1
|
Ogory RO, Cumberford G, Adewole D. Ahiflower seed and its press cake as sources of nutrients for laying hens and omega-3 fatty acids in their eggs. Poult Sci 2025; 104:104936. [PMID: 40058003 PMCID: PMC11930598 DOI: 10.1016/j.psj.2025.104936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
240 64-week-old Lohman LSL-Lite laying hens were used to evaluate the effect of ahiflower seed (AS) and its press cake (APC) on egg yolk fatty acid profile, production performance, apparent total tract nutrient digestibility (ATTD), egg quality, eggshell mineral content, and fecal microbiota composition for 12 weeks in a completely randomized design, with 6 replicates of 5 birds in a cage. The diets included a control (CD), CD supplemented with 10 % flaxseed (FS), and CD supplemented with AS at 1, 5, and 10 % inclusion levels and APC at 5, 10, and 15 % inclusion levels. Diet did not affect eggshell Ca (P=0.1168) and P (P=0.8212) levels, and feed conversion ratio (P=0.136), but the 10 % FS reduced body weight gain (P=0.044), hen day egg production (P= 0.000) and feed intake (P<.0001) compared to other treatments. The yolk lightness L* was reduced (P=0.030) by 5 % APC compared to 10 % APC, redness a* was reduced (P= 0.002) by 10 % FS and 15 %APC compared to 10 %APC, CD, and 1 % AS. The 10 % FS and 15 %APC also reduced (P<0.001) yellowness *b compared to 1 %AS and 5 %APC. Apparent metabolizable energy (AME) and nitrogen-corrected apparent metabolizable energy (AMEn) increased (P<0.001) in 10 %FS and all AS and APC levels compared to CD. Compared to CD (87 %), ATTD of energy was increased (P<0.001) in hens fed 10 %FS (93 %), 1 %AS (93 %), and 15 %APC (92 %). However, 10 %FS (78.7 %) and 1 %AS (81.7 %) had higher (P=0.011) ATTD of P than 10 %APC (64.6 %). Similarly, ATTD of Ca was reduced (P<0.001) in hens fed 10 %APC compared to CD and 10 %AS. Compared to other treatments, total n-3 and stearidonic acids were increased (P<0.001) by 10 %FS and 10 %AS, respectively, and the total n-6 FAs and linoleic acid were highest (P=0.001) in 15 %APC. Both 10 %AS and 10 %FS increased (P<0.001) eicosapentaenoic, docosahexaenoic, and alpha-linolenic acid, compared to CD. The n-6/n-3 ratio was reduced (P<0.001) by 10 %FS and 10 %AS compared to APC and CD. Dietary treatments modulated fecal microbiota differently, but notably, Lactobacillus was more abundant when hens were fed 5 %AS compared to other treatments. In conclusion, the dietary supplementation of 10 %AS increased n3-FAs deposition in eggs similar to 10 %FS. However, 10 %FS reduced production performance. All levels of AS and APC increased diet metabolizable energy with no negative effect on production performance.
Collapse
Affiliation(s)
- Roseline O Ogory
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Greg Cumberford
- Natures Crops International, 12682 Route 6, PO Box 248, Kensington, PE C0B 1M0, Canada
| | - Deborah Adewole
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
2
|
Maina AN, Schulze H, Kiarie EG. Effects of lifetime feeding of hydrolyzed yeast to broiler breeders on egg production, quality, and hatchling attributes. Poult Sci 2025; 104:104826. [PMID: 39848209 PMCID: PMC11795560 DOI: 10.1016/j.psj.2025.104826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 01/25/2025] Open
Abstract
The effects of lifetime feeding of hydrolyzed yeast (HY) to broiler breeders (BB) on egg production, egg quality, and hatchling attributes were investigated. The birds were selected from two groups reared on diets with or without 0.05 % HY from hatch. The birds were placed for the current study at 22 weeks of age (woa) in 16-floor pens (20 ♀ and 2 ♂/pen) based on rearing diet identity. Isocaloric and isonitrogenous diets were formulated without or with 0.05 % HY for three production phases: 1 (22 to 40 woa), 2 (41 to 50 woa), and 3 (51 to 64 woa) and allocated within rearing diet identity in a completely randomized block design (n = 8). The birds had free access to water, whereas feed allocation was per breeder guidelines. Egg count/ pen was recorded four times daily from 25 woa (the time point the first egg was laid) to calculate hen day egg production (HDEP), and cumulative eggs per hen housed (CEPHH). From 28 woa, eggs were selected randomly for eggshell breaking strength (ESBS) and eggshell thickness (EST) and for incubation to determine fertility, hatchability, in-ovo mortality, chick sex ratio, and chick weight. Two hens per pen were necropsied at 44 and 64 woa for breast, abdominal fat and liver weights. There were no (P>0.05) interactions between diet and BB age or the diet effects on response criteria. Broiler breeder age effect (P<0.05) was such that HDEP, ESBS, EST, hatchability declined whereas egg weight, in-ovo mortality, and chick to egg weight ratio increased with age. Control birds had more (P=0.015) CEPHH (25 to 64 woa) than HY40 birds. In conclusion, the more CEPHH for the control group was reflective of hen mortality whereases the broiler breeder age effects were as expected. Overall, lifetime feeding HY to broiler breeders from hatch had no impact on egg production rate, egg quality and hatchling attributes.
