1
|
Niu Z, Ji L, Zhang Y, Chen Z, Shen J, Men Z, Zhou C, Tan P, Ma X. Effects of Adding Bacillus coagulans BCH0 to the Diet on Growth Performance, Tissue Structures, and Gut Microbiota in Broilers. Animals (Basel) 2025; 15:1243. [PMID: 40362058 PMCID: PMC12071092 DOI: 10.3390/ani15091243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Studies demonstrated that Bacillus coagulans (B. coagulans) as a dietary additive enhanced broiler growth performance, yet its mechanisms of action modulation remained unclear. Therefore, this study investigated effects of dietary B. coagulans BCH0 (1 × 109 CFU/kg) on growth performance, intestinal morphology, gut microbiota, and ileal transcriptomics in Arbor Acres broilers using a completely randomized design. A total of 200 one-day-old broilers were allocated to control (Con, basal diet) and experimental (BCH0, basal diet + 1 × 109 CFU/kg B. coagulans BCH0) groups (10 replicates/group, 10 birds/replicate) over a 42-day trial. The results revealed that BCH0 significantly increased body weights (BW) at 21 and 42 days (p < 0.05), improved the average daily gain (ADG) during the starter (1-21 days) and overall phases (1-42 days), and reduced the ratio of feed intake to body weight gain (F/G) across all phases (p < 0.05). Duodenal morphology analysis indicated a BCH0 elevated villus height (+16.9%, p < 0.01) and villus height/crypt depth (V/C) (p < 0.01) and no significant differences in crypt depth (p = 0.46). In the ileum, the BCH0 group exhibited a significantly greater villus height (p < 0.01), crypt depth (p < 0.05), and V/C (p < 0.05) than the Con group. Microbiota analysis revealed no significant differences in α-diversity or β-diversity, but phylum-level shifts involved an increase in Firmicutes and a reduction in Actinobacteriota in the BCH0 group. At the genus level, dominance shifted from Romboutsia (Control group) to Lactobacillus (BCH0 group), accompanied by marked reductions in Turicibacter, Ldatus_arthromitus, and Rothia. Ileal transcriptomics identified 605 differentially expressed genes, with KEGG enrichment highlighting activated nutrient assimilation pathways (p < 0.05), including carbohydrate, mineral, fat, and protein digestion/absorption. These findings collectively demonstrated that B. coagulans BCH0 enhanced broiler growth through the synergistic modulation of beneficial microbiota, the upregulation of nutrient metabolism genes, and intestinal architectural optimization, supporting its role as a sustainable microbial additive for enhancing poultry productivity and gut health.
Collapse
Affiliation(s)
- Zhili Niu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.N.); (L.J.); (Y.Z.); (J.S.); (Z.M.); (C.Z.); (P.T.)
| | - Linbao Ji
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.N.); (L.J.); (Y.Z.); (J.S.); (Z.M.); (C.Z.); (P.T.)
| | - Yucheng Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.N.); (L.J.); (Y.Z.); (J.S.); (Z.M.); (C.Z.); (P.T.)
| | - Zeyi Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China;
| | - Jiakun Shen
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.N.); (L.J.); (Y.Z.); (J.S.); (Z.M.); (C.Z.); (P.T.)
| | - Zhaoyue Men
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.N.); (L.J.); (Y.Z.); (J.S.); (Z.M.); (C.Z.); (P.T.)
| | - Chenlong Zhou
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.N.); (L.J.); (Y.Z.); (J.S.); (Z.M.); (C.Z.); (P.T.)
| | - Peng Tan
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.N.); (L.J.); (Y.Z.); (J.S.); (Z.M.); (C.Z.); (P.T.)
| | - Xi Ma
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.N.); (L.J.); (Y.Z.); (J.S.); (Z.M.); (C.Z.); (P.T.)
| |
Collapse
|
2
|
Zheng A, Hu J, Moses Mkulo E, Jin M, Wang L, Zhang H, Tang B, Zhou H, Wang B, Huang J, Wang Z. Effects of Bacillus coagulans on Growth Performance, Digestive Enzyme Activity, and Intestinal Microbiota of the Juvenile Fourfinger Threadfin ( Eleutheronema tetradactylum). Animals (Basel) 2025; 15:515. [PMID: 40002997 PMCID: PMC11851985 DOI: 10.3390/ani15040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The effects of Bacillus coagulans (BC) T-21 on growth performance, intestinal digestive enzyme activity, intestinal morphology, and intestinal microbiota of juvenile fourfinger threadfin (Eleutheronema tetradactylum) were investigated in the present study. Healthy juvenile E. tetradactylum with an initial body weight of 4.2 ± 0.5 g were fed a basal diet sprayed with 1 × 108 cfu/g B. coagulans for eight weeks, and the growth parameters, intestinal digestive enzyme activities, HE-stained intestinal sections, and intestinal microbiota of the juvenile fish were measured. The differences in the feed conversion ratio between the experimental and control groups (fed the basal diet) were extremely significant (p < 0.01), whereas the differences in weight gain rate, specific growth rate, survival rate, and condition factor were significant (p < 0.05). In the experimental group, trypsin and amylase activities decreased significantly, whereas there were no significant differences in lipase activity between the two groups. Compared to the control group, the height of the intestinal villi was greater. No significant differences were observed in the diversity of intestinal microbiota and microbial species at the genus level (p > 0.05). Based on the function prediction analysis, the count values for the glycan biosynthesis, metabolism, and digestive system pathways were significantly increased in the experimental group (p < 0.05). However, there were no significant differences in the counts of other functional pathways (p > 0.05). These results indicate that dietary B. coagulans supplementation is effective in promoting the growth performance and intestinal health of juvenile E. tetradactylum.
Collapse
Affiliation(s)
- Anna Zheng
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiaqin Hu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Evodia Moses Mkulo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Minxuan Jin
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Linjuan Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huijuan Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Baogui Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hui Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Jiansheng Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongliang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510520, China
| |
Collapse
|
3
|
Miri S, Hassan H, Esmail GA, Njoku EN, Chiba M, Yousuf B, Ahmed TAE, Hincke M, Mottawea W, Hammami R. A Two Bacteriocinogenic Ligilactobacillus Strain Association Inhibits Growth, Adhesion, and Invasion of Salmonella in a Simulated Chicken Gut Environment. Probiotics Antimicrob Proteins 2024; 16:2021-2038. [PMID: 37646968 DOI: 10.1007/s12602-023-10148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
In this study, we aimed to develop a protective probiotic coculture to inhibit the growth of Salmonella enterica serovar Typhimurium in the simulated chicken gut environment. Bacterial strains were isolated from the digestive mucosa of broilers and screened in vitro against Salmonella Typhimurium ATCC 14028. A biocompatibility coculture test was performed, which identified two biocompatible strains, Ligilactobacillus salivarius UO.C109 and Ligilactobacillus saerimneri UO.C121 with high inhibitory activity against Salmonella. The cell-free supernatant (CFS) of the selected isolates exhibited dose-dependent effects, and the inhibitory agents were confirmed to be proteinaceous by enzymatic and thermal treatments. Proteome and genome analyses revealed the presence of known bacteriocins in the CFS of L. salivarius UO.C109, but unknown for L. saerimneri UO.C121. The addition of these selected probiotic candidates altered the bacterial community structure, increased the diversity of the chicken gut microbiota challenged with Salmonella, and significantly reduced the abundances of Enterobacteriaceae, Parasutterlla, Phascolarctobacterium, Enterococcus, and Megamonas. It also modulated microbiome production of short-chain fatty acids (SCFAs) with increased levels of acetic and propionic acids after 12 and 24 h of incubation compared to the microbiome challenged with S. Typhimurium. Furthermore, the selected probiotic candidates reduced the adhesion and invasion of Salmonella to Caco-2 cells by 37-39% and 51%, respectively, after 3 h of incubation, compared to the control. These results suggest that the developed coculture probiotic strains has protective activity and could be an effective strategy to control Salmonella infections in poultry.
