Y.S.); (C.Q.); (Z.L.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Benqiang Li
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (J.C.); (Y.S.); (C.Q.); (Z.L.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Jinghua Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (J.C.); (Y.S.); (C.Q.); (Z.L.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Ying Shi
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (J.C.); (Y.S.); (C.Q.); (Z.L.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Changtao Qiao
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (J.C.); (Y.S.); (C.Q.); (Z.L.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Zhi Lin
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (J.C.); (Y.S.); (C.Q.); (Z.L.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (J.C.); (Y.S.); (C.Q.); (Z.L.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
- Correspondence:
| |
Collapse
|
13
|
Development of a Multiplex RT-PCR Assay for Simultaneous Detection of Four Potential Zoonotic Swine RNA Viruses. Vet Sci 2022; 9:vetsci9040176. [PMID: 35448674 PMCID: PMC9029180 DOI: 10.3390/vetsci9040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
Swine viruses like porcine sapovirus (SaV), porcine encephalomyocarditis virus (EMCV), porcine rotavirus A (RVA) and porcine astroviruses (AstV) are potentially zoonotic viruses or suspected of potential zoonosis. These viruses have been detected in pigs with or without clinical signs and often occur as coinfections. Despite the potential public health risks, no assay for detecting them all at once has been developed. Hence, in this study, a multiplex RT-PCR (mRT-PCR) assay was developed for the simultaneous detection of SaV, EMCV, RVA and AstV from swine fecal samples. The PCR parameters were optimized using specific primers for each target virus. The assay’s sensitivity, specificity, reproducibility, and application to field samples have been evaluated. Using a pool of plasmids containing the respective viral target fragments as a template, the developed mRT-PCR successfully detected 2.5 × 103 copies of each target virus. The assay’s specificity was tested using six other swine viruses as a template and did not show any cross-reactivity. A total of 280 field samples were tested with the developed mRT-PCR assay. Positive rates for SaV, EMCV, RVA, and AstV were found to be 24.6% (69/280), 5% (14/280), 4.3% (12/280), and 17.5% (49/280), respectively. Compared to performing separate assays for each virus, this mRT-PCR assay is a simple, rapid, and cost-effective method for detecting mixed or single infections of SaV, EMCV, RVA, and AstV.
Collapse
|
14
|
Werid GM, Ibrahim YM, Chen H, Fu L, Wang Y. Molecular Detection and Genetic Characterization of Potential Zoonotic Swine Enteric Viruses in Northern China. Pathogens 2022; 11:pathogens11040417. [PMID: 35456092 PMCID: PMC9031704 DOI: 10.3390/pathogens11040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Despite significant economic and public health implications, swine enteric viruses that do not manifest clinical symptoms are often overlooked, and data on their epidemiology and pathogenesis are still scarce. Here, an epidemiological study was carried out by using reverse transcription-polymerase chain reaction (RT-PCR) and sequence analysis in order to better understand the distribution and genetic diversity of porcine astrovirus (PAstV), porcine encephalomyocarditis virus (EMCV), porcine kobuvirus (PKV), and porcine sapovirus (PSaV) in healthy pigs reared under specific pathogen-free (SPF) or conventional farms. PKV was the most prevalent virus (51.1%, 247/483), followed by PAstV (35.4%, 171/483), then PSaV (18.4%, 89/483), and EMCV (8.7%, 42/483). Overall, at least one viral agent was detected in 300 out of 483 samples. Out of the 300 samples, 54.0% (162/300), 13.0% (39/300), or 1.0% (3/300) were found coinfected by two, three, or four viruses, respectively. To our knowledge, this is the first report of EMCV detection from porcine fecal samples in China. Phylogenetic analysis revealed genetically diverse strains of PAstV, PKV, and PSaV circulating in conventional and SPF farms. Detection of swine enteric viruses with a high coinfection rate in healthy pigs highlights the importance of continuous viral surveillance to minimize future economic and public health risks.