Collapse
Affiliation(s)
- Anderson N Maina
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
3
|
Kishawy AT, Abd El-Wahab RA, Eldemery F, Abdel Rahman MMI, Altuwaijri S, Ezz-Eldin RM, Abd-Allah EM, Zayed S, Mulla ZS, El Sharkawy RB, Badr S, Youssef W, Ibrahim D. Insights of early feeding regime supplemented with glutamine and various levels of omega-3 in broiler chickens: growth performance, muscle building, antioxidant capacity, intestinal barriers health and defense against mixed Eimeria spp infection. Vet Q 2024; 44:1-20. [PMID: 38961536 PMCID: PMC11225632 DOI: 10.1080/01652176.2024.2373287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024] Open
Abstract
Early nutritional management approach greatly impacts broilers' performance and resistance against coccidiosis. The current study explored the impact of post-hatch feeding with a combination of glutamine (Glut) and different levels of omega-3 on broiler chickens' growth performance, muscle building, intestinal barrier, antioxidant ability and protection against avian coccidiosis. A total of six hundred Cobb 500 was divided into six groups: first group (fed basal diet and unchallenged (control) and challenged (negative control, NC) groups were fed a basal diet without additives, and the other groups were infected with Eimeria spp and supplemented with 1.5% Glut alone or with three different levels of omega-3 (0.25, 0.5 and 1%) during the starter period. Notable improvement in body weight gain was observed in the group which fed basal diet supplemented with glut and 1% omega 3 even after coccidia infection (increased by 25% compared challenged group) while feed conversion ratio was restored to control. Myogeneis was enhanced in the group supplemented with Glut and omega-3 (upregulation of myogenin, MyoD, mechanistic target of rapamycin kinase and insulin like growth factor-1 and downregulating of myostatin genes). Groups supplemented with Glut and higher levels of omega-3 highly expressed occluding, mucin-2, junctional Adhesion Molecule 2, b-defensin-1 and cathelicidins-2 genes. Group fed 1% Glut + omega-3 showed an increased total antioxidant capacity and glutathione peroxidase and super oxide dismutase enzymes activities with reduced levels of malondialdehyde, reactive oxygen species and H2O2. Post-infection, dietary Glut and 1% omega-3 increased intestinal interleukin-10 (IL) and secretory immunoglobulin-A and serum lysozyme, while decreased the elevated inflammatory mediators comprising interleukin IL-6, tumor necrosis factor-alpha, nitric oxide (NO) and inducible NO synthase. Fecal oocyst excretion and lesions score severity were lowered in the group fed 1% Glut and omega 3. Based on these findings, dietary Glut and omega-3 supplementation augmented restored overall broilers' performance after coccidial challenge.
Collapse
Affiliation(s)
- Asmaa T.Y Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham A. Abd El-Wahab
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | - Saleh Altuwaijri
- Department of Pathology and laboratory diagnosis, College of Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Rasha M.M. Ezz-Eldin
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ehab M. Abd-Allah
- Veterinary Educational Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shimaa Zayed
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Zohair S. Mulla
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudia Arabia
| | - Rasha B. El Sharkawy
- Department of Clinical Pathology, Zagazig Branch, Animal Health Research Institute (AHRI), Agriculture Research Center, Zagazig, Egypt
| | - Shereen Badr
- Department of Clinical Pathology, Animal Health Research Institute (AHRI), Mansoura Branch, Agricultural Research Center (ARC), Giza, Egypt
| | - Wessam Youssef
- Department of Biotechnology, Animal Health Research Institute (AHRI), Giza, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Shang Q. Inulin alleviates inflammatory response and gut barrier dysfunction via modulating microbiota in lipopolysaccharide-challenged broilers. Int J Biol Macromol 2024; 282:137208. [PMID: 39489258 DOI: 10.1016/j.ijbiomac.2024.137208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
This study was conducted to explore the protective effects of inulin against lipopolysaccharide (LPS)-induced inflammatory response and intestinal barrier dysfunction in broilers. 108 broilers were allocated to 3 treatments: 1) non-challenged broilers (Control, CON); 2) LPS-challenged broilers (LPS); 3) LPS-challenged broilers fed the basal diet supplemented with 15 g/kg of inulin (Inulin + LPS). At 21 d of age, the LPS-challenged groups received an intraperitoneal injection of LPS, and the CON group received an equal volume of saline. After 4 h of LPS exposure, samples of blood, intestinal mucosa and cecal digesta were collected. The results showed that LPS challenge induced systemic inflammation and damaged intestinal barrier function, whereas inulin attenuated LPS-induced production of pro-inflammatory cytokines by inhibiting the activation of TLR4 and NF-κB p65, and enhanced intestinal barrier function. In addition, LPS stimulation caused cecal microbial dysbiosis as shown by increased abundance of pathogenic bacteria including Ruminococcus_torques_group, Escherichia-Shigella and Subdoligranulum, while supplementation of inulin increased abundance of beneficial bacteria Faecalibacterium and Anaeroplasma, and metabolite production including propionate and butyrate concentrations. In conclusion, dietary supplementation of inulin could partially alleviate LPS-induced inflammation and intestinal barrier injury by modulating intestinal microbiota, thereby minimizing growth retardation of broilers. Our results provide a basis for the rational utilization of inulin in alleviating immune stress in broiler production.
Collapse
Affiliation(s)
- Qinghui Shang
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
5
|
Ghanbari M, Mousavi SN, Chamani M. Effects of different lipid sources on performance, blood lipid parameters, immune system activity, and expression of TNFα and TLR4 genes in broiler chickens. Prostaglandins Other Lipid Mediat 2024; 174:106873. [PMID: 39002707 DOI: 10.1016/j.prostaglandins.2024.106873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
This study aimed to explore the effects of different lipid sources on the performance, blood lipid parameters, immune system activity, and the expression of TNFα and TLR4 genes in broiler chickens. A total of 500 one-day-old male chicks of the ROSS 308 commercial strain were allocated into four treatment groups with five replicates each (each replicate comprised of 25 chickens), following a randomized design. The treatments were as follows: (1) a diet incorporating palm oil (PO, a source of saturated fatty acids); (2) a diet incorporating flaxseed oil (FO, a source of omega-3); (3) a diet incorporating soybean oil (SO, a source of omega-6); and (4) a diet incorporating olive oil (OO, a source of omega-9). According to the findings, the broiler chickens exhibited a significant increase in body weight gain (BWG) throughout the study when their diet consisted of unsaturated oils, as opposed to a diet including PO. Conversely, the feed conversion ratio (FCR) significantly decreased (P<0.01). The treatment with FO resulted in the highest percentage of lymphocytes and antibody titers against Newcastle and Gumboro diseases, showing a significant difference compared to the treatment with PO (P<0.01). Moreover, the relative expression of TNFα and TLR4 genes was the lowest following the FO treatment, indicating a significant decrease compared to the treatment with PO. Overall, the present findings demonstrated that incorporating omega-3 fatty acids into the diet was more effective in enhancing the growth performance, immune system, and health of broiler chickens.