Collapse
Affiliation(s)
- Saba Miri
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Hebatoallah Hassan
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Galal Ali Esmail
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Emmanuel N Njoku
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Mariem Chiba
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Basit Yousuf
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Tamer A E Ahmed
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Maxwell Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, K1H8M5, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, K1H8M5, Ottawa, ON, Canada
| | - Walid Mottawea
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Ma L, Tian G, Pu Y, Qin X, Zhang Y, Wang H, You L, Zhang G, Fang C, Liang X, Wei H, Tan L, Jiang L. Bacillus coagulans MF-06 alleviates intestinal mucosal barrier from damage in chicks infected with Salmonella pullorum via activating the Wnt/ β-catenin pathway. Front Microbiol 2024; 15:1492035. [PMID: 39678911 PMCID: PMC11638242 DOI: 10.3389/fmicb.2024.1492035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction This study aimed to assess the protective efficacy of Bacillus coagulans MF-06 as a potential alternative to antibiotics in mitigating intestinal mucosal damage in chicks infected with Salmonella pullorum. Methods A total of 150 one-day-old SPF chicks were selected and randomly divided into five groups: control group (CK), probiotics group (EM), probiotics treatment group (PT), antibiotic treatment group (AT), Salmonella pullorum group (SI), CK, AT and SI groups were fed a basal diet, EM and PT groups were fed a basal diet supplemented with 1.0 × 108 CFU/g Bacillus coagulans; PT, AT and SI groups were gavaged with 1.0 × 109 CFU/0.5 mL Salmonella pullorum at 7 days of age; AT group were fed with 0.375 g/kg neomycin sulfate in the basal diet from days 7-14. Results Subsequently, the study evaluated alterations in growth performance, the integrity of the intestinal mucosal barrier, cytokines associated with the Wnt/β-catenin signaling pathway, and gut microbiota composition. The results revealed that the administration of Bacillus coagulans MF-06 significantly reduced the feed conversion ratio of chicks (p < 0.05), and significantly increased the average daily weight gain and average daily feed intake in chicks challenged with Salmonella Pullorum (p < 0.05). Furthermore, Bacillus coagulans MF-06 treatment diminished the presence of Salmonella pullorum colonies in the intestinal tract. Additionally, the administration of Bacillus coagulans MF-06 restored levels of (Diamine oxidase) DAO and (D-lactic acid) D-LA levels, as well as the levels of tight junction protein, including TJP1, CLDN1, CLDN2, Occludin, and MUC2 (p < 0.05). The study noted a significant decrease in cell apoptosis (p < 0.05) and a significant increase in the expression of Proliferating Cell Nuclear Antigen (PCNA) and v-myc avian myelocytomatosis viral oncogene homolog (C-MYC) (p < 0.05), which activated the Wnt/β-catenin signaling pathway. Analysis through 16S rRNA sequencing revealed that the intake of Bacillus coagulans MF-06 led to a significant decrease in the relative abundance of Lachnoclostridium, Shuttleworthia, and unidentified-Eggerthellaceae (p < 0.05). Discussion Collectively, the Bacillus coagulans MF-06 may provide a protective effect against Salmonella pullorum infection in chicks by enhancing growth performance, strengthening the integrity of the intestinal mucosal barrier, and stabilizing the gut microbiota.
Collapse
Affiliation(s)
- Li Ma
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Guangming Tian
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yuejin Pu
- Hubei Provincial Livestock Technology Extension Center, Wuhan, Hubei, China
| | - Xuguang Qin
- Animal Disease Prevention and Control Center of Rizhao City, Shandong, China
| | - Yinghu Zhang
- Yiling District Agricultural Product Quality and Safety Service Center, Yichang, Hubei, China
| | - Haojie Wang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Lei You
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Gaofeng Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Chun Fang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Xiongyan Liang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Hongbo Wei
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Lei Tan
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Liren Jiang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| |
Collapse
|
5
|
Liu X, Tao R, Guo F, Zhang L, Qu J, Li M, Wu X, Wang X, Zhu Y, Wen L, Wang J. Soybean oil induces neuroinflammatory response through brain-gut axis under high-fat diet. J Tradit Complement Med 2024; 14:522-533. [PMID: 39262663 PMCID: PMC11384091 DOI: 10.1016/j.jtcme.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 09/13/2024] Open
Abstract
Neuroinflammation is considered the principal pathogenic mechanism underlying neurodegenerative diseases, and the incidence of brain disorders is closely linked to dietary fat consumption and intestinal health. To investigate this relationship, 60 8-week-old C57BL/6J mice were subjected to a 20-week dietary intervention, wherein they were fed lard and soybean oil, each at 15% and 35% fat energy. At a dietary fat energy level of 35%, inflammation was observed in both the soybean oil and lard groups. Nevertheless, inflammation was more pronounced in the mice that were administered soybean oil. The process by which nerve cell structure is compromised, inflammatory factors are upregulated, brain antioxidant capacity is diminished, and the TLR4/MyD88/NF-κB p65 inflammatory pathway is activated resulting in damage to the brain-gut barrier. This, in turn, leads to a reduction in the abundance of Akkermansia and unclassified_f_Lachnospiraceae, as well as an increase in Dubosiella abundance, ultimately resulting in brain inflammation and damage. These results suggested that soybean oil induces more severe neuroinflammation compared to lard. Our study demonstrated that, at a dietary fat energy level of 35%, compared to soybean oil, lard could be the healthier option, the outcomes would help provide a reference basis for the selection of residents' daily dietary oil.
Collapse
Affiliation(s)
- Xiangyan Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Ran Tao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Fangrui Guo
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Linyu Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jianyu Qu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Mengyao Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaoran Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xianglin Wang
- Changsha Lvye Biotechnology Co., Ltd., Changsha, 410100, China
| | - Yuanyuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
6
|
Liang J, Li C, Chen Z, Guo F, Dou J, Wang T, Xu ZS. Progress of research and application of Heyndrickxia coagulans ( Bacillus coagulans) as probiotic bacteria. Front Cell Infect Microbiol 2024; 14:1415790. [PMID: 38863834 PMCID: PMC11165213 DOI: 10.3389/fcimb.2024.1415790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
Probiotics are defined as living or dead bacteria and their byproducts that maintain the balance of the intestinal microbiome. They are non-toxic, non-pathogenic, and do not release any toxins either within or outside the body. Adequate consumption of probiotics can enhance metabolite production, increase immunity, maintain a balanced intestinal flora, and stimulate growth. Probiotics do not have negative antibiotic effects and help maintain the natural flora in animals in a balanced state or prevent dysbacteriosis. Heyndrickxia coagulans (H. coagulans) is a novel probiotic species that is gradually being used for the improvement of human health. Compared to commonly used probiotic lactic acid bacteria, H. coagulans can produce spores, which provide the species with high resistance to adverse conditions. Even though they are transient residents of the gut, beneficial bacteria can have a significant impact on the microbiota because they can outnumber harmful germs, and vice versa. This article discusses the probiotic mechanisms of H. coagulans and outlines the requirements for a substance to be classified as a probiotic. It also addresses how to assess strains that have recently been discovered to possess probiotic properties.