Collapse
Affiliation(s)
- Gebremeskel Mamu Werid
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.M.W.); (Y.M.I.); (H.C.)
| | - Yassein M. Ibrahim
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.M.W.); (Y.M.I.); (H.C.)
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.M.W.); (Y.M.I.); (H.C.)
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing 408599, China
- Correspondence: (L.F.); (Y.W.)
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.M.W.); (Y.M.I.); (H.C.)
- Chongqing Academy of Animal Science, Chongqing 408599, China
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- Correspondence: (L.F.); (Y.W.)
| |
Collapse
|
15
|
Kong F, Wang Q, Kenney SP, Jung K, Vlasova AN, Saif LJ. Porcine Deltacoronaviruses: Origin, Evolution, Cross-Species Transmission and Zoonotic Potential. Pathogens 2022; 11:79. [PMID: 35056027 PMCID: PMC8778258 DOI: 10.3390/pathogens11010079] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus of swine that causes acute diarrhoea, vomiting, dehydration and mortality in seronegative neonatal piglets. PDCoV was first reported in Hong Kong in 2012 and its etiological features were first characterized in the United States in 2014. Currently, PDCoV is a concern due to its broad host range, including humans. Chickens, turkey poults, and gnotobiotic calves can be experimentally infected by PDCoV. Therefore, as discussed in this review, a comprehensive understanding of the origin, evolution, cross-species transmission and zoonotic potential of epidemic PDCoV strains is urgently needed.
Collapse
Affiliation(s)
- Fanzhi Kong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Scott P. Kenney
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Flores C, Ariyama N, Bennett B, Mena J, Verdugo C, Mor S, Brito B, Ramírez-Toloza G, Neira V. Case Report: First Report and Phylogenetic Analysis of Porcine Astroviruses in Chile. Front Vet Sci 2021; 8:764837. [PMID: 34901251 PMCID: PMC8656452 DOI: 10.3389/fvets.2021.764837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Abstract
Porcine Astrovirus (PoAstV) causes mild diarrhea in young pigs and is considered an emerging virus in the swine industry worldwide. PoAstV has high genetic diversity and has been classified into five genetic lineages, PoAstV1–5. In Chile, only human astroviruses have been reported. This study aimed to determine the presence and genetic diversity of PoAstV circulating in intensive pig farms in Chile. Seventeen Chilean intensive swine farms from Valparaíso, Metropolitana, O'Higgins, Ñuble and Araucanía regions were sampled. A selection of oral fluid and fecal material samples from 1–80 days-old pigs were collected and analyzed using next-generation sequencing. The circulation of PoAstV was confirmed in all studied farms. We obtained complete or partial sequences of PoAstV-2 (n = 3), PoAstV-4 (n = 2), and PoAstV-5 (n = 7). In 15 out of 17 farms, we detected more than one lineage co-circulating. Phylogenetic analyses grouped the seven PoAstV-5 strains in a monophyletic cluster, closely related to the United States PoAstV-5 strains. The three PoAstV-2 were located into two separate sub-clusters. PoAstV-4 sequences are also grouped in two different clusters, all related to Japanese strains. Thus, our results indicate that PoAstV circulates in Chile with high frequency and diversity. However, the lack of reference sequences impairs local evolution patterns establishment and regional comparisons. This is the first contribution of PoAstV genomes in Latin America; more studies are needed to understand the diversity and impact of PoAstV on swine health.