Collapse
Affiliation(s)
- Mojtaba Ghanbari
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran.
| | - Seyed Naser Mousavi
- Department of Animal Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran.
| | - Mohammad Chamani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran.
| |
Collapse
|
6
|
Tompkins YH, Choppa VSR, Kim WK. n-3 enriched Fish oil diet enhanced intestinal barrier integrity in broilers after Eimeria infection. Poult Sci 2024; 103:103660. [PMID: 38552568 PMCID: PMC11000185 DOI: 10.1016/j.psj.2024.103660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Coccidiosis caused by Eimeria spp. results in substantial economic losses in the poultry industry. The objective of this study was to investigate the effects of dietary supplementation with n-3 polyunsaturated fatty acids-enriched fish oil on growth performance, intestinal barrier integrity, and intestinal immune response of broilers challenged with Eimeria spp. A total of 576 fourteen-day-old broilers were randomly assigned in a completely randomized design with a 3 × 2 factorial arrangement, comprising 2 diets supplemented with either 5% fish oil or 5% soybean oil, and 3 Eimeria spp. infection levels: a nonchallenge control, a low dose of Eimeria challenge, and a high challenge dose. The results of the study revealed significant interactions between diet and Eimeria challenge to parameters of gut barrier integrity and feed intake. A significant interaction was observed in feed intake between 5 and 8 d postinfection (DPI), where the fish oil groups exhibited a higher amount of feed intake compared to the soybean oil diet groups after coccidiosis infection. The effects of the fish oil diet resulted in enhanced gut barrier integrity, as evidenced by a trend of decreased gastrointestinal leakage and a lower mean of small intestine lesion scores after Eimeria challenge. Additionally, significant interactions were noted between Eimeria spp. challenge and diet regarding jejunal crypt depth. The positive impact of the fish oil diet was particularly noticeable with the high Eimeria challenge dose. Overall, these findings underscore the relationship between the fish oil diet and Eimeria challenge on broiler chicken intestinal health. Dietary supplementation of fish oil has the potential to maintain small intestine barrier integrity with severe Eimeria infection conditions.
Collapse
Affiliation(s)
- Yuguo Hou Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Maina AN, Schulze H, Kiarie EG. Response of broiler breeder pullets when fed hydrolyzed whole yeast from placement to 22 wk of age. Poult Sci 2024; 103:103383. [PMID: 38176370 PMCID: PMC10806125 DOI: 10.1016/j.psj.2023.103383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
The study examined the effects of feeding broiler breeder pullets hydrolyzed whole yeast (HY) from hatch to 22 wk of age (WOA). A total of 524-day-old Ross 708 pullets were placed in floor pens (∼24 birds/pen) for the starter (0-4 WOA) and grower (5-18 WOA) phases, then transferred to the egg production facility and redistributed to ∼20 birds/pen for the prelay phase (19-22 WOA). Two diets were allocated to pens (0-18 WOA; n = 11) and (19-22 WOA; n-12). The diets were a control corn and soybean meal diet formulated to meet specifications and control plus 0.05% HY (HY). Birds had ad libitum access to feed in the first week and daily feed allocation based on pen BW from 2 WOA. Birds had free access to water throughout the trial. Body weight (BW) and uniformity (BW CV) were monitored. Boosters for infectious bronchitis and New Castle disease vaccines were administered at 18 WOA, and samples of pullets bled for antibody titer 5-day later. One pullet/pen was randomly selected, weighed, bled for plasma biochemistry, and necropsied for organ weights, ceca digesta for short-chain fatty acids (SCFA), and leg bones morphometry. In the starter and grower phases, birds fed HY were lighter and gained less (P < 0.05) than control birds. However, there were no diet effects (P > 0.05) on growth, the BW prelay phase, or BW uniformity throughout the trial. There were no (P > 0.05) diet effects on breast, gastrointestinal, liver and bursa weights, serum antibody titers, plasma biochemistry, SCFA and bone attributes. However, pullets fed HY had heavier (P = 0.047) spleen and tended to have lower (P = 0.080) plasma concentrations of aspartate aminotransferase (AST) relative to control pullets. In conclusion, the parameters assessed showed no negative consequences of feeding HY to broiler breeder pullets. However, effects on the spleen and plasma AST may indicate modest modulation of immunity and metabolism. The impact of the provision of HY during broiler breeder pullet phase on reproductive performance and chick quality should be investigated.