Collapse
Affiliation(s)
- Jie Liang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Chunhai Li
- Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zouquan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Fangyu Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Jiaxin Dou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Zhen Shang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| |
Collapse
|
7
|
Yuan H, Bai G, Lin Y, Yu X, Yang Q, Dou R, Sun H, Zhao Z, Li Z, Chen Z, Xu L. Effects of dietary Nisin on growth performance, immune function, and gut health of broilers challenged by Clostridium perfringens. J Anim Sci 2024; 102:skae017. [PMID: 38266070 PMCID: PMC11254313 DOI: 10.1093/jas/skae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/22/2024] [Indexed: 01/26/2024] Open
Abstract
Nisin (Ni) is a polypeptide bacteriocin produced by lactic streptococci (probiotics) that can inhibit the majority of gram-positive bacteria, and improve the growth performance of broilers, and exert antioxidative and anti-inflammatory properties. The present study investigated the potential preventive effect of Nisin on necrotic enteritis induced by Clostridium perfringens (Cp) challenge. A total of 288 Arbor Acres broiler chickens of 1-d-olds were allocated using 2 × 2 factorial arrangement into four groups with six replicates (12 chickens per replicate), including: (1) control group (Con, basal diet), (2) Cp challenge group (Cp, basal diet + 1.0 × 108 CFU/mL Cp), (3) Ni group (Ni, basal diet + 100 mg/kg Ni), and (4) Ni + Cp group (Ni + Cp, basal diet + 100 mg/kg Ni + 1.0 × 108 CFU/mL Cp). The results showed that Cp challenge decreased the average daily gain (ADG) of days 15 to 21 (P<0.05) and increased interleukin-6 (IL-6) content in the serum (P < 0.05), as well as a significant reduction in villus height (VH) and the ratio of VH to crypt depth (VCR) (P<0.05) and a significant increase in crypt depth (CD) of jejunum (P<0.05). Furthermore, the mRNA expressions of Occludin and Claudin-1 were downregulated (P<0.05), while the mRNA expressions of Caspase3, Caspase9, Bax, and Bax/Bcl-2 were upregulated (P<0.05) in the jejunum. However, the inclusion of dietary Ni supplementation significantly improved body weight (BW) on days 21 and 28, ADG of days 15 to 21 (P<0.05), decreased CD in the jejunum, and reduced tumor necrosis factor-α (TNF-α) content in the serum (P<0.05). Ni addition upregulated the mRNA levels of Claudin-1 expression and downregulated the mRNA expression levels of Caspase9 in the jejunum (P<0.05). Moreover, Cp challenge and Ni altered the cecal microbiota composition, which manifested that Cp challenge decreased the relative abundance of phylum Fusobacteriota and increased Shannon index (P<0.05) and the trend of phylum Proteobacteria (0.05
Collapse
Affiliation(s)
- Hua Yuan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guangdong Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yu Lin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xilong Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Qinghui Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Renkai Dou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hao Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zeyu Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhongyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhihui Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Liangmei Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Guo S, Tong W, Qi Y, Jiang M, Li P, Zhang Z, Hu Q, Song Z, Ding B. Effects of Dietary Limosilactobacillus fermentum and Lacticaseibacillus paracasei Supplementation on the Intestinal Stem Cell Proliferation, Immunity, and Ileal Microbiota of Broiler Chickens Challenged by Coccidia and Clostridium perfringens. Animals (Basel) 2023; 13:3864. [PMID: 38136901 PMCID: PMC10740854 DOI: 10.3390/ani13243864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
This study was conducted to investigate effects of dietary Limosilactobacillus fermentum and Lacticaseibacillus paracasei supplementation on the intestinal stem cell proliferation, immunity, and ileal microbiota of broiler chickens challenged by coccidia and Clostridium perfringens. A total of 336 one-day-old Ross 308 chickens were randomly assigned into four groups. Chickens in the control (CTR) group were fed basal diet, and chickens in the three challenged groups were fed basal diets supplemented with nothing (CCP group), 1.0 × 109 CFU/kg L. fermentum (LF_CCP group), and 1.0 × 109 CFU/kg L. paracasei (LP_CCP group), respectively. All challenged birds were infected with coccildia on day 9 and Clostridium perfringens during days 13-18. The serum and intestinal samples were collected on days 13 and 19. The results showed that L. fermentum significantly increased jejunal gene expression of cdxB (one of the intestinal stem cell marker genes) on day 13. Additionally, L. fermentum significantly up-regulated mRNA levels of JAK3 and TYK2 and tended to increase STAT6 mRNA expression in jejunum on day 19. In the cecal tonsil, both L. fermentum and L. paracasei decreased mRNA expression of JAK2 on day 13, and L. fermentum down-regulated JAK1-2, STAT1, and STAT5-6 gene expressions on day 19. Ileal microbiological analysis showed that coccidial infection increased the Escherichia-Shigella, Lactobacillus, and Romboutsia abundance and decreased Candidatus_Arthromitus richness on day 13, which were reversed by Lactobacillus intervention. Moreover, Lactobacilli increased ileal Lactobacillus richness on day 19. In conclusion, Lactobacilli alleviated the impairment of intestinal stem cell proliferation and immunity in coccidia- and C. perfringens-challenged birds via modulating JAK/STAT signaling and reshaping intestinal microflora.
Collapse
Affiliation(s)
- Shuangshuang Guo
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Wenfei Tong
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Ya Qi
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Meihan Jiang
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Peng Li
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Zhengfan Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Qunbing Hu
- Hubei Horwath Biotechnology Co., Ltd., Xianning 437099, China;
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhuan Song
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| | - Binying Ding
- Engineering Research Center of Feed Protein Resources on Agricultural by-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (S.G.); (W.T.); (Y.Q.); (M.J.); (P.L.); (Z.Z.)
| |
Collapse
|
9
|
Song D, Li A, Chen B, Feng J, Duan T, Cheng J, Chen L, Wang W, Min Y. Multi-omics analysis reveals the molecular regulatory network underlying the prevention of Lactiplantibacillus plantarum against LPS-induced salpingitis in laying hens. J Anim Sci Biotechnol 2023; 14:147. [PMID: 37978561 PMCID: PMC10655300 DOI: 10.1186/s40104-023-00937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Salpingitis is one of the common diseases in laying hen production, which greatly decreases the economic outcome of laying hen farming. Lactiplantibacillus plantarum was effective in preventing local or systemic inflammation, however rare studies were reported on its prevention against salpingitis. This study aimed to investigate the preventive molecular regulatory network of microencapsulated Lactiplantibacillus plantarum (MLP) against salpingitis through multi-omics analysis, including microbiome, transcriptome and metabolome analyses. RESULTS The results revealed that supplementation of MLP in diet significantly alleviated the inflammation and atrophy of uterus caused by lipopolysaccharide (LPS) in hens (P < 0.05). The concentrations of plasma IL-2 and IL-10 in hens of MLP-LPS group were higher than those in hens of LPS-stimulation group (CN-LPS group) (P < 0.05). The expression levels of TLR2, MYD88, NF-κB, COX2, and TNF-α were significantly decreased in the hens fed diet supplemented with MLP and suffered with LPS stimulation (MLP-LPS group) compared with those in the hens of CN-LPS group (P < 0.05). Differentially expressed genes (DEGs) induced by MLP were involved in inflammation, reproduction, and calcium ion transport. At the genus level, the MLP supplementation significantly increased the abundance of Phascolarctobacterium, whereas decreased the abundance of Candidatus_Saccharimonas in LPS challenged hens (P < 0.05). The metabolites altered by dietary supplementation with MLP were mainly involved in galactose, uronic acid, histidine, pyruvate and primary bile acid metabolism. Dietary supplementation with MLP inversely regulates LPS-induced differential metabolites such as LysoPA (24:0/0:0) (P < 0.05). CONCLUSIONS In summary, dietary supplementation with microencapsulated Lactiplantibacillus plantarum prevented salpingitis by modulating the abundances of Candidatus_Saccharimonas, Phascolarctobacterium, Ruminococcus_torques_group and Eubacterium_hallii_group while downregulating the levels of plasma metabolites, p-tolyl sulfate, o-cresol and N-acetylhistamine and upregulating S-lactoylglutathione, simultaneously increasing the expressions of CPNE4, CNTN3 and ACAN genes in the uterus, and ultimately inhibiting oviducal inflammation.