Collapse
Affiliation(s)
- Carlos Flores
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
| | - Naomi Ariyama
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
| | - Benjamín Bennett
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
| | - Juan Mena
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
| | - Claudio Verdugo
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Sunil Mor
- College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Barbara Brito
- The Ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Galia Ramírez-Toloza
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
| | - Victor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
| |
Collapse
|
17
|
Epidemiological investigation and genetic characterization of porcine astrovirus genotypes 2 and 5 in Yunnan province, China. Arch Virol 2021; 167:355-366. [PMID: 34839421 PMCID: PMC8627673 DOI: 10.1007/s00705-021-05311-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/10/2021] [Indexed: 01/25/2023]
Abstract
Astroviruses (AstVs) are among the most important viruses causing diarrhea in human infants and many animals, posing a threat to public health safety and a burden on the economy. Five porcine AstV (PAstV) genotypes have been identified in various countries, including China. However, the epidemiology of PAstV in Yunnan province, China, remains unknown. In this study, 489 fecal samples from pigs in all 16 prefectures/cities of Yunnan were collected between April and August of 2020 for epidemiological investigation. The total infection rate of PAstV-2 or PAstV-5 was 39.9%, with suckling piglets having the highest infection rate (62.3%). The ORF2 genes of seven PAstV-2 and 10 PAstV-5 isolates were sequenced and phylogenetically analyzed. In addition to coinfections with PAstV-2 and PAstV-5, coinfections of PAstV with other diarrhea-inducing viruses (e.g., porcine bocavirus) were also discovered. A comparison of ORF2-encoded capsid protein sequences revealed that there were multiple insertions and deletions in the seven Yunnan PAstV-2 sequences, while point mutations, but no deletions or insertions, were found in the 10 Yunnan PAstV-5 sequences, which were very similar to the reference sequences. This is the first epidemiological investigation and genetic characterization of PAstV-2 and PAstV-5 in Yunnan province, China, demonstrating the current PAstV infection situation in Yunnan.
Collapse
|
18
|
Zhang W, Wang W, Liu X, Chen Y, Ouyang K, Wei Z, Liu H, Huang W. Identification of novel B-cell epitopes on the capsid protein of type 1 porcine astrovirus, using monoclonal antibodies. Int J Biol Macromol 2021; 189:939-947. [PMID: 34464644 DOI: 10.1016/j.ijbiomac.2021.08.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Porcine astrovirus (PAstV) is prevalent in pigs worldwide and could cause clinical symptoms such as diarrhea and encephalitis. The capsid protein (Cap) of PAstV plays a determinant role for virus immunological characteristics. In this study, the major antigenic regions of PAstV1 Cap were expressed through prokaryotic expression systems and immunized to BALB/c mice. Finally, two anti-Cap monoclonal antibodies (named mAb F4-4 and D3F10) were screened by indirect immune-fluorescence assay (IFA). A series of truncated GST-fused or artificially synthesized peptides were used to detect their reactivity with the mAbs and PAstV positive serum. Two novel B cell epitopes (120-GNNTFG-125, 485-RISDPTWFSA-494) were identified by using these two mAbs. Moreover, sequence alignment result showed that epitope 120-GNNTFG-125 was highly conserved in type 1 PAstV capsid protein. Cross-reactivity analysis further confirmed the genotype-specificity of mAb F4-4. The results of this study demonstrated to be the first description of monoclonal antibody preparation and B-cell epitope mapping on PAstV capsid protein, which may provide new information on the biological significance of PAstV capsid protein and lay a foundation for the development of PAstV immunological tests and genotype diagnostic methods.
Collapse
Affiliation(s)
- Wenchao Zhang
- College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning 530005, China
| | - Weiyi Wang
- College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning 530005, China
| | - Xin Liu
- College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning 530005, China
| | - Ying Chen
- College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning 530005, China
| | - Kang Ouyang
- College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning 530005, China
| | - Zuzhang Wei
- College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning 530005, China
| | - Huan Liu
- Department of Scientific Research, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning 530024, China.
| | - Weijian Huang
- College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning 530005, China.
