1
|
He B, Zhu Z, Tian Z, Wang D, Li Y, Luan X, Ma L. Fucoidan improves intestinal peristaltic function in rats with postoperative ileus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4593-4605. [PMID: 39508874 DOI: 10.1007/s00210-024-03587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
The effect of fucoidan on postoperative ileus (POI) has not been studied. In this study, how fucoidan ameliorates POI in a rat POI model was investigated. The results showed that in the model animals, when the first defecation time was prolonged, the amount of food consumed decreased, the small intestinal propulsion rate dramatically slowed, and the motility index (MI%) of the small intestine decreased. In vitro experiments revealed that the contractile response of small intestinal smooth muscle strips to carbachol (CCh) was reduced. Immunohistochemistry revealed evident macrophage infiltration in the intestinal muscularis. However, after oral pretreatment with fucoidan, the time to first defecation decreased, and food intake, the small intestinal propulsion rate, and MI% of the small intestine increased. Additionally, the contractile response of the intestinal strips to CCh became stronger, and macrophage infiltration decreased. Mechanistically, fucoidan alleviated POI by exerting anti-inflammatory and antioxidant effects as well as likely through the TrkB/ERK1/2/Akt signalling pathways. When POI occurred, the expression levels of inflammatory factors in the intestines significantly increased while the phosphorylation of TrkB, ERK1/2, and Akt significantly decreased; malondialdehyde (MDA) levels in the intestines increased but the levels of superoxide dismutase (SOD) and glutathione (GSH) decreased. In contrast, after pretreatment with fucoidan, the expression levels of inflammatory factors decreased; the phosphorylation levels of TrkB, ERK1/2, and Akt increased; the MDA level decreased; and SOD and GSH levels increased. Thus, fucoidan alleviated POI-induced impairment of rat intestinal motility through anti-inflammatory and antioxidant effects possibly associated with the TrkB/ERK1/2 and Akt signalling pathways.
Collapse
Affiliation(s)
- Baoguo He
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Zhenming Zhu
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Zibin Tian
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Dandan Wang
- Department of Clinical Nutrition, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Yijing Li
- Department of Clinical Nutrition, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Xiao Luan
- Biomedical Center of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Li Ma
- Department of Clinical Nutrition, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| |
Collapse
|
2
|
Xiao Y, Chen L, Xu Y, He X, Gan S, Yin F. The Effects of Tea Polyphenols in Feed on the Immunity, Antioxidant Capacity, and Gut Microbiota of Weaned Goat Kids. Animals (Basel) 2025; 15:467. [PMID: 40002949 PMCID: PMC11852070 DOI: 10.3390/ani15040467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
In this present study, we aimed to investigate the effects of adding tea polyphenols to feed on the immunity, antioxidant capacity, and gut microbiota of weaned goat kids. Thirty weaned kids (Leizhou goats, average initial weight of 9.32 ± 1.72 kg, 2 months old) were randomly divided into five groups with six kids in each group, with half being male and half being female. The control (CON) group was fed the basal diet, and the four other groups were supplemented with 2, 4, or 6 g/kg tea polyphenols or 50 mg/kg chlortetracycline in the basal diet (denoted as the T1, T2, T3, and CTC groups, respectively). The results showed that compared to the CON and CTC groups, adding 4 or 6 g/kg tea polyphenols could increase the expression levels of serum antioxidant enzymes and intestinal antioxidant genes in the kids. It also increased the expression of Nrf2 and IL-10 in the intestine, while reducing the content and gene expression of cytokines (IL-1β, IL-6, IFN-γ, and TNF-α). Dietary supplementation with 4 or 6 g/kg tea polyphenols reduced the expression levels of TLR4, MyD88, and NFκB in intestinal tissue, activated intestinal protective mechanisms, and enhanced the immune defense of the intestinal epithelium. Compared to the CTC group, feeding tea polyphenols significantly increased the Simpson indices. However, adding 4 g/kg tea polyphenols significantly increased the relative abundance of Verrucomicrobiota, Candidatus Soleaferrea, the Christensenellaceae R-7 group, and Prevotella, as well as the acetic acid content in the cecum of the kids (p < 0.05). Overall, the results indicate that dietary supplementation with 4 g/kg of tea polyphenols can effectively maintain the homeostasis of the gut microbiota and enhance the anti-inflammatory and antioxidant capabilities of weaned kids.