Collapse
Affiliation(s)
- Dan Song
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Aike Li
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Bingxu Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Jia Feng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
| | - Tao Duan
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Junlin Cheng
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Lixian Chen
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Weiwei Wang
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China.
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China.
| |
Collapse
|
10
|
Zhang R, Qin S, Yang C, Niu Y, Feng J. The protective effects of Bacillus licheniformis against inflammatory responses and intestinal barrier damage in broilers with necrotic enteritis induced by Clostridium perfringens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6958-6965. [PMID: 37309567 DOI: 10.1002/jsfa.12781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/18/2023] [Accepted: 06/13/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bacillus licheniformis is a gram-positive bacterium that has strong environmental adaptability and can improve the growth performance, immunity, and antioxidant function of broilers. The current study aimed to elucidate the protective capability of B. licheniformis against inflammatory responses and intestinal barrier damage in broilers with necrotic enteritis (NE) induced by Clostridium perfringens (CP). RESULTS The results showed that B. licheniformis enhanced the final body weight in broilers compared with that of broilers in the CP group after the stress of infection (P < 0.05). Bacillus licheniformis reversed the decreased levels of serum and jejunum mucosa immunoglobulins and anti-inflammatory cytokines, reduced the values of villus height and the ratio of villus height to crypt depth, and mitigated the increased levels of serum d-lactic acid and diamine oxidase in CP-challenged broilers (P < 0.05). Moreover, B. licheniformis modulated the expression levels of genes involved in the TLR4/NF-κB signalling pathway, the NLRP3 inflammasome activation pathway, and the sirt 1/Parkin signalling pathway in CP-challenged broilers. Compared with the CP challenge group, the B. licheniformis-treated group exhibited reduced abundance values of Shuttleworthia and Alistipes and enhanced abundance values of Parabacteroides in the caecal contents (P < 0.05). CONCLUSION Bacillus licheniformis improved the final body weight and alleviated the inflammatory response and intestinal barrier function damage in birds with NE induced by CP by maintaining intestinal physiological function, enhancing immunity, regulating inflammatory cytokine secretion, modulating the mitophagy response, and increasing the abundance of beneficial intestinal flora. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruiqiang Zhang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Songke Qin
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Caimei Yang
- Key Agricultural Research Institute of Veagmax Green Animal Health Products of Zhejiang Province, Zhejiang Vegamax Biotechnology Co., Ltd, Hangzhou, China
| | - Yu Niu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jie Feng
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Racines MP, Solis MN, Šefcová MA, Herich R, Larrea-Álvarez M, Revajová V. An Overview of the Use and Applications of Limosilactobacillus fermentum in Broiler Chickens. Microorganisms 2023; 11:1944. [PMID: 37630504 PMCID: PMC10459855 DOI: 10.3390/microorganisms11081944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The implementation of government regulations on antibiotic use, along with the public's concern for drug resistance, has strengthened interest in developing alternatives not only aimed at preserving animal production but also at reducing the effects of pathogenic infections. Probiotics, in particular, are considered microorganisms that induce health benefits in the host after consumption of adequate amounts; they have been established as a potential strategy for improving growth, especially by stimulating intestinal homeostasis. Probiotics are commonly associated with lactic acid bacteria, and Limosilactobacillus fermentum is a well-studied species recognized for its favorable characteristics, including adhesion to epithelial cells, production of antimicrobial compounds, and activation of receptors that prompt the transcription of immune-associated genes. Recently, this species has been used in animal production. Different studies have shown that the application of L. fermentum strains not only improves the intestinal ecosystem but also reduces the effects caused by potentially pathogenic microorganisms. These studies have also revealed key insights into the mechanisms behind the actions exerted by this probiotic. In this manuscript, we aim to provide a concise overview of the effects of L. fermentum administration on broiler chicken health and performance.
Collapse
Affiliation(s)
- Maria Paula Racines
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador; (M.P.R.); (M.N.S.); (M.A.Š.)
| | - Maria Nicole Solis
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador; (M.P.R.); (M.N.S.); (M.A.Š.)
| | - Miroslava Anna Šefcová
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador; (M.P.R.); (M.N.S.); (M.A.Š.)
| | - Róbert Herich
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 040 01 Košice, Slovakia;
| | - Marco Larrea-Álvarez
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador; (M.P.R.); (M.N.S.); (M.A.Š.)
| | - Viera Revajová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 040 01 Košice, Slovakia;
| |
Collapse
|
12
|
Gao M, Wang J, Lv Z. Supplementing Genistein for Breeder Hens Alters the Growth Performance and Intestinal Health of Offspring. Life (Basel) 2023; 13:1468. [PMID: 37511844 PMCID: PMC10381885 DOI: 10.3390/life13071468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Recent research revealed that dietary genistein supplementation for breeder hens can improve the immune function of offspring chicks. However, it remains unknown whether this maternal effect could improve the intestinal health of offspring. This study was conducted to explore the mechanism involved in the maternal effect of genistein on the intestinal mucosa and microbial homeostasis of chicken offspring. A total of 120 Qiling breeder hens were fed a basal diet, a 20 mg/kg genistein-supplemented diet, or a 40 mg/kg genistein-supplemented diet for 4 weeks before collecting their eggs. After hatching, 180 male offspring (60 chickens from each group) were randomly selected and divided into three groups: (1) the offspring of hens fed a basal diet (CON); (2) the offspring of hens fed a low-dose genistein-supplemented diet (LGE); (3) the offspring of hens fed a high-dose genistein-supplemented diet (HGE). At 17 d, 72 male offspring (48 chickens from CON and 24 chickens from LGE) were divided into three groups: (1) the offspring of hens fed a basal diet (CON); (2) the CON group challenged with LPS (LPS); (3) the LGE group challenged with LPS (LPS + LGE). The results showed that maternal genistein supplementation increased the birth weight and serum level of total protein (TP), followed by improved intestinal villus morphology. Continuously, the maternal effect on the body weight of chicks lasted until 21 d. Additionally, it was observed that maternal genistein supplementation exhibited protective effects against LPS-induced morphological damage and intestinal mucosal barrier dysfunction by upregulating the expression of tight junction proteins, specifically ZO-1, Claudin1, E-cadherin, and Occludin, at 21 d. Using 16S rRNA gene sequencing, we demonstrated that maternal supplementation of genistein has the potential to facilitate the maturation of newly hatched chicken offspring by enhancing the abundance of Escherichia coli. Additionally, maternal genistein supplementation can effectively reduce the abundance of Gammaproteobacteria, thus mitigating the risk of bacterial diversity impairment of LPS. In light of these findings, maternal genistein supplementation holds promise as a potential strategy for ameliorating intestinal mucosal damage and modulating the microbiome in chicken offspring.
Collapse
Affiliation(s)
- Mingkun Gao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiao Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Yosi F, Metzler-Zebeli BU. Dietary Probiotics Modulate Gut Barrier and Immune-Related Gene Expression and Histomorphology in Broiler Chickens under Non- and Pathogen-Challenged Conditions: A Meta-Analysis. Animals (Basel) 2023; 13:1970. [PMID: 37370480 DOI: 10.3390/ani13121970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Data published in the literature about the favorable effects of dietary probiotics on gut health in broiler chickens are inconsistent. To obtain a more comprehensive understanding, we conducted a meta-analysis to assess the effects of probiotics on the gut barrier and immune-related gene expression, histomorphology, and growth in chickens that were either challenged or non-challenged with pathogens. From the 54 articles published between 2012 and 2022, subsets of data, separately for non-challenged and challenged conditions, for response variables were created. The mean dietary probiotic concentrations ranged from 4.7 to 6.2 and 4.7 to 7.2 log10 colony-forming unit/kg under non-challenged and challenged conditions, respectively. Probiotics increased the expression of genes for mucins and tight junction proteins in the jejunum and ileum at weeks 3 and 6. The stimulatory effect of probiotics on tight junction protein expression was partly stronger in challenged than in non-challenged birds. Meta-regressions also showed an anti-inflammatory effect of probiotics under challenged conditions by modulating the expression of cytokines. Probiotics improved villus height at certain ages in the small intestine while not influencing growth performance. Dietary metabolizable energy, crude protein, and days post-infection modified the effects of probiotics on the observed variables. Overall, meta-regressions support the beneficial effects of probiotics on gut integrity and structure in chickens.