Collapse
Affiliation(s)
- Anderson N Maina
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
8
|
Tufarelli V, Losacco C, Tedone L, Passantino L, Tarricone S, Laudadio V, Colonna MA. Hemp seed ( Cannabis sativa L.) cake as sustainable dietary additive in slow-growing broilers: effects on performance, meat quality, oxidative stability and gut health. Vet Q 2023; 43:1-12. [PMID: 37715944 PMCID: PMC10524784 DOI: 10.1080/01652176.2023.2260448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
Hemp seed cake (HSC) (Cannabis sativa L.) is a rich source of polyunsaturated fatty acids, high-quality proteins and essential amino acids. The aim of this study was to evaluate the effects of dietary inclusion of HSC on growth performance, meat quality traits, fatty acids profile and oxidative status, and intestinal morphology in slow-growing broilers. A total of 180 male slow-growing broilers were randomly assigned to one of three dietary treatments containing different levels of HSC: 0 (HSC0), 5 (HSC5) or 10% (HSC10). Birds were slaughtered at 49 days of age: breast and thigh muscles were analysed and duodenum mucosa histomorphological features were evaluated. Regardless the level of HSC inclusion, no differences among groups were found for performance and meat quality traits. The thigh and breast fatty acid profile were significantly improved in both HSC groups, with an increase of the long chain fatty acids of n-3 series and decrease of n-6/n-3 ratio. The HSC diets lowered the MDA concentration and lipid hydroperoxides in breast meat. Histomorphometrical analysis revealed a significant increase in villus height, surface area and villus/crypt ratio, with a decrease of crypt depth, suggesting that dietary supplementation with HSC may boost intestinal health status in poultry. In conclusion, dietary HSC did not affect performance, carcass traits and meat quality, while it positively influenced the lipid profile of meat, and improved the oxidative status and gut health, thus representing a valuable and sustainable alternative ingredient in broiler diet.
Collapse
Affiliation(s)
- Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Bari, Italy
| | - Caterina Losacco
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Bari, Italy
| | - Luigi Tedone
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Letizia Passantino
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Bari, Italy
| | - Simona Tarricone
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Vito Laudadio
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Bari, Italy
| | | |
Collapse
|
9
|
Wan J, Shahid MS, Yuan J. The Comparative Effects of Supplementing Protease Combined with Carbohydrase Enzymes on the Performance and Egg n-3 Deposition of Laying Hens Fed with Corn-Flaxseed or Wheat-Flaxseed Diets. Animals (Basel) 2023; 13:3510. [PMID: 38003128 PMCID: PMC10668754 DOI: 10.3390/ani13223510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Flaxseed contains huge quantities of anti-nutritional factors (ANFs), which reduce the performance of livestock. Three different protease and multi-carbohydrase enzymes were included in wheat-flaxseed diets (WFD) and corn-flaxseed diets (CFD) to compare their effects on performance, egg n-3 deposition, and fatty acid transporter genes in laying hens. A total of 540, twenty-week-old, Nongda-3 laying hens (DW brown × Hy-line white) were randomly assigned to six dietary groups, including 10% WFD or 10% CFD plus (i) supplemental enzyme A (alkaline protease 40,000 and neutral protease 10,000 (U/g)), (ii) enzyme B (alkaline protease 40,000, neutral protease 10,000, and cellulase 4000 (U/g)), or iii) enzyme C (neutral protease 10,000, xylanase 35,000, β-mannanase 1500, β-glucanase 2000, cellulose 500, amylase 100, and pectinase 10,000 (U/g)). An interaction (p < 0.05) was found for egg mass, hen day of egg production, and feed conversion ratio on the 9-10th week of the experiment. The WFD with enzyme B was associated with the highest egg weight in the 9-10th week. The deposition of total n-3 was superior with WFD (468.22 mg/egg) compared to CFD (397.90 mg/egg), while addition of enzyme C (464.90 mg/egg) resulted in the deposition of more total n-3 compared to enzymes A and B (411.89 and 422.42 mg/egg). The WFD and enzyme C significantly (p < 0.001) enhanced docosahexaenoic acid (DHA) and reduced the n-6:n-3 ratio in egg yolk compared to the CFD. The hepatic mRNA expression of liver fatty acid binding protein (L-FABP) (p = 0.006), fatty acid desaturase 1 (FADS-1) (p < 0.001), elongase-2 (ELOV-2) (p < 0.001), fatty acid transport protein-1 (FATP1) (p < 0.001), and the intestinal mRNA expression of FATP and FABP genes were increased with WFD compared to CFD. In conclusion, WFD with enzyme C is favorable for optimal performance, results in the deposition of more n-3 and DHA, and increases the expression of fatty acid transporter genes, which helps in n-3 transport.
Collapse
Affiliation(s)
- Jinyi Wan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Muhammad Suhaib Shahid
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
10
|
El Sabry MI, Yalcin S. Factors influencing the development of gastrointestinal tract and nutrient transporters' function during the embryonic life of chickens-A review. J Anim Physiol Anim Nutr (Berl) 2023; 107:1419-1428. [PMID: 37409520 DOI: 10.1111/jpn.13852] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
Intestinal morphology and regulation of nutrient transportation genes during the embryonic and early life of chicks influence their body weight and feed conversion ratio through the growing period. The intestine development can be monitored by measuring villus morphology and enzymatic activity and determining the expression of nutrient transporters genes. With the increasing importance of gut development and health in broiler production, considerable research has been directed towards factors affecting intestine development. Thus, this article reviews (1) intestinal development during embryogenesis, and (2) maternal factors, in ovo administration, and incubation conditions that influence intestinal development during embryogenesis. Conclusively, (1) chicks from heavier eggs may have a better-developed intestine than chicks from younger ones, (2) in ovo supplementation with amino acids, minerals, vitamins or a combination of several probiotics and prebiotics stimulates intestine development and increases the expression of intestine mucosal-related genes and (3) the long storage period, improper incubation temperature and imbalanced ventilation can negatively influence intestinal morphology and nutrient transporters gene expression. Finally, understanding the intestine development during embryonic life will enable us to enhance the productivity of broilers.