Collapse
Affiliation(s)
- Yimei Xiao
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524091, China; (Y.X.); (L.C.); (Y.X.); (X.H.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang 524091, China
| | - Longcheng Chen
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524091, China; (Y.X.); (L.C.); (Y.X.); (X.H.)
| | - Yuewen Xu
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524091, China; (Y.X.); (L.C.); (Y.X.); (X.H.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang 524091, China
| | - Xiaolin He
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524091, China; (Y.X.); (L.C.); (Y.X.); (X.H.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang 524091, China
| | - Shangquan Gan
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524091, China; (Y.X.); (L.C.); (Y.X.); (X.H.)
| | - Fuquan Yin
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524091, China; (Y.X.); (L.C.); (Y.X.); (X.H.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang 524091, China
| |
Collapse
|
3
|
B J, R R. A critical review on pharmacological properties of sulfated polysaccharides from marine macroalgae. Carbohydr Polym 2024; 344:122488. [PMID: 39218536 DOI: 10.1016/j.carbpol.2024.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
The marine ecosystem contains an assorted range of organisms, among which macroalgae stands out marine resources as an invaluable reservoir of structurally diverse bioactive compounds. Marine macroalgae are considered as primary consumers have gained more attention for their bioactive components. Sulfated polysaccharides (SPs) are complex polymers found in macroalgae that play a crucial role in their cell wall composition. This review consolidates high-tech methodologies employed in the extraction of macroalgal SPs, offering a valuable resource for researchers focuses in the pharmacological relevance of marine macromolecules. The pharmacological activities of SPs, focusing on their therapeutic action by encompassing diverse study models are summarized. Furthermore, in silico docking studies facilitates a comprehensive understanding of SPs interactions with their binding sites providing a valuable insight for future endeavors. The biological properties of algal SPs, along with a brief reference to mode of action based on different targets are presented. This review utilizes up-to-date research discoveries across various study models to elucidate the biological functions of SPs, focusing on their molecular-level mechanisms and offering insights for prospective investigations. Besides, the significance of SPs from seaweeds is highlighted, showcasing their potential beneficial applications in promoting human health. With promising biomedical prospects, this review explores the extensive uses and experimental evidence supporting the important roles of SPs in various fields.
Collapse
Affiliation(s)
- Jegadeshwari B
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Rajaram R
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
4
|
Liu J, Chen J, Fang S, Sun B, Li Y, Guo Y, Deng M, Zhou D, Liu D, Liu G. Effects of moringa polysaccharides on growth performance, immune function, rumen morphology, and microbial community structure in early-weaned goat kids. Front Vet Sci 2024; 11:1461391. [PMID: 39582887 PMCID: PMC11584012 DOI: 10.3389/fvets.2024.1461391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/25/2024] [Indexed: 11/26/2024] Open
Abstract
The aim of this research was to investigate the effects of adding moringa polysaccharides (MOP) on the growth performance, immune function, rumen tissue morphology, and rumen microbial community in early-weaned goat kids. Twenty-one 7-day-old Leizhou male goat kids weighing (3.05 ± 0.63) kg, were randomly divided into a control group (CON group), a low-dose group (LOW group), and a high-dose group (HIG group). MOP was added to the goat kids' milk replacer (MR) at 0, 0.15, and 0.3% (on dry matter basis),fed until 60 days of age, and four goat kids in each group with body weights close to the mean of each group were selected for slaughter. The results showed that, compared to the CON group, the MOP groups significantly improved final body weight, body measurements, daily weight gain, and feed intake of the early weaned goat kids; significantly reduced the content of propionic acid, butyric acid, valeric acid, and ammoniacal nitrogen; and in addition, the addition of MOP could significantly increase the height of rumen nipple, the content of immunoglobulin G (IgG) in the serum. The HIG group significantly increased rumen pH, rumen muscularis layer thickness, rumen wall thickness, and serum immunoglobulin A (IgA), and immunoglobulin M (IgM). In conclusion, the addition of MOP positively impacted the growth performance, serum immune function, and rumen tissue morphology in early-weaned goat kids.
Collapse
Affiliation(s)
- Jinyang Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinyu Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Sicheng Fang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Duoen Zhou
- Guangdong Leader Intelligent Agriculture Co., LTD, Qingyuan, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
He F, Jin X, E T, Zhao L, Yang W, Zhao Y, Pan L, Bao N, Sun H. Bacillus subtilis JATP3 improved the immunity of weaned piglets by improving intestinal flora and producing citalopram. Microb Pathog 2024; 195:106852. [PMID: 39147213 DOI: 10.1016/j.micpath.2024.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The purpose of this study was to evaluate the ability of Bacillus subtilis JATP3 to stimulate immune response and improve intestinal health in piglets during the critical weaning period. Twelve 28-day-old weaned piglets were randomly divided into two groups. One group was fed a basal diet, while the other group was fed a basal diet supplemented with B. subtilis JATP3 (1 × 109 CFU/mL; 10 mL) for 28 days. The results revealed a significant increase in the intestinal villus gland ratio of weaned piglets following the inclusion of B. subtilis JATP3 (P < 0.05). Inclusion of a probiotic supplement improve the intestinal flora of jejunum and ileum of weaned piglets. Metabolomics analysis demonstrated a notable rise in citalopram levels in the jejunum and ileum, along with elevated levels of isobutyric acid and isocitric acid in the ileum. The results of correlation analysis show that indicated a positive correlation between citalopram and microbial changes. Furthermore, the probiotic-treated group exhibited a significant upregulation in the relative expression of Claudin, Zonula Occludens 1 (ZO-1), and Interleukin 10 (IL-10) in the jejunum and ileum, while displaying a noteworthy reduction in the relative expression of Interleukin 1β (IL-1β). Overall, these findings suggest that B. subtilis JATP3 can safeguard intestinal health by modulating the structure of the intestinal microbiota and their metabolites, wherein citalopram might be a key component contributing to the therapeutic effects of B. subtilis JATP3.
Collapse
Affiliation(s)
- Feng He
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Xueying Jin
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Tianjiao E
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Lei Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Wenyan Yang
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Yuan Zhao
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Li Pan
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Nan Bao
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Hui Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
6
|
Li J, Kudereti T, Wusiman A, Abula S, He X, Li J, Yang Y, Guo Q, Guo Q. Regulatory Effects of Alhagi Honey Small-Molecule Sugars on Growth Performance and Intestinal Microbiota of Lambs. Animals (Basel) 2024; 14:2402. [PMID: 39199936 PMCID: PMC11350646 DOI: 10.3390/ani14162402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
The present study was designed to assess the impact of Alhagi honey small-molecule sugars (AHAS) on Hu lambs. Therefore, in this study, AHAS low-dose (AHAS-L, 200 mg/ kg per day), AHAS medium-dose (AHAS-M, 400 mg/kg per day), and AHAS high-dose (AHAS-H, 800 mg/kg per day) were administered to Hu lambs to investigate the regulatory effects of AHAS on growth performance, oxidation index, immune system enhancement, and intestinal microbiota. The results showed that lambs in the AHAS-H group exhibited significantly increased in average daily weight gain, and growth performance compared to those in the control group (p < 0.05). Moreover, AHAS-H supplementation resulted in increased levels of serum antioxidant enzymes (SOD, GSH-Px, and T-AOC), serum antibodies (IgA, IgG, and IgM), and cytokines (IL-4, 10,17, IFN-γ, and TNF-α) compared with the control group (p < 0.05). Additionally, it increased the quantity and richness of beneficial bacteria at such as Sphingomonas, Ralstonia, and Flavobacterium, activating various metabolic pathways and promoting the production of various short-chain fatty acids. In summary, our findings highlight the potential of AHAS-H treatment in enhancing intestinal health of lambs by improving intestinal function, immunity, and related metabolic pathways. Consequently, these results suggest that AHAS holds promising potential as a valuable intervention for optimizing growth performance and intestinal health in lambs.
Collapse
Affiliation(s)
- Jianlong Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Tuerhong Kudereti
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Adelijiang Wusiman
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Saifuding Abula
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Xiaodong He
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Jiaxin Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Yang Yang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Qianru Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| |
Collapse
|
7
|
Homer B, Barekatain R, Petrovski KR, Plush KJ, Dwan C, D’Souza DN, Verma PJ, Kirkwood RN, Tucker BS. Preweaning Purified Fucoidan Drench: Effects on Growth, Immune Response, and Intestinal Morphology in Weaned Piglets. Animals (Basel) 2024; 14:1472. [PMID: 38791689 PMCID: PMC11117201 DOI: 10.3390/ani14101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Weaning stress imposes considerable physiological challenges on piglets, often manifesting in intestinal disturbances, such as inflammation and compromised barrier function, ultimately affecting growth and health outcomes. While conventional interventions, including antimicrobials, have effectively mitigated these sequelae, concerns surrounding antimicrobial resistance necessitate the exploration of alternatives. Fucoidan, derived from brown seaweed, offers promise due to its antioxidant and anti-inflammatory effects. Previous research has been limited to the in-feed supplementation of partially purified fucoidan extracted from brown seaweed. The focus of the present study is assessing the effect of a preweaning drench with highly purified (85%) fucoidan on piglet growth, immune response, and intestinal morphology post-weaning. Forty-eight male piglets at 17 ± 3 days of age (5.67 ± 0.16 kg) were assigned to a saline (control), fucoidan, or antimicrobial group, receiving treatment as a single 18 mL oral drench three days before weaning. Monitoring for seven days post-weaning included body weight measurements, blood sample collection for the inflammatory protein assay, and small intestine morphological analysis. The findings revealed that the preweaning fucoidan drench did not elicit adverse effects on piglets. However, neither fucoidan nor antimicrobial drenches significantly enhanced growth parameters, immune markers, or intestinal morphology compared to that of the control-treated piglets (p > 0.05). The lack of response may be attributed to the high health status of the experimental cohort and the limitation of a single dosage. Future research should consider a more challenging production setting to evaluate the viability and optimal application of fucoidan as an antimicrobial alternative in the pig industry.
Collapse
Affiliation(s)
- Bonnie Homer
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Reza Barekatain
- South Australian Research and Development Institute, Roseworthy, SA 5371, Australia
- College of Engineering and Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | - Kiro R. Petrovski
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | | | - Corinna Dwan
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, TAS 7170, Australia
| | | | - Paul J. Verma
- South Australian Research and Development Institute, Roseworthy, SA 5371, Australia
- College of Engineering and Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | - Roy N. Kirkwood
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Bryony S. Tucker
- South Australian Research and Development Institute, Roseworthy, SA 5371, Australia
- College of Engineering and Sciences, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
8
|
Shao P, Sha Y, Liu X, He Y, Wang F, Hu J, Wang J, Li S, Chen X, Yang W, Chen Q, Gao M. Supplementation with Astragalus Root Powder Promotes Rumen Microbiota Density and Metabolome Interactions in Lambs. Animals (Basel) 2024; 14:788. [PMID: 38473173 DOI: 10.3390/ani14050788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/03/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The gut microbiota is highly symbiotic with the host, and the microbiota and its metabolites are essential for regulating host health and physiological functions. Astragalus, as a feed additive, can improve animal immunity. However, the effects of Astragalus root powder on the rumen microbiota and their metabolites in lambs are not apparent. In this study, thirty healthy Hu sheep lambs with similar body weights (17.42 ± 2.02 kg) were randomly selected for the feeding experiment. Lambs were fed diets supplemented with 0.3% Astragalus root powder, and the rumen microbiota density and metabolome were measured to determine the effects of Astragalus on the health of lambs in the rumen. The results showed that the relative abundance of Butyrivibrio fibrisolvens (Bf), Ruminococcus flavefaciens (Rf), Succiniclasticum (Su), and Prevotella (Pr) in the rumen was increased in the Astragalus group (p < 0.01), and metabolic profiling showed that the metabolites, such as L-lyrosine and L-leucine, were upregulated in the Astragalus group (p < 0.01). KEGG functional annotation revealed that upregulated metabolites were mainly enriched in the pathways of amino acid metabolism, lipid metabolism, fatty acid biosynthesis, and bile secretion in the Astragalus group, and downregulated metabolites were enriched in the pathways of methane metabolism and other pathways. Correlation analysis revealed that butyric acid was positively correlated with Roseburia and Blautia (p < 0.05) and negatively correlated with Desulfovibrio (p < 0.05). Thus, by analyzing the interactions of Astragalus root powder with the density of rumen microorganisms and their metabolites in lambs, it was shown that Astragalus root powder could improve the structure of rumen microbiota and their metabolites and then participate in the regulation of amino acid metabolism, lipid metabolism, immune metabolism, and other pathways to improve the efficiency of energy absorption of the lambs.
Collapse
Affiliation(s)
- Pengyang Shao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Sha
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Fanxiong Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaowei Chen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenxin Yang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qianling Chen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Min Gao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
9
|
Shao P, Sha Y, Liu X, He Y, Guo X, Hu J, Wang J, Li S, Zhu C, Chen G, Li W. Astragalus additive in feed improved serum immune function, rumen fermentation and the microbiota structure of early-weaned lambs. J Appl Microbiol 2023; 134:lxad278. [PMID: 37994654 DOI: 10.1093/jambio/lxad278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
AIM The purpose of this study was to determine the mechanism of Astragalus activity on the immune function, rumen microbiota structure, and rumen fermentation of early-weaned lambs. METHODS AND RESULTS Thirty healthy early-weaned lambs with similar body weights (17.42 ± 2.02 kg) were selected for the feeding experiment. The control group (KB) was fed a basal diet, and the Astragalus group (HQ) was fed 0.3% Astragalus additive on the basis of a basic diet. The formal trial period was 60 days. The results showed that the concentrations of blood immunoglobulin A (IgA) and immunoglobulin M (IgM) in the HQ group were significantly higher than those in the KB group (P < 0.05). Compared with the KB group, the concentrations of acetic acid, butyric acid, and total volatile fatty acids (VFAs) in the HQ group were higher (P < 0.01). The expression levels of the rumen epithelial-related genes MCT1, MCT4, NHE2, and ZO1 in the Astragalus group were significantly higher than those in the KB group (P < 0.05). 16S rRNA analysis showed that at the phylum level, Bacteroidetes in the HQ group significantly increased (P < 0.01); at the genus level, Prevotella (P < 0.01) and Succiniclasticum (P < 0.01) in the HQ group were found at significantly higher abundances than those in the KB group, and the results of microbiota gene and function prediction showed that "energy metabolism," "glycan biosynthesis and metabolic" pathways were significantly enriched in the HQ group (P < 0.05). CONCLUSION As a feed additive, Astragalus can improve the immunity of early-weaned lambs, the structure of the rumen microbiota of lambs, and the fermentation capacity of the rumen.
Collapse
Affiliation(s)
- Pengyang Shao
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Sha
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Xinyu Guo
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Caiye Zhu
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoshun Chen
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenhao Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810000, China
| |
Collapse
|
10
|
Cheong KL, Zhang Y, Li Z, Li T, Ou Y, Shen J, Zhong S, Tan K. Role of Polysaccharides from Marine Seaweed as Feed Additives for Methane Mitigation in Ruminants: A Critical Review. Polymers (Basel) 2023; 15:3153. [PMID: 37571046 PMCID: PMC10420924 DOI: 10.3390/polym15153153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Given the increasing concerns regarding greenhouse gas emissions associated with livestock production, the need to discover effective strategies to mitigate methane production in ruminants is clear. Marine algal polysaccharides have emerged as a promising research avenue because of their abundance and sustainability. Polysaccharides, such as alginate, laminaran, and fucoidan, which are extracted from marine seaweeds, have demonstrated the potential to reduce methane emissions by influencing the microbial populations in the rumen. This comprehensive review extensively examines the available literature and considers the effectiveness, challenges, and prospects of using marine seaweed polysaccharides as feed additives. The findings emphasise that marine algal polysaccharides can modulate rumen fermentation, promote the growth of beneficial microorganisms, and inhibit methanogenic archaea, ultimately leading to decreases in methane emissions. However, we must understand the long-term effects and address the obstacles to practical implementation. Further research is warranted to optimise dosage levels, evaluate potential effects on animal health, and assess economic feasibility. This critical review provides insights for researchers, policymakers, and industry stakeholders dedicated to advancing sustainable livestock production and methane mitigation.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Yiyu Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Zhuoting Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Tongtong Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Yiqing Ou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Jiayi Shen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535000, China
| |
Collapse
|