Collapse
Affiliation(s)
- Fitra Yosi
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology, and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Animal Science, Faculty of Agriculture, University of Sriwijaya, Palembang 30662, Indonesia
| | - Barbara U Metzler-Zebeli
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology, and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
14
|
Guo S, He L, Zhang Y, Niu J, Li C, Zhang Z, Li P, Ding B. Effects of Vitamin A on Immune Responses and Vitamin A Metabolism in Broiler Chickens Challenged with Necrotic Enteritis. Life (Basel) 2023; 13:life13051122. [PMID: 37240767 DOI: 10.3390/life13051122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Necrotic enteritis (NE) is an important enteric inflammatory disease of poultry, and the effects of vitamin A (VitA) on NE birds are largely unknown. The present study was conducted to investigate the effects of VitA on the immune responses and VitA metabolism of NE broilers as well as the underlying mechanisms. Using a 2 × 2 factorial arrangement, 336 1-day-old Ross 308 broiler chicks were randomly assigned to 4 groups with 7 replicates. Broilers in the control (Ctrl) group were fed a basal diet without extra VitA supplementation. Broilers in the VitA group were fed a basal diet supplemented with 12,000 IU/kg of VitA. Birds in NE and VitA + NE groups were fed corresponding diets and, in addition, co-infected with Eimeria spp. and Clostridium perfringens on days 14 to 20. Samples of the blood, jejunum, spleen and liver were obtained on day 28 for analysis, and meanwhile, lesion scores were also recorded. The results showed that NE challenge increased lesion score in the jejunum and decreased serum glucose, total glyceride, calcium, phosphorus and uric acid levels (p < 0.05). VitA supplementation reduced the levels of serum phosphorus, uric acid and alkaline phosphatase in NE-challenged birds and increased serum low-density lipoprotein content and the activity of aspartate aminotransferase and creatine kinase (p < 0.05). Compared with the Ctrl group, the VitA and NE groups had higher mRNA expression of interferon-γ in the jejunum (p < 0.05). NE challenge up-regulated mRNA expression of interleukin (IL)-13, transforming growth factor-β4, aldehyde dehydrogenase (RALDH)-2 and RALDH-3 in the jejunum, while VitA supplementation increased jejunal IL-13 mRNA expression and hepatic VitA content, but down-regulated splenic IL-13 mRNA expression (p < 0.05). The VitA + NE group had higher serum prostaglandin E2 levels and the Ctrl group had higher splenic RALDH-3 mRNA expression than that of the other three groups (p < 0.05). NE challenge up-regulated jejunal retinoic acid receptor (RAR)-β and retinoid X receptor (RXR)-α as well as splenic RAR-α and RAR-β mRNA expression (p < 0.05). VitA supplementation up-regulated jejunal RAR-β expression but down-regulated mRNA expression of RXR-α, RXR-γ, signal transducers and activators of transcription (STAT) 5 and STAT6 in the spleen (p < 0.05). Moreover, compared with the Ctrl group, the VitA and NE groups had down-regulated mRNA expression of jejunal and splenic Janus kinase (JAK) 1 (p < 0.05). In conclusion, NE challenge induced jejunal injury and expression of Th2 and Treg cell-related cytokines and enhanced RALDH and RAR/RXR mRNA expression, mainly in the jejunum of broilers. VitA supplementation did not alleviate jejunal injury or Th2 cell-related cytokine expression; however, it improved hepatic VitA deposition and inhibited the expression of RALDH-3, RXR and the JAK/STAT signaling pathway in the spleen of broilers. In short, the present study suggested the modulatory effects of vitamin A on the immune responses and vitamin A metabolism in broiler chickens challenged with necrotic enteritis.
Collapse
Affiliation(s)
- Shuangshuang Guo
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lai He
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuanke Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Junlong Niu
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Changwu Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhengfan Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peng Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Binying Ding
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
15
|
Obianwuna UE, Agbai Kalu N, Wang J, Zhang H, Qi G, Qiu K, Wu S. Recent Trends on Mitigative Effect of Probiotics on Oxidative-Stress-Induced Gut Dysfunction in Broilers under Necrotic Enteritis Challenge: A Review. Antioxidants (Basel) 2023; 12:antiox12040911. [PMID: 37107286 PMCID: PMC10136232 DOI: 10.3390/antiox12040911] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
Gut health includes normal intestinal physiology, complete intestinal epithelial barrier, efficient immune response, sustained inflammatory balance, healthy microbiota, high nutrient absorption efficiency, nutrient metabolism, and energy balance. One of the diseases that causes severe economic losses to farmers is necrotic enteritis, which occurs primarily in the gut and is associated with high mortality rate. Necrotic enteritis (NE) primarily damages the intestinal mucosa, thereby inducing intestinal inflammation and high immune response which diverts nutrients and energy needed for growth to response mediated effects. In the era of antibiotic ban, dietary interventions like microbial therapy (probiotics) to reduce inflammation, paracellular permeability, and promote gut homeostasis may be the best way to reduce broiler production losses. The current review highlights the severity effects of NE; intestinal inflammation, gut lesions, alteration of gut microbiota balance, cell apoptosis, reduced growth performance, and death. These negative effects are consequences of; disrupted intestinal barrier function and villi development, altered expression of tight junction proteins and protein structure, increased translocation of endotoxins and excessive stimulation of proinflammatory cytokines. We further explored the mechanisms by which probiotics mitigate NE challenge and restore the gut integrity of birds under disease stress; synthesis of metabolites and bacteriocins, competitive exclusion of pathogens, upregulation of tight junction proteins and adhesion molecules, increased secretion of intestinal secretory immunoglobulins and enzymes, reduction in pro-inflammatory cytokines and immune response and the increased production of anti-inflammatory cytokines and immune boost via the modulation of the TLR/NF-ĸ pathway. Furthermore, increased beneficial microbes in the gut microbiome improve nutrient utilization, host immunity, and energy metabolism. Probiotics along with biosecurity measures could mitigate the adverse effects of NE in broiler production.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nenna Agbai Kalu
- Department of Animal Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
16
|
Ai F, Huang X, Wu Y, Ji C, Gao Y, Yu T, Yan F. Alleviative effects of a novel strain Bacillus coagulans XY2 on copper-induced toxicity in zebrafish larvae. J Environ Sci (China) 2023; 125:750-760. [PMID: 36375957 DOI: 10.1016/j.jes.2022.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 06/16/2023]
Abstract
Copper (Cu) is a kind of micronutrient element that is essential for human metabolism. However, it is also considered as an environmental pollutant which is toxic to organisms at a high concentration level. Probiotics, regarded as beneficial microorganisms for promoting human health, have functions of antioxidant capacity, immune-enhancing properties, intestinal barrier protection and regulation. Several studies have reported that probiotics show positive effects on alleviating and intervening heavy metals toxicity. However, evidence for relieving copper-induced toxicity by probiotics is still limited. In this study, we firstly conducted a zebrafish larvae model to screen out microorganisms which are helpful for CuSO4 toxicity resistance and one novel strain named as Bacillus coagulans XY2 was discovered with the best protective activity. B. coagulans XY2 significantly reduced the mortality of zebrafish larvae exposed to 10 µmol/L CuSO4 for 96 hr, as well as alleviated the neutrophils infiltration in the larvae lateral line under a 2 hr exposure. B. coagulans XY2 exhibited a high in vitro antioxidant activity and against CuSO4-induced oxidative stress in zebrafish larvae by up-regulating sod1, gstp1 and cat gene transcriptional levels and relevant enzymatic activities. CuSO4 stimulated the inflammation process resulting in obvious increases of gene il-1β and il-10 transcription, which were suppressed by B. coagulans XY2 intervention. Overall, our results underline the bio-function of B. coagulans XY2 on protecting zebrafish larvae from copper toxicity, suggesting the potential application values of probiotics in copper toxicity alleviation on human and the environment.
Collapse
Affiliation(s)
- Fang Ai
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xuedi Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yalan Wu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chen Ji
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yufang Gao
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Fujie Yan
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Li C, Wang S, Chen S, Wang X, Deng X, Liu G, Chang W, Beckers Y, Cai H. Screening and Characterization of Pediococcus acidilactici LC-9-1 toward Selection as a Potential Probiotic for Poultry with Antibacterial and Antioxidative Properties. Antioxidants (Basel) 2023; 12:215. [PMID: 36829774 PMCID: PMC9952579 DOI: 10.3390/antiox12020215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Growing interest has been focused on lactic acid bacteria as alternatives to antimicrobial growth promoters, which are characterized by the production of various functional metabolites, such as antimicrobial and antioxidants compounds. The present study was undertaken to evaluate a potential probiotic from the antioxidant perspective. LC-9-1, screened from the intestines of healthy animals, was revealed to be Pediococcus acidilactici on the basis of its morphological, biochemical, and molecular characteristics. The strain has excellent properties, including acid-production efficiency, antibacterial performance and antioxidant activity. The safety of the strain was also evaluated. Furthermore, the experiments in broiler chickens suggested that dietary LC-9-1 supplementation improved the growth performance and decreased the abdominal fat, and enhanced the antioxidant capability and intestinal innate immunity of broilers. Analysis of intestinal microbiota showed that a higher community diversity (Shannon index) was achieved. In addition to the significantly increased relative abundances of Pediococcus spp., beneficial genera such as Rothia spp. and Ruminococcus spp. were abundant, while opportunistic pathogens such as Escherichia-Shigella spp. were significantly reduced in LC-9-1-supplemented broilers. Collectively, such in-depth characterization and the available data will guide future efforts to develop next-generation probiotics, and LC-9-1 could be considered a potential strain for further utilization in direct-fed microbial or starter culture for fermentation.
Collapse
Affiliation(s)
- Chong Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Shaolong Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Si Chen
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Xiaoying Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Xuejuan Deng
- National Engineering Research Center of Biological Feed, Beijing 100081, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Wenhuan Chang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Yves Beckers
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Huiyi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
- National Engineering Research Center of Biological Feed, Beijing 100081, China
| |
Collapse
|
18
|
Oladokun S, Adewole D. The effect of Bacillus subtilis and its delivery route on hatch and growth performance, blood biochemistry, immune status, gut morphology, and microbiota of broiler chickens. Poult Sci 2023; 102:102473. [PMID: 36736137 PMCID: PMC9898455 DOI: 10.1016/j.psj.2022.102473] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
This study evaluated the effect of probiotics (Bacillus subtilis fermentation extract) and its delivery route (in-feed or in ovo) on hatch and growth performance, blood biochemistry, immune status, gut morphology, and microbiota of broiler chickens. Hatching eggs were incubated for 21 d. On d 12, viable eggs were randomly allotted to 4 groups: the noninjected, in ovo saline (S), in ovo Bacillus subtilis 1 (P1), and in ovo Bacillus subtilis 2 (P2). On d 18, S, P1, and P2 groups received 0.2 mL saline diluent, 10 × 106, and 20 × 106 CFU of the bacterium via the amnion, respectively. At hatch, chicks were re-allotted to 5 new treatment groups: P1, P2, 0.005% in-feed Bacillus subtilis extract (P3), 0.05% in-feed bacitracin methylene disalicylate (BMD,), and corn-wheat-soybean diet negative control (NC) in 9 replicate pens (22 birds/pen) and raised for 35 d. Hatch parameters were assessed on d 0, and growth performance indices measured weekly. On d 25, 1 bird/cage was euthanized, and samples collected for further analysis. Data were analyzed by generalized linear model. Treatments S and P2 recorded higher (P = 0.01) chick BW/ Egg Weight values compared to the non-injected eggs. P3 and P2 reduced (P = 0.02) FI at week 5 compared to the NC treatment. However, no change in average body weight gain (ABG) and feed conversion ratio (FCR) were observed during the same period. At d 35, while BMD treatment showed a tendency (P = 0.09) to increase FI compared to the NC treatment, ABG and FCR were similar for all treatments. Blood sodium and chloride levels were increased (P < 0.05) by the BMD treatment compared to the NC treatment. Compared to other treatments, BMD and P3 treatments increased (P < 0.001) jejunal and ileal villus height to crypt depth ratios, respectively. However, P1 and P2 increased (P < 0.001) villus height to crypt depth ratio in the duodenum compared to NC treatment. Treatments did not affect gut microbial diversity; however, BMD treatment increased (P < 0.05) the proportion of bacteria in the genus Enterococcus in the ileum and reduced (P < 0.05) the proportion of bacteria in the genus Streptococcus in the ceca. All probiotics treatments (irrespective of route and dose) reduced (P < 0.001) the levels of serum IgG compared to the NC treatment. However, P1 and P2 had the lowest numerical decrease in serum IgG concentrations, suggesting that Bacillus subtilis (especially in ovo delivered) might provide broiler chickens with better immunological protection by neutralizing pathogenic organisms that could result in the production of natural antibodies.
Collapse
Affiliation(s)
- Samson Oladokun
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
19
|
Aida M, Yamada R, Matsuo T, Taniguchi I, Nakamura SI, Tsukahara T. Dietary Weizmannia coagulans Strain SANK70258 Ameliorates Coccidial Symptoms and Improves Intestinal Barrier Functions of Broilers by Modulating the Intestinal Immunity and the Gut Microbiota. Pathogens 2023; 12:96. [PMID: 36678444 PMCID: PMC9864622 DOI: 10.3390/pathogens12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
To determine the mechanisms by which Weizmannia coagulans SANK70258 (WC) supplementation improved growth performance and coccidial symptoms, we assessed the gene expressions and the microbiota compositions in the small intestinal tissues and digestas of coccidium-infected broilers previously given WC or lasalocid-A sodium (AM). WC supplementation significantly upregulated the gene expressions related to intestinal immunity and barrier functions, such as IL17A, IL17F, IL10, cathelicidin-2 and pIgR. Body weights, and Claudin-1 and IL10 expressions were positively correlated (r = 0.41, p < 0.05 and r = 0.37, p = 0.06, respectively), whereas lesion scores of the small intestine and IL17A expression were negatively correlated (r = −0.33, p = 0.09). The microbiota analysis detected that genus Alistipes was more abundant in WC-supplemented broilers than in control, and positively correlated with body weights and Claudin-1 expression (r = 0.61, p < 0.05 and r = 0.51, p < 0.05, respectively). Intriguingly, genus Enterococcus was most abundant in WC-supplemented broilers and positively correlated with IL17A expression (r = 0.49, p < 0.05). Interestingly, Escherichia-Shigella was significantly more abundant in the small intestinal digestas of AM-administered broilers than in those of control. To summarize, WC supplementation modulated and immunostimulated the microbiotas of broilers, specifically genera Alistipes and Enterococcus, which led to the improvement of weight gain and coccidial symptoms, without disrupting the intestinal microbiota compositions, as AM did.
Collapse
Affiliation(s)
- Masanori Aida
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama 227-8502, Kanagawa, Japan
| | - Ryouichi Yamada
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama 227-8502, Kanagawa, Japan
| | | | | | - Shin-ichi Nakamura
- Kyoto Institute of Nutrition & Pathology, Ujitawara 610-0231, Kyoto, Japan
| | | |
Collapse
|
20
|
Abstract
Chickens are in constant interaction with their environment, e.g., bedding and litter, and their microbiota. However, how litter microbiota develops over time and whether bedding and litter microbiota may affect the cecal microbiota is not clear. We addressed these questions using sequencing of V3/V4 variable region of 16S rRNA genes of cecal, bedding, and litter samples from broiler breeder chicken flocks for 4 months of production. Cecal, bedding, and litter samples were populated by microbiota of distinct composition. The microbiota in the bedding material did not expand in the litter. Similarly, major species from litter microbiota did not expand in the cecum. Only cecal microbiota was found in the litter forming approximately 20% of total litter microbiota. A time-dependent development of litter microbiota was observed. Escherichia coli, Staphylococcus saprophyticus, and Weissella jogaejeotgali were characteristic of fresh litter during the first month of production. Corynebacterium casei, Lactobacillus gasseri, and Lactobacillus salivarius dominated in a 2-month-old litter, Brevibacterium, Brachybacterium, and Sphingobacterium were characteristic for 3-month-old litter, and Salinococcus, Dietzia, Yaniella, and Staphylococcus lentus were common in a 4-month-old litter. Although the development was likely determined by physicochemical conditions in the litter, it might be interesting to test some of these species for active modification of litter to improve the chicken environment and welfare. IMPORTANCE Despite intimate contact, the composition of bedding, litter, and cecal microbiota differs considerably. Species characteristic for litter microbiota at different time points of chicken production were identified thus opening the possibility for active manipulation of litter microbiota.
Collapse
|
21
|
Li P, Zheng L, Qi Y, Liu Z, Du E, Wei J, Zhang Z, Guo S, Ding B. Dietary Lactobacillus fermentum and Lactobacillus paracasei improve the intestinal health of broilers challenged with coccidia and Clostridium perfringens. Front Vet Sci 2022; 9:1025677. [PMID: 36590818 PMCID: PMC9797813 DOI: 10.3389/fvets.2022.1025677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Necrotic enteritis (NE) is a great threat to the intestinal health of broilers, resulting in decreased growth performance and significant economic losses. Lactobacillus fermentum (LF) and Lactobacillus paracasei (LP) exert beneficial effects on intestinal health. The aim of the present study was to investigate the effects of dietary LF and LP on the intestinal health and growth performance of broilers challenged with coccidia and Clostridium perfringens (CCP). The animal trial was carried out using 336 broilers (Ross 308) for 35 days with a completely randomized design. The broilers were divided into 4 groups based on treatment as follows: the control (CTR) group was fed the basal diet and without CCP challenge and the CCP group was fed the basal diet and with CCP challenge. The broilers in the CCP+LF and CCP+LP groups were challenged by CCP, and meanwhile, LF (1 × 109 CFU/g) and LP (1 × 109 CFU/g) were supplemented into the basal diets, respectively. The results showed that the growth performance and the intestinal morphology were negatively affected by the CCP challenge. In addition, the number of coccidia in the intestinal digesta and the relative abundance of Escherichia coli in the cecal digesta were increased. Besides, the mRNA level of IgA in the jejunum was downregulated, and the transcript level of IL-8 was upregulated by the CCP challenge. Dietary LF and LP failed to improve the growth performance of broilers with the CCP challenge. However, they were beneficial for intestinal barrier function. In addition, dietary LF was able to alleviate the downregulation of TGF-β mRNA level in the spleen with CCP challenge and decreased the lesion scores compared with the CCP group. Furthermore, dietary LP alleviated the upregulation of the IL-8 mRNA level in the jejunum with CCP challenge and reduced the number of coccidia in the ileal digesta. In conclusion, dietary LF and LP failed to mitigate the negative effects of CCP infection on growth performance; however, they were able to improve the intestinal health of broilers challenged with CCP by strengthening the intestinal barrier and alleviating inflammation.
Collapse
Affiliation(s)
- Peng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Liyun Zheng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Ya Qi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Zhipeng Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Encun Du
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jintao Wei
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhengfan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Shuangshuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China,*Correspondence: Shuangshuang Guo
| | - Binying Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China,Binying Ding
| |
Collapse
|
22
|
Effects of Dietary Supplementation with Vitamin A on Antioxidant and Intestinal Barrier Function of Broilers Co-Infected with Coccidia and Clostridium perfringens. Animals (Basel) 2022; 12:ani12233431. [PMID: 36496951 PMCID: PMC9740507 DOI: 10.3390/ani12233431] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Necrotic enteritis (NE) impairs poultry production and causes great economic loss. The nutritional regulation of diets has the potential to alleviate NE. The present study was conducted to investigate the effects of dietary supplementation with vitamin A (VA) on the antioxidant and intestinal barrier function of broilers co-infected with coccidia and C. perfringens (CCP). In a 2 × 2 factorial arrangement, 336 one-day-old Ross 308 broilers were divided into four treatments with two levels of VA (0 or 12,000 IU/kg) and challenged with or without CCP. The animal trial lasted for 42 days. The results showed that dietary supplemental VA improved body weight gain (BWG) and the feed intake (FI), and the FI was negatively affected by CCP. Additionally, the levels of catalase (CAT) in the serum, total superoxide dismutase (T-SOD), and CAT in the jejunum and glutathione peroxidase (GSH-Px) in the liver decreased with the CCP challenge (p < 0.05). The mRNA levels of SOD, CAT, GSH-Px1, and GSH-Px3 in the liver and jejunum were upregulated by the CCP challenge (p < 0.05). In addition, the level of serum diamine oxidase (DAO), and the mRNA level of ZO-1 were also upregulated with the CCP challenge. Dietary supplementation with VA contributed to the intestinal villi height and the mRNA level of Mucin-2 in the jejunum (p < 0.05). Additionally, dietary VA had the ability to alleviate the upregulation of SOD in the liver and SOD, CAT, GSH-Px1, GSH-Px3, ZO-1, and claudin-1 in the jejunum with the CCP challenge (p < 0.05). However, the mRNA level of GSH-Px3 and the levels of SOD in the liver and jejunum were downregulated with the VA supplementation in the diet. In conclusion, dietary VA improved the growth performance and the intestinal barrier function; nonetheless, it failed to alleviate the negative effects of CCP on the antioxidant function in broilers.
Collapse
|
23
|
Memon FU, Yang Y, Zhang G, Leghari IH, Lv F, Wang Y, Laghari F, Khushk FA, Si H. Chicken Gut Microbiota Responses to Dietary Bacillus subtilis Probiotic in the Presence and Absence of Eimeria Infection. Microorganisms 2022; 10:1548. [PMID: 36013966 PMCID: PMC9412415 DOI: 10.3390/microorganisms10081548] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Coccidiosis is a well-known poultry disease that causes the severe destruction of the intestinal tract, resulting in reduced growth performance and immunity, disrupted gut homeostasis and perturbed gut microbiota. Supplementation of probiotics were explored to play a key role in improving growth performance, enhancing innate and adaptive immunity, maintaining gut homeostasis and modulating gut microbiota during enteric infection. This study was therefore designed to investigate the chicken gut whole microbiota responses to Bacillus subtilis (B. subtilis) probiotic feeding in the presence as well as absence of Eimeria infection. For that purpose, 84 newly hatched chicks were assigned into four groups, including (1) non-treated non-challenged control group (CG - ET), (2) non-treated challenged control group (CG + ET), (3) B. subtilis-fed non-challenged group (BS - ET) and (4) B. subtilis-fed challenged group (BS + ET). CG + ET and BS + ET groups were challenged with Eimeria tenella (E. tenella) on 21 day of housing. Our results for Alpha diversity revealed that chickens in both infected groups (CG + ET and BS + ET) had lowest indexes of Ace, Chao 1 and Shannon, while highest indexes of Simpson were found in comparison to non-challenged groups (CG - ET and BS - ET). Firmicutes was the most affected phylum in all experimental groups following Proteobacteria and Bacteroidota, which showed increased abundance in both non-challenged groups, whereas Proteobacteria and Bacteroidota affected both challenged groups. The linear discriminant analysis effect size method (lEfSe) analysis revealed that compared to the CG + ET group, supplementation of probiotic in the presence of Eimeria infection increased the abundance of some commensal genera, included Clostridium sensu stricto 1, Corynebacterium, Enterococcus, Romboutsia, Subdoligranulum, Bacillus, Turicibacter and Weissella, with roles in butyrate production, anti-inflammation, metabolic reactions and the modulation of protective pathways against pathogens. Collectively, these findings evidenced that supplementation of B. subtilis probiotic was positively influenced with commensal genera, thereby alleviating the Eimeria-induced intestinal disruption.