Collapse
Affiliation(s)
- Mohamed I El Sabry
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Servet Yalcin
- Department of Animal Science, Faculty of Agriculture, Ege University, Izmir, Turkey
| |
Collapse
|
11
|
Maina AN, Lewis E, Kiarie EG. Egg production, egg quality, and fatty acids profiles in eggs and tissues in Lohmann LSL lite hens fed algal oils rich in docosahexaenoic acid (DHA). Poult Sci 2023; 102:102921. [PMID: 37499609 PMCID: PMC10413189 DOI: 10.1016/j.psj.2023.102921] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Enriching eggs with omega-3 fatty acids (n-3 FA), such as docosahexaenoic acid (DHA), is a well-accepted practice that benefits the egg industry and consumers. However, issues around cost, sustainability, and product acceptance have necessitated the search for alternatives to feeding hens fish oil for DHA enrichment. The effects of feeding 2 algal oils on egg production and DHA enrichment in eggs and selected tissues were investigated. The algal oils were: 1) OmegaPro (OPAO) standardized algal oil for DHA content and 2) Crude algal oil (CAO). A total of 400, 46-wk-old Lohmann LSL lite hens were housed in enriched cages (10 birds/cage) and allocated 5 diets (n = 8) for a 12-wk trial. The iso-caloric and -nitrogenous diets were a standard corn and soybean meal diet, standard plus 0.25 or 0.76% OPAO and standard plus 0.23 or 0.69% CAO; algal oils diets supplied similar DHA at each level. Egg production indices (hen day egg production, feed intake, FCR, egg weight, egg mass, and eggshell quality) were monitored for 10 wk. Diet samples were analyzed for fatty acids (FA) on wk 1, 6, and 12 and eggs on wk 4, 5, 6, 9, and 12. At the end of the trial, one hen/cage was weighed and dissected for liver, breast and thigh for FA and long bones for ash content analyses. Concentration of omega-6 to omega-3 FA ratio was 12.9, 6.64, 3.48, 6.96, and 3.59 for standard, 0.23 and 0.76% OPAO, 0.25 and 0.69% CAO, respectively. Algal oils increased (P ≤ 0.046) eggshell thickness linearly. The concentration of DHA in the eggs from the birds fed the standard, 0.23 and 0.76% OPAO, 0.25 and 0.69% CAO was 84, 195, 286, 183, and 297 mg/100g egg, respectively, and algal oils enriched eggs with DHA linearly and quadratically (P ≤ 0.01). In conclusion, algal oils increased the concentration of DHA in eggs and had no adverse effects on egg production and eggshell quality.
Collapse
Affiliation(s)
- Anderson N Maina
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Eva Lewis
- Food Innovation, Humanativ, Netterville, Dowth, Co Meath, A92 ER22, Ireland
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
12
|
Sierżant K, Piksa E, Konkol D, Lewandowska K, Asghar MU. Performance and antioxidant traits of broiler chickens fed with diets containing rapeseed or flaxseed oil and optimized quercetin. Sci Rep 2023; 13:14011. [PMID: 37640806 PMCID: PMC10462632 DOI: 10.1038/s41598-023-41282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
This study evaluated the effect of quercetin (Q) added to feed mixtures, at concentrations directly optimized for the peroxidability of dietary rapeseed (RO) and flaxseed oil (FLO), on performance and selected biomarkers of oxidative stress of broiler chickens. Ninety-six one-day-old Ross 308 broiler chicken males were randomly assigned to four groups (six replicates per treatment, four birds per cage, n = 24 per group): Group RO received diets containing rapeseed oil (RO) and group FLO received diets containing flaxseed oil (FLO); Group RO_Q and group FLO_Q received these same diets containing RO or FLO oils, supplemented with optimized quercetin (Q). Blood, pectoral muscles, and liver samples of chickens were collected after 35 days to determine: (1) the global indicators of antioxidant capacity: ferric reducing antioxidant power (FRAP), antiradical activity (DPPH·/ABTS·+), total antioxidant status (TAS), and glutathione peroxidase (GSH-Px); (2) the activity of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD); and (3) the concentration of malondialdehyde (MDA). Data showed that the FLO diet did not affect the final performance parameters in relation to RO, but the optimized Q tended to improve the total body weight gain and the final body weight of broiler chickens (P = 0.10). The antioxidant traces analyzed in the blood (GSH-Px), plasma (FRAP, ABTS·+, DPPH·, TAS), serum (DPPH·), and pectoral muscles (SOD, CAT) of chickens were not altered by either Oil or Q factor. FLO supplementation increased MDA content in the liver of chickens (P < 0.05) and increased liver CAT activity, which was not improved by optimized Q. Meanwhile, the Oil × Q interaction suggests that optimized Q could reduce the liver burden and negative effects of oxidized lipid by-products associated with FLO diets. Our results indicate that optimizing the addition of natural polyphenols to feed may be a valuable alternative to the application of polyphenolic antioxidants in animal nutrition, allowing for an economical use of the antioxidant additives when customized to the peroxidability of fat sources, which is line to the conception of sustainable development covering 'The European Green Deal' and 'Farm to Fork Strategy'.
Collapse
Affiliation(s)
- Kamil Sierżant
- Department of Animal Nutrition and Feed Science, The Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 38C, 51-630, Wrocław, Poland.
| | - Eliza Piksa
- Department of Animal Nutrition and Feed Science, The Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 38C, 51-630, Wrocław, Poland
| | - Damian Konkol
- Department of Animal Nutrition and Feed Science, The Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 38C, 51-630, Wrocław, Poland
| | - Kamila Lewandowska
- Department of Environmental Hygiene and Animal Welfare, The Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 38C, 51-630, Wrocław, Poland
| | - Muhammad Umair Asghar
- Department of Animal Nutrition and Feed Science, The Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 38C, 51-630, Wrocław, Poland
| |
Collapse
|
13
|
Lebedev S, Kazakova T, Marshinskaia O, Grechkina V. The assessment of serum trace element levels as the diagnostic biomarkers of functional state of broiler chickens. Vet World 2023; 16:1512-1519. [PMID: 37621547 PMCID: PMC10446717 DOI: 10.14202/vetworld.2023.1512-1519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/12/2023] [Indexed: 08/26/2023] Open
Abstract
Background and Aim Elemental analysis is a useful technique for predicting metabolic disorders in broiler chickens. Elemental imbalances are also important for the development of new methods to diagnose the health status of birds that can be implemented on a farm-wide scale. This study aimed to identify elemental markers related to pre-nosological diagnoses of metabolic disorders in broiler chickens. Materials and Methods We compared birds given high-protein, high-carbohydrate, and high-fat diets. A control group received the standard diet recommended by the All-Russian Research and Technological Institute of Poultry, while experimental Group I received a diet with high-protein content, Group II received a diet with high-carbohydrate content, and Group III received a diet with high-fat content. At the end of the experiment, blood samples were taken for biochemical and elemental analysis. Biochemical analysis was carried out using an automated biochemical analyzer, and the levels of trace elements in the serum were assessed using inductively coupled plasma spectrometry. Results We found that the high-protein diet was accompanied by a decrease in chicken body weight, cholesterol, and several elements (i.e., P, Cr, Cu, Zn, and B) as well as an increase in the levels of Ca, Co, and Si. The high-carbohydrate diet led to a significant increase in glucose levels as well as a decrease in the levels of albumin, triglycerides, and Cr, Mn, Se, I, and Cu. Finally, the high-fat diet led to an increase in body weight, glucose, cholesterol, triglycerides, and the elements Cu, Zn, and Si as well as a decrease in the levels of Mg, Cr, and Fe. Conclusion The determination of the levels of trace elements such as Co, Cr, Mn, Fe, and Cu in chicken blood serum may be an important indicator of the state of protein, carbohydrate, and lipid metabolism of poultry stock.
Collapse
Affiliation(s)
- Svyatoslav Lebedev
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia
| | - Tatiana Kazakova
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia
| | - Olga Marshinskaia
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia
| | - Victoria Grechkina
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia
- Department of the Non-Communicable Diseases of Animals, Orenburg State Agrarian University, 460014, Orenburg, Russia
| |
Collapse
|
14
|
Omega-6: Its Pharmacology, Effect on the Broiler Production, and Health. Vet Med Int 2023; 2023:3220344. [PMID: 36910895 PMCID: PMC9995196 DOI: 10.1155/2023/3220344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Lipids and oils are the primary sources of monounsaturated and polyunsaturated fatty acids (MUFA and PUFA), which are necessary for human and animal health. Omega-3 and omega-6 are essential nutrients for broilers. Omega-6 members, such as linolenic acid, are essential for broilers and must be obtained through feed. Vegetable oils are the primary source of omega-6 added to broiler feeds. Unsaturated fatty acids are better digested and absorbed than saturated fatty acids and generate more energy at a lower cost, boosting productivity. Feeding supplements with omega-6 can increase the fatty acid content in meat and increase weight, carcass, viscera, and FCR. The quality of meat taste and antioxidant content was also improved after giving omega-6 and influencing mineral metabolism. Broiler reproductive performance is also enhanced by reducing late embryonic mortality, hence enhancing fertility, hatchability, sperm quality, and sperm quantity. Meanwhile, for broiler health, omega-6 can lower cholesterol levels, triglycerides, very low-density lipoprotein, and low-density lipoprotein. It also supports support for T-helper cell (TH)-2-like IgG titers, increasing prostaglandins, eicosanoids, and antioxidants. In addition, it also supports anti-inflammation. Other researchers have extensively researched and reviewed studies on the effects of omega-6 on poultry. Meanwhile, in this review, we provide new findings to complement previous studies. However, further studies regarding the effects of omega-6 on other poultry are needed to determine the performance of omega-6 more broadly.
Collapse
|
15
|
Lin R, Xie B, Xie L, Ge J, Li S. Integrated proteomics and metabolomics analysis of lumbar in a rat model of osteoporosis treated with Gushukang capsules. BMC Complement Med Ther 2022; 22:333. [PMID: 36522793 PMCID: PMC9756464 DOI: 10.1186/s12906-022-03807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Gushukang (GSK) capsules are a Chinese patented medicine that is widely used in clinics for the treatment of osteoporosis (OP). Animal experiments have revealed that the bone mineral density of osteoporotic rats increase after treatment with GSK capsules. However, the specific mechanism and target of GSK in the treatment of osteoporosis are unclear. Further studies are needed. METHODS Metabolomics (GC/MS) and proteomics (TMT-LC-MC/MC) with bioinformatics (KEGG pathway enrichment), correlation analysis (Pearson correlation matrix), and joint pathway analysis (MetaboAnalyst) were employed to determine the underlying mechanisms of GSK. The differential expression proteins were verified by WB experiment. RESULTS The regulation of proteins, i.e., Cant1, Gstz1, Aldh3b1, Bid, and Slc1a3, in the common metabolic pathway of differential proteins and metabolites between GSK/OP and OP/SHAM was corrected in the GSK group. The regulation of 12 metabolites (tyramine, thymidine, deoxycytidine, cytosine, L-Aspartate, etc.) were differential in the common enrichment metabolic pathway between GSK /OP and OP/SHAM. Differential proteins and metabolites jointly regulate 11 metabolic pathways, such as purine metabolism, pyrimidine metabolism, histidine metabolism, beta-alanine metabolism, and so on. CONCLUSION GSK may protect bone metabolism in osteoporotic rats by affecting nucleotide metabolism, amino acid metabolism, and the immune system.
Collapse
Affiliation(s)
- Ruohui Lin
- Basic Research Institute, Fujian Academy of Chinese Medical Sciences, Fuzhou, 350003 Fujian China ,Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fuzhou, 350003 Fujian China
| | - Bingying Xie
- Basic Research Institute, Fujian Academy of Chinese Medical Sciences, Fuzhou, 350003 Fujian China ,Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fuzhou, 350003 Fujian China
| | - Lihua Xie
- Basic Research Institute, Fujian Academy of Chinese Medical Sciences, Fuzhou, 350003 Fujian China ,Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fuzhou, 350003 Fujian China
| | - Jirong Ge
- Basic Research Institute, Fujian Academy of Chinese Medical Sciences, Fuzhou, 350003 Fujian China ,Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fuzhou, 350003 Fujian China
| | - Shengqiang Li
- Basic Research Institute, Fujian Academy of Chinese Medical Sciences, Fuzhou, 350003 Fujian China ,Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fuzhou, 350003 Fujian China
| |
Collapse
|
16
|
Fiorino S, Carusi A, Hong W, Cernuschi P, Gallo CG, Ferrara E, Maloberti T, Visani M, Lari F, de Biase D, Zippi M. SARS-CoV-2 vaccines: What we know, what we can do to improve them and what we could learn from other well-known viruses. AIMS Microbiol 2022; 8:422-453. [PMID: 36694588 PMCID: PMC9834075 DOI: 10.3934/microbiol.2022029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022] Open
Abstract
In recent weeks, the rate of SARS-CoV-2 infections has been progressively increasing all over the globe, even in countries where vaccination programs have been strongly implemented. In these regions in 2021, a reduction in the number of hospitalizations and deaths compared to 2020 was observed. This decrease is certainly associated with the introduction of vaccination measures. The process of the development of effective vaccines represents an important challenge. Overall, the breakthrough infections occurring in vaccinated subjects are in most cases less severe than those observed in unvaccinated individuals. This review examines the factors affecting the immunogenicity of vaccines against SARS-CoV-2 and the possible role of nutrients in modulating the response of distinct immune cells to the vaccination.
Collapse
Affiliation(s)
- Sirio Fiorino
- Internal Medicine Unit, Budrio Hospital, Budrio (Bologna), Azienda USL, Bologna, Italy
| | - Andrea Carusi
- Internal Medicine Unit, Budrio Hospital, Budrio (Bologna), Azienda USL, Bologna, Italy
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang, The People's Republic of China
| | - Paolo Cernuschi
- Internal Medicine Unit, Quisana Private Hospital, Ferrara, Italy
| | | | | | - Thais Maloberti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna-Molecular Diagnostic Unit, Azienda USL di Bologna, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michela Visani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna-Molecular Diagnostic Unit, Azienda USL di Bologna, Bologna, Italy
| | - Federico Lari
- Internal Medicine Unit, Budrio Hospital, Budrio (Bologna), Azienda USL, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| |
Collapse
|
17
|
Liu J, Zhao L, Zhao Z, Wu Y, Cao J, Cai H, Yang P, Wen Z. Rubber (Hevea brasiliensis) seed oil supplementation attenuates immunological stress and inflammatory response in lipopolysaccharide-challenged laying hens. Poult Sci 2022; 101:102040. [PMID: 35917674 PMCID: PMC9352553 DOI: 10.1016/j.psj.2022.102040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/15/2022] [Accepted: 06/25/2022] [Indexed: 11/30/2022] Open
Abstract
This study was conducted to investigate the effect of PUFA-enriched rubber (Hevea brasiliensis) seed oil (RSO) supplementation in diets on the productive performance, plasma biochemical parameters, immune response, and inflammation in lipopolysaccharide (LPS)-challenged laying hens. Two hundred and forty 25-wk-old Lohmann Brown laying hens were randomly divided into 5 treatments, each including 4 replicates with 12 birds per replicate. The control group and LPS-challenged group were fed a corn-soybean-basal diet; 3 RSO-supplemented groups were fed experimental diets containing 1, 2, and 4% RSO for a feeding period of 4 wk. On the 15, 18, 21, 24, and 27 d of the RSO supplementation period of 4 wk, hens were injected intraperitoneally with LPS at 1 mg/kg body weight (challenge group and RSO-supplemented groups) or with the same amount of saline (control group). The results showed that the addition of RSO promoted laying performance by increasing egg production, total egg weight, daily egg mass, and feed intake in comparison to the LPS-challenged laying hens (P < 0.05). In addition, compared with laying hens stimulated with LPS, the analysis of blood cell and plasma parameters revealed that hens in RSO-supplemented groups had significantly lower levels (P < 0.05) of white blood cells (WBC), lymphocytes (LYM), aspartate aminotransferase (AST) activity, immunoglobulin A (IgA), triiodothyronine (T3), interleukin-2 (IL-2), and tumor necrosis factor-α (TNF-α). Further, RSO supplementation significantly reduced the mRNA expression of toll-like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin-6 (IL-6), and interleukin-1β (IL-1β) of the ileum, spleen, and liver in LPS-challenged laying hens (P < 0.05), suggesting that the anti-inflammatory mechanism of RSO is related to the TLR4/NF-κB signaling pathway. In conclusion, RSO supplementation in diets could improve laying performance, attenuate immunological stress, and inhibit the inflammatory response in LPS-challenged laying hens, especially at the dietary inclusion of 4% RSO. This study will provide an insight into the application of RSO to positively contribute to overall health and welfare in laying hens.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lulu Zhao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zitao Zhao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongbao Wu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junting Cao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongying Cai
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peilong Yang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiguo Wen
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
18
|
Sundaram TS, Giromini C, Rebucci R, Pistl J, Bhide M, Baldi A. Role of omega-3 polyunsaturated fatty acids, citrus pectin, and milk-derived exosomes on intestinal barrier integrity and immunity in animals. J Anim Sci Biotechnol 2022; 13:40. [PMID: 35399093 PMCID: PMC8996583 DOI: 10.1186/s40104-022-00690-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
The gastrointestinal tract of livestock and poultry is prone to challenge by feedborne antigens, pathogens, and other stress factors in the farm environment. Excessive physiological inflammation and oxidative stress that arises firstly disrupts the intestinal epithelial barrier followed by other components of the gastrointestinal tract. In the present review, the interrelationship between intestinal barrier inflammation and oxidative stress that contributes to the pathogenesis of inflammatory bowel disease was described. Further, the role of naturally existing immunomodulatory nutrients such as the omega-3 polyunsaturated fatty acids, citrus pectin, and milk-derived exosomes in preventing intestinal barrier inflammation was discussed. Based on the existing evidence, the possible molecular mechanism of these bioactive nutrients in the intestinal barrier was outlined for application in animal diets.
Collapse
Affiliation(s)
- Tamil Selvi Sundaram
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy.
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia.
| | - Carlotta Giromini
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy
| | - Raffaella Rebucci
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy
| | - Juraj Pistl
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia
| | - Mangesh Bhide
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia
| | - Antonella Baldi
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy
| |
Collapse
|
19
|
Andrieux C, Petit A, Collin A, Houssier M, Métayer-Coustard S, Panserat S, Pitel F, Coustham V. Early Phenotype Programming in Birds by Temperature and Nutrition: A Mini-Review. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2021.755842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Early development is a critical period during which environmental influences can have a significant impact on the health, welfare, robustness and performance of livestock. In oviparous vertebrates, such as birds, embryonic development takes place entirely in the egg. This allows the effects of environmental cues to be studied directly on the developing embryo. Interestingly, beneficial effects have been identified in several studies, leading to innovative procedures to improve the phenotype of the animals in the long term. In this review, we discuss the effects of early temperature and dietary programming strategies that both show promising results, as well as their potential transgenerational effects. The timing, duration and intensity of these procedures are critical to ensure that they produce beneficial effects without affecting animal survival or final product quality. For example, cyclic increases in egg incubation temperature have been shown to improve temperature tolerance and promote muscular growth in chickens or fatty liver production in mule ducks. In ovo feeding has also been successfully used to enhance digestive tract maturation, optimize chick development and growth, and thus obtain higher quality chicks. In addition, changes in the nutritional availability of methyl donors, for example, was shown to influence offspring phenotype. The molecular mechanisms behind early phenotype programming are still under investigation and are probably epigenetic in nature as shown by recent work in chickens.
Collapse
|
20
|
Thanabalan A, Kiarie EG. Body weight, organ development and jejunal histomorphology in broiler breeder pullets fed n-3 fatty acids enriched diets from hatch through to 22 weeks of age. Poult Sci 2021; 101:101514. [PMID: 34784511 PMCID: PMC8591498 DOI: 10.1016/j.psj.2021.101514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/20/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022] Open
Abstract
Dietary long chain polyunsaturated n-3 fatty acids (n-3 FA) may be beneficial to broiler breeder (BB) development. Therefore, the effects of feeding sources of docosahexaenoic acid (DHA) and α-linolenic acid (ALA) from hatch through to 22 weeks of age (woa) on growth, organ weight, and jejunal histomorphology were investigated. A total of 588-day-old Ross × Ross 708 BB were reared on one of 3 diets: 1) control, corn-soybean meal diet, 2) Control + 1% microalgae (DMA, Aurantichytrium limacinum), as a source of DHA and 3) Control + 2.50% co-extruded full fat flaxseed and pulse mixture (FFF, 1:1 wt/wt), as a source of ALA. Diets DMA and FFF had similar total n-3 and n-6: n-3 ratio. Diets were allocated to floor pens (28 birds/pen) to give 9 or 6 replicates per diet for control or DMA and FFF, respectively and fed according to breeder curve in 3 phases: starter (0-4 woa), grower (5-19 woa), and pre-breeder (20-22 woa). Individual body weight (BW) was taken weekly and 6 birds/pen necropsied at 5 and 12 woa for gastrointestinal, spleen, bursa, and liver weight and samples for jejunal histomorphology. There was no (P > 0.05) diet effect on growth by 20 woa. With exception of 5 woa, pullets fed DMA showed (P < 0.001) lower BW coefficient of variation (C.V.) than pullets fed control between 2 and 7 woa. However, pullets fed DMA had higher BW CV at 20 woa than birds fed either control or FFF. At 5 woa, birds fed DMA had taller (P ≤ 0.01) villi and deeper crypt than birds fed either control or FFF but VH or CD were similar (P > 0.05) between CON and FFF pullets. At 12 woa, birds fed FFF had taller VH than birds fed control diet but similar (P > 0.05) to that of birds fed DMA. Therefore, different responses to sources of omega-3 FA may implicate other components, however, the BW uniformity and intestinal histomorphology responses suggested benefits of feeding omega-3 FA during rearing.
Collapse
Affiliation(s)
- Aizwarya Thanabalan
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
21
|
Kim M, Voy BH. Fighting Fat With Fat: n-3 Polyunsaturated Fatty Acids and Adipose Deposition in Broiler Chickens. Front Physiol 2021; 12:755317. [PMID: 34658934 PMCID: PMC8511411 DOI: 10.3389/fphys.2021.755317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Modern broiler chickens are incredibly efficient, but they accumulate more adipose tissue than is physiologically necessary due to inadvertent consequences of selection for rapid growth. Accumulation of excess adipose tissue wastes feed in birds raised for market, and it compromises well-being in broiler-breeders. Studies driven by the obesity epidemic in humans demonstrate that the fatty acid profile of the diet influences adipose tissue growth and metabolism in ways that can be manipulated to reduce fat accretion. Omega-3 polyunsaturated fatty acids (n-3 PUFA) can inhibit adipocyte differentiation, induce fatty acid oxidation, and enhance energy expenditure, all of which can counteract the accretion of excess adipose tissue. This mini-review summarizes efforts to counteract the tendency for fat accretion in broilers by enriching the diet in n-3 PUFA.
Collapse
Affiliation(s)
| | - Brynn H. Voy
- Department of Animal Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|