| |
Collapse
|
19
|
Molecular detection and characterization reveals circulation of multiple genotypes of porcine astrovirus in Haryana, India. Arch Virol 2021; 166:2847-2852. [PMID: 34363534 DOI: 10.1007/s00705-021-05195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/09/2021] [Indexed: 10/20/2022]
Abstract
Porcine astrovirus (PAstV) is distributed worldwide and has been reported to cause diarrhea in pigs. PAstV belongs to the family Astroviridae and genus Mamastrovirus. PAstVs are divided into five diverse genotypes (PAstV1-PAstV5) on the basis of phylogenetic analysis of a part of the RNA-dependent RNA polymerase (RdRp) gene and the capsid gene. However, knowledge regarding the clinical significance and molecular characteristics of PAstV in Haryana, India, is limited. In this study, we investigated the presence of PAstV by RT-PCR of the partial RdRp gene in 110 rectal swabs collected from diarrheic pigs in different parts of Haryana, India. Of these, 35 samples (31.8%) tested positive for PAstV, with the highest positivity observed among weaning piglets 3 to 9 weeks of age (47.7%, 21/44), followed by fattening pigs 9 to 24 weeks of age (28.5%, 8/28). Phylogenetic analysis of the partial RdRp gene revealed circulation of four different genotypes (PAstV1, PAstV2, PAstV4, and PAstV5) in Haryana, with PAstV1 being the predominant genotype. To the best of our knowledge, this is the first report of the presence of PAstV1 and PAstV5 in the pig population of India. The PAstV sequences revealed high genetic variability and genetic heterogeneity in a relatively confined area.
Collapse
|
20
|
Liu X, Zhang W, Wang D, Zhu X, Chen Y, Ouyang K, Wei Z, Liu H, Huang W. Establishment of a Multiplex RT-PCR Method for the Detection of Five Known Genotypes of Porcine Astroviruses. Front Vet Sci 2021; 8:684279. [PMID: 34212021 PMCID: PMC8239161 DOI: 10.3389/fvets.2021.684279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/14/2021] [Indexed: 01/08/2023] Open
Abstract
Porcine astroviruses (PAstVs) are prevalent in pigs worldwide, and five genotypes have been reported to circulate in China. However, little is known about the coinfection status of PAstVs. For differential and simultaneous diagnoses of these five genotypes of PAstVs, a multiplex RT-PCR method was established on the basis of the ORF2 gene of type 1 PAstV, and the ORF1ab genes of type two to five PAstVs. This quintuple PCR system was developed through optimization of multiplex PCR and detection sensitivity and specificity. The results showed that this multiplex RT-PCR method could specifically detect all the five PAstV genotypes without cross-reaction to any other major viruses circulating in Chinese pig farms. The detection limit of this method was as low as 10 pg of standard plasmids of each PAstV genotype. In addition, a total of 275 fecal samples collected from different districts of Guangxi, China, between April 2019 and November 2020, were tested by this newly established multiplex RT-PCR. Moreover, the sensitivity and specificity of monoplex and multiplex RT-PCR methods were compared by detecting the same set of clinical positive samples. The results revealed that PAstV1 (31/275), PAstV2 (49/275), PAstV3 (36/275), PAstV4 (41/275), and PAstV5 (22/275) were all detected, and dual (PAstV1+PAstV2, PAstV1+PAstV3, PAstV2+PAstV3, PAstV2+PAstV4, PAstV3+PAstV4, and PAstV4+PAstV5) or triple genotypes (PAstV1+PAstV2+PAstV3 and PAstV2+PAstV3+PAstV4) of coinfections were also unveiled in this study. The detection result of multiplex PCR was consistent with that of monoplex PCR. Compared with monoplex PCR, this multiplex PCR method showed obvious advantages such as time and cost efficiency and high sensitivity and specificity. This multiplex RT-PCR method offered a valuable tool for the rapid and accurate detection of PAstV genotypes circulating in pig herds and will facilitate the surveillance of PAstV coinfection status.
Collapse
Affiliation(s)
- Xin Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wenchao Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Dongjing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Xinyue Zhu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Chen
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kang Ouyang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zuzhang Wei
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Huan Liu
- Department of Scientific Research, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Weijian Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|