Collapse
Affiliation(s)
- Fareed Uddin Memon
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (F.U.M.).; (Y.Y.); (G.Z.); (F.L.); (Y.W.)
- Department of Poultry Husbandry, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tando Jam 70060, Pakistan; (I.H.L.); (F.A.K.)
| | - Yunqiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (F.U.M.).; (Y.Y.); (G.Z.); (F.L.); (Y.W.)
| | - Geyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (F.U.M.).; (Y.Y.); (G.Z.); (F.L.); (Y.W.)
| | - Imdad Hussain Leghari
- Department of Poultry Husbandry, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tando Jam 70060, Pakistan; (I.H.L.); (F.A.K.)
| | - Feifei Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (F.U.M.).; (Y.Y.); (G.Z.); (F.L.); (Y.W.)
| | - Yuhan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (F.U.M.).; (Y.Y.); (G.Z.); (F.L.); (Y.W.)
| | - Farooque Laghari
- Department of Animal Production and Environment Control, College of Animal Sciences and Technology, Southeast Agriculture University, Harbin 150030, China;
| | - Farooque Ahmed Khushk
- Department of Poultry Husbandry, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tando Jam 70060, Pakistan; (I.H.L.); (F.A.K.)
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (F.U.M.).; (Y.Y.); (G.Z.); (F.L.); (Y.W.)
| |
Collapse
|
24
|
Gangaiah D, Ryan V, Van Hoesel D, Mane SP, Mckinley ET, Lakshmanan N, Reddy ND, Dolk E, Kumar A. Recombinant
Limosilactobacillus
(
Lactobacillus
) delivering nanobodies against
Clostridium perfringens
NetB and alpha toxin confers potential protection from necrotic enteritis. Microbiologyopen 2022; 11:e1270. [PMID: 35478283 PMCID: PMC8924699 DOI: 10.1002/mbo3.1270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Dharanesh Gangaiah
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | - Valerie Ryan
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | - Daphne Van Hoesel
- Division of Nanobody Discovery and Development QVQ Holding BV Utrecht The Netherlands
| | - Shrinivasrao P. Mane
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | - Enid T. Mckinley
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | | | - Nandakumar D. Reddy
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | - Edward Dolk
- Division of Nanobody Discovery and Development QVQ Holding BV Utrecht The Netherlands
| | - Arvind Kumar
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| |
Collapse
|
25
|
An K, Gao W, Li P, Li L, Xia Z. Dietary Lactobacillus plantarum improves the growth performance and intestinal health of Pekin ducks. Poult Sci 2022; 101:101844. [PMID: 35413596 PMCID: PMC9018153 DOI: 10.1016/j.psj.2022.101844] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022] Open
|
26
|
Wang B, Zhou Y, Mao Y, Gong L, Li X, Xu S, Wang F, Guo Q, Zhang H, Li W. Dietary Supplementation With Lactobacillus plantarum Ameliorates Compromise of Growth Performance by Modulating Short-Chain Fatty Acids and Intestinal Dysbiosis in Broilers Under Clostridium perfringens Challenge. Front Nutr 2021; 8:706148. [PMID: 34722602 PMCID: PMC8551491 DOI: 10.3389/fnut.2021.706148] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Clostridium perfringens is an important zoonotic pathogen associated with food contamination and poisoning, gas gangrene, necrotizing enterocolitis or necrotic enteritis in humans and animals. Dysbacteriosis is supposedly associated with the development of C. perfringens infection induced necrotic enteritis, but the detailed relationship between intestinal health, microbiome, and C. perfringens infection-induced necrotic enteritis remains poorly understood. This research investigated the effect of probiotics on the growth performance and intestinal health of broilers, and the involved roles of intestinal microbiota and microbial metabolic functions under C. perfringens infection. Results showed that subclinical necrotic enteritis was successfully induced as evidenced by the significant lower body weight (BW), suppressed feed conversion ratio (FCR), decreased ileal villus height and mucosal barrier function, and increased ileal histopathological score and bursal weight index. Lactobacillus plantarum or Paenibacillus polymyxa significantly attenuated C. perfringens-induced compromise of growth performance (BW, FCR) and ileal mucosa damage as illustrated by the increased ileal villus height and villus/crypt ratio, the decreased ileal histopathological score and the enhanced ileal mucosal barrier function. L. plantarum also significantly alleviated C. perfringens-induced enlarged bursa of fabricius and the decreased levels of ileal total SCFAs, acetate, lactate, and butyrate. Furthermore, dietary L. plantarum improved C. perfringens infection-induced intestinal dysbiosis as evidenced by significantly enriched short-chain fatty acids-producing bacteria (Lachnospiraceae, Ruminococcaceae, Oscillospira, Faecalibacterium, Blautia), reduced drug-resistant bacteria (Bacteroides, Alistipes) and enteric pathogens (Escherichia coli, Bacteroides fragilis) and bacterial metabolic dysfunctions as illustrated by significantly increased bacterial fatty acid biosynthesis, decreased bacterial lipopolysaccharide biosynthesis, and antibiotic biosynthesis (streptomycin and vancomycin). Additionally, the BW and intestinal SCFAs were the principal factors affecting the bacterial communities and microbial metabolic functions. The above findings indicate that dietary with L. plantarum attenuates C. perfringens-induced compromise of growth performance and intestinal dysbiosis by increasing SCFAs and improving intestinal health in broilers.
Collapse
Affiliation(s)
- Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China
| | - Yuanhao Zhou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China
| | - Yulong Mao
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China.,School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiang Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China
| | - Shujie Xu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China
| | - Fei Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China
| | - Qianpeng Guo
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Lu C, Yan Y, Jian F, Ning C. Coccidia-Microbiota Interactions and Their Effects on the Host. Front Cell Infect Microbiol 2021; 11:751481. [PMID: 34660347 PMCID: PMC8517481 DOI: 10.3389/fcimb.2021.751481] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
As a common parasitic disease in animals, coccidiosis substantially affects the health of the host, even in the absence of clinical symptoms and intestinal tract colonization. Gut microbiota is an important part of organisms and is closely related to the parasite and host. Parasitic infections often have adverse effects on the host, and their pathogenic effects are related to the parasite species, parasitic site and host-parasite interactions. Coccidia-microbiota-host interactions represent a complex network in which changes in one link may affect the other two factors. Furthermore, coccidia-microbiota interactions are not well understood and require further research. Here, we discuss the mechanisms by which coccidia interact directly or indirectly with the gut microbiota and the effects on the host. Understanding the mechanisms underlying coccidia-microbiota-host interactions is important to identify new probiotic strategies for the prevention and control of coccidiosis.
Collapse
Affiliation(s)
- Chenyang Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yaqun Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Changshen Ning
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|