1
|
Ko JCK, Choi YWY, Poon ESK, Wyre N, Sin SYW. Prevalence, genotypes, and infection risk factors of psittacine beak and feather disease virus and budgerigar fledgling disease virus in captive birds in Hong Kong. Arch Virol 2024; 169:91. [PMID: 38578455 PMCID: PMC10997714 DOI: 10.1007/s00705-024-06017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/13/2024] [Indexed: 04/06/2024]
Abstract
Psittacine beak and feather disease virus (PBFDV) and budgerigar fledgling disease virus (BFDV) are significant avian pathogens that threaten both captive and wild birds, particularly parrots, which are common hosts. This study involved sampling and testing of 516 captive birds from households, pet shops, and an animal clinic in Hong Kong for PBFDV and BFDV. The results showed that PBFDV and BFDV were present in 7.17% and 0.58% of the samples, respectively. These rates were lower than those reported in most parts of Asia. Notably, the infection rates of PBFDV in pet shops were significantly higher compared to other sources, while no BFDV-positive samples were found in pet shops. Most of the positive samples came from parrots, but PBFDV was also detected in two non-parrot species, including Swinhoe's white-eyes (Zosterops simplex), which had not been reported previously. The ability of PBFDV to infect both psittacine and passerine birds is concerning, especially in densely populated urban areas such as Hong Kong, where captive flocks come into close contact with wildlife. Phylogenetic analysis of the Cap and Rep genes of PBFDV revealed that the strains found in Hong Kong were closely related to those in Europe and other parts of Asia, including mainland China, Thailand, Taiwan, and Saudi Arabia. These findings indicate the presence of both viruses among captive birds in Hong Kong. We recommend implementing regular surveillance for both viruses and adopting measures to prevent contact between captive and wild birds, thereby reducing the transmission of introduced diseases to native species.
Collapse
Affiliation(s)
- Jackie Cheuk Kei Ko
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
| | - Yannes Wai Yan Choi
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
| | - Emily Shui Kei Poon
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
| | - Nicole Wyre
- Zodiac Pet & Exotic Hospital, 101A-103A Victoria Centre, 15 Watson Road, Fortress Hill, Hong Kong, China
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China.
| |
Collapse
|
2
|
Khosravi M, Samakkhah SA, Khoshbakht R, Mamouri KS. Avian Polyomavirus Among Psittacine Birds in Iran: Molecular Detection Rate and Associated Risk Factors. J Avian Med Surg 2024; 38:7-14. [PMID: 38686883 DOI: 10.1647/avianms-d-23-00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Avian polyomavirus (APV) infection causes various health problems in psittacine species, including death. The present study was conducted to investigate the prevalence of APV among psittacine birds in Iran. We also aimed to evaluate the impact of age, sex, species, season, and origin of the birds on the prevalence of APV. This study investigated the presence of APV among 1050 individual birds from 7 psittacine species over a 1-year period in Iran, namely, green-cheeked parakeets (Pyrrhura molinae), rosy-faced lovebirds (Agapornis roseicollis), monk parakeets (Myiopsitta monachus), sun conures (Aratinga solstitialis), Senegal parrots (Poicephalus senegalus), cockatiels (Nymphicus hollandicus), and grey parrots (Psittacus erithacus). The overall prevalence of APV in all studied species was 25% (263/1050, 95% confidence interval [CI]: 22.5-27.8). Results of the study showed that age and the season of the year were 2 important determinant factors in the prevalence of APV in psittacine birds. Young psittacine birds <6 months old were 2.94 (95% CI: 1.19-7.27) times more likely to be infected with APV than birds >1 year old, and there was a significant interaction between season and species in the multivariate analysis. In the winter season, rosy-faced lovebirds and green-cheeked parakeets were 15.6 (95% CI: 4.20-57.95) and 4.76 (95% CI: 1.4-16.21) times more likely to be infected with APV than in other seasons, respectively. This is the first report on the detection rate of APV in psittacine birds in Iran.
Collapse
Affiliation(s)
- Mojtaba Khosravi
- Departments of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Aftab 24, Amol, Iran, ,
| | - Shohreh Alian Samakkhah
- Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Aftab 24, Amol, Iran
| | - Rahem Khoshbakht
- Departments of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Aftab 24, Amol, Iran
| | - Kimia Sarraf Mamouri
- Biotechnology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Aftab 24, Amol, Iran
| |
Collapse
|
3
|
Yun YJ, Song H, Kwon YK, Park CK, Kim HR. Genetic characterization of avian polyomaviruses identified from psittacine birds in South Korea. Avian Pathol 2023; 52:420-425. [PMID: 37565272 DOI: 10.1080/03079457.2023.2247347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023]
Abstract
Budgerigar fledgling disease (BFD) is a contagious disease caused by avian polyomavirus (APV) in psittacine birds and causes high mortality rates. Here, eight APV-positive cases were confirmed from dead parrots or parrot tissue samples by polymerase chain reaction (PCR). Full-length genome sequencing showed high nucleotide identity (98.84-100%) between the APV strains. Phylogenetic analysis revealed that two genogroups were cocirculating in South Korea. The nucleotide sequences of five strains, collected from different parrot species, were identical; however, pathological lesions were observed in only two parrots, both aged 2 months. Pathology included necrotic spots in the liver, subcutaneous haemorrhage, hepatomegaly, ascites, intranuclear inclusion bodies, hepatocyte karyomegaly, hepatic necrosis, and bile duct proliferation. This suggests that the pathogenicity of APV might be host age-dependent regardless of the host species. This study improves our understanding of APV pathogenicity and provides a more detailed genetic characterization of APV strains.RESEARCH HIGHLIGHTS Eight APV strains were identified in South Korea from 2019 to 2021.By phylogenetic analysis, South Korean APV strains were classified into two clades.
Collapse
Affiliation(s)
- Ye-Ji Yun
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea
| | - HyeSoon Song
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Yong-Kuk Kwon
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea
| | - Hye-Ryoung Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| |
Collapse
|
4
|
Sánchez C, Doménech A, Gomez-Lucia E, Méndez JL, Ortiz JC, Benítez L. A Novel Dependoparvovirus Identified in Cloacal Swabs of Monk Parakeet (Myiopsitta monachus) from Urban Areas of Spain. Viruses 2023; 15:v15040850. [PMID: 37112831 PMCID: PMC10145644 DOI: 10.3390/v15040850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
The introduction of invasive birds into new ecosystems frequently has negative consequences for the resident populations. Accordingly, the increasing population of monk parakeets (Myiopsitta monachus) in Europe may pose a threat because we have little knowledge of the viruses they can transmit to native naïve species. In this study, we describe a new dependoparvovirus detected by metagenomic analysis of cloacal samples from 28 apparently healthy individuals captured in urban areas of Madrid, Spain. The genomic characterization revealed that the genome encoded the NS and VP proteins typical of parvoviruses and was flanked by inverted terminal repeats. No recombination signal was detected. The phylogenetic analysis showed that it was closely related to a parvovirus isolated in a wild psittacid in China. Both viruses share 80% Rep protein sequence identity and only 64% with other dependoparvoviruses identified in Passeriformes, Anseriformes, and Piciformes and are included in a highly supported clade, which could be considered a new species. The prevalence was very low, and none of the additional 73 individuals tested positive by PCR. These results highlight the importance of exploring the viral genome in invasive species to prevent the emergence of novel viral pathogenic species.
Collapse
|
5
|
Wang CW, Chen YL, Mao SJT, Lin TC, Wu CW, Thongchan D, Wang CY, Wu HY. Pathogenicity of Avian Polyomaviruses and Prospect of Vaccine Development. Viruses 2022; 14:v14092079. [PMID: 36146885 PMCID: PMC9505546 DOI: 10.3390/v14092079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Polyomaviruses are nonenveloped icosahedral viruses with a double-stranded circular DNA containing approximately 5000 bp and 5–6 open reading frames. In contrast to mammalian polyomaviruses (MPVs), avian polyomaviruses (APVs) exhibit high lethality and multipathogenicity, causing severe infections in birds without oncogenicity. APVs are classified into 10 major species: Adélie penguin polyomavirus, budgerigar fledgling disease virus, butcherbird polyomavirus, canary polyomavirus, cormorant polyomavirus, crow polyomavirus, Erythrura gouldiae polyomavirus, finch polyomavirus, goose hemorrhagic polyomavirus, and Hungarian finch polyomavirus under the genus Gammapolyomavirus. This paper briefly reviews the genomic structure and pathogenicity of the 10 species of APV and some of their differences in terms of virulence from MPVs. Each gene’s genomic size, number of amino acid residues encoding each gene, and key biologic functions are discussed. The rationale for APV classification from the Polyomavirdae family and phylogenetic analyses among the 10 APVs are also discussed. The clinical symptoms in birds caused by APV infection are summarized. Finally, the strategies for developing an effective vaccine containing essential epitopes for preventing virus infection in birds are discussed. We hope that more effective and safe vaccines with diverse protection will be developed in the future to solve or alleviate the problems of viral infection.
Collapse
Affiliation(s)
- Chen-Wei Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- International Degree Program in Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuan Pei University of Medical Technology, Yuanpei Street, Hsinchu 300, Taiwan
| | - Simon J. T. Mao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Tzu-Chieh Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- International Degree Program in Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Ching-Wen Wu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Duangsuda Thongchan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Faculty of Agriculture and Technology, Rajamangala University of Technology Isan, Surin Campus, Nakhon Ratchasima 30000, Thailand
| | - Chi-Young Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (C.-Y.W.); (H.-Y.W.); Tel.: +886-4-22840369 (ext. 48) (C.-Y.W.); +886-8-7703202 (ext. 5072) (H.-Y.W.)
| | - Hung-Yi Wu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Correspondence: (C.-Y.W.); (H.-Y.W.); Tel.: +886-4-22840369 (ext. 48) (C.-Y.W.); +886-8-7703202 (ext. 5072) (H.-Y.W.)
| |
Collapse
|
6
|
Kim S, Kim SJ, Na KJ. Molecular characteristics of Budgerigar fledgling disease polyomavirus detected from parrots in South Korea. J Vet Sci 2022; 23:e67. [PMID: 36038188 PMCID: PMC9523338 DOI: 10.4142/jvs.22082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/09/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sungryong Kim
- Laboratory of Veterinary Laboratory Medicine and Wildlife Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Su-Jin Kim
- Laboratory of Veterinary Laboratory Medicine and Wildlife Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
- The Wildlife Center of Chungbuk, Cheongju 28116, Korea
| | - Ki-Jeong Na
- Laboratory of Veterinary Laboratory Medicine and Wildlife Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
- The Wildlife Center of Chungbuk, Cheongju 28116, Korea
| |
Collapse
|