1
|
Sathitkowitchai W, Mok K, Udomsri P, Nitisinprasert S, Nakphaichit M. Synergistic activity of synbiotic blend between Lactococcus lactis KAFF 1-4 and fibersol-2 on gut microbiota modulation and anti-VRE properties. 3 Biotech 2025; 15:133. [PMID: 40255450 PMCID: PMC12006641 DOI: 10.1007/s13205-025-04298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 04/03/2025] [Indexed: 04/22/2025] Open
Abstract
The study evaluated the effectiveness of a synbiotic blend containing Lactococcus lactis KA-FF 1-4 and Fibersol-2 in modulating gut microbiota and inhibiting vancomycin-resistant Enterococcus (VRE). Compared to probiotic or prebiotic treatments alone, the synbiotic blend significantly altered the gut microbiota composition, increasing beneficial bacteria like Blautia, Clostridium, Parabacteroides, Prevotella, and Roseburia, while reducing VRE abundance. Moreover, the synbiotic treatment showed an increase in short-chain fatty acid (SCFA) concentrations, particularly acetate, propionate, and butyrate. Correlation analysis revealed that enriched taxa in the synbiotic treatment were positively associated with higher SCFA levels. These findings highlight the potential of synbiotic formulations in improving gut microbiota balance and combating antibiotic-resistant pathogens like VRE.
Collapse
Affiliation(s)
- Witida Sathitkowitchai
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900 Thailand
| | - Kevin Mok
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900 Thailand
- Center of Excellence for Microbiota Innovation, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900 Thailand
| | - Patkakorn Udomsri
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900 Thailand
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900 Thailand
- Center of Excellence for Microbiota Innovation, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900 Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900 Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900 Thailand
- Center of Excellence for Microbiota Innovation, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900 Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900 Thailand
| |
Collapse
|
2
|
Tartor YH, Enany ME, Ismail NI, El-Demerdash AS, Eidaroos NH, Algendy RM, Mahmmod Y, Elsohaby I. Vancomycin-resistant Staphylococcus aureus endangers Egyptian dairy herds. Sci Rep 2024; 14:30606. [PMID: 39715776 DOI: 10.1038/s41598-024-81516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
The emergence of pandrug-resistant (PDR) and extensive drug-resistant (XDR) methicillin-resistant and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA) isolates from bovine milk samples along with biofilm formation ability and harboring various virulence genes complicates the treatment of bovine mastitis and highlights the serious threat to public health. This study investigated for the first time the frequency, antimicrobial resistance profiles, biofilm-forming ability, virulence factors, spa and staphylococcal cassette chromosome mec (SCCmec) types of MRSA and VRSA isolated from clinical and subclinical bovine mastitis in Egypt. A total of 808 milk samples were collected from each quarter of 202 dairy animals, including 31 buffaloes and 171 cattle. The frequency of mastitis in the collected milk samples was 48.4% (60/124) in buffaloes and 29.2% (200/684) in cattle. A total of 65 Staphylococcus species isolates were recovered, including 27 coagulase-positive S. aureus (CoPS) isolates and 38 coagulase-negative staphylococci (CoNS). The CoNS included 27 mammaliicocci (20 Mammaliicoccus lentus and 7 M. sciuri) and 11 Non-aureus staphylococci (S. lugdunensis) isolates. All the CoPS isolates were mecA positive and resistant to 20-33 tested antimicrobials with multiple antibiotic resistance index ranging from 0.61 to 1. Three isolates were PDR, four were XDR, and 20 were multidrug resistant isolates. VRSA was detected in 85.2% of CoPS isolates with minimal inhibitory concentration (MIC) ranging from 64 to 1024 µg/mL. The vanA gene was found in 60.8%, vanB in 73.9%, and both genes in 43.5% of VRSA isolates. All the CoPS isolates exhibited biofilm formation ability, with 55.6% being strong, and 44.4% moderate biofilm producers, and harbored icaA (74.1%) and icaD (74.1%) biofilm-forming genes. All S. aureus isolates harbored both beta-haemolysin (hlb) and leucotoxin (lukMF) genes, while 44.4% were positive for toxic shock syndrome toxin (tsst) gene. Enterotoxin genes sea, seb, sec, sed, and see were found in 59.3%, 40.7%, 18.5%, 33.3%, and 14.8% of isolates, respectively. Additionally, 70.4% of the isolates had spa X-region gene, and exhibited eight different MRSA spa types (t127, t267, t037, t011, t843, t1081, t2663, and t1575), with spa t127 being the most common. Three SCCmec types (I, II and III) were identified, with SCCmec I being predominant, and were further classified into subtypes 1.1.1, 1.1.2, 1.n.1, and 4.1.1. The ability of MRSA and VRSA isolates to produce biofilms and resist antimicrobials highlights the serious threat these pathogens pose to bovine milk safety, animal welfare, and public health. Therefore, strict hygiene practices and antimicrobial surveillance are crucial to reduce the risk of MRSA and VRSA colonization and dissemination.
Collapse
Affiliation(s)
- Yasmine H Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed E Enany
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | | | - Azza S El-Demerdash
- Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, 44516, Egypt
| | - Nada H Eidaroos
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Reem M Algendy
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Yasser Mahmmod
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China
- Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
3
|
Kerek Á, Szabó Á, Jerzsele Á. Antimicrobial Susceptibility Profiles of Commensal Enterococcus spp. Isolates from Chickens in Hungarian Poultry Farms Between 2022 and 2023. Antibiotics (Basel) 2024; 13:1194. [PMID: 39766584 PMCID: PMC11672767 DOI: 10.3390/antibiotics13121194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The global spread of antimicrobial resistance (AMR) represents one of the most significant challenges of our generation. It is crucial to continuously monitor AMR, not only by investigating clinical, pathogenic strains but also by monitoring commensal bacterial strains, as they can serve as natural reservoirs of resistance. Infections caused by Enterococcus species are increasingly recognized as emerging threats to both animal and public health. Among economically important livestock, poultry as a major source of animal protein for humans is a frequent carrier of enterococci, and also of sporadically detected clinical disease. Methods: This study aimed to determine the antimicrobial susceptibility profile of Enterococcus strains (n = 499) isolated from chicken farms in Hungary. The minimum inhibitory concentration (MIC) was determined for 15 antibiotics, including 10 with established clinical breakpoints. Results: The strains exhibited good sensitivity to amoxicillin, one of the first-line treatments for Enterococcus infections in veterinary medicine, with only 20.8% showing resistance. However, we observed an alarming 27.9% resistance rate to vancomycin, which is reserved to treat infections caused by multidrug-resistant strains in humans. A comparison of our findings with Hungarian hospital records revealed that the resistance patterns of poultry-derived Enterococcus faecalis strains were very similar to those of human isolates, particularly regarding penicillins and aminoglycosides. Conclusions: Overall, the increasing rates of AMR reinforce the importance of conducting periodic studies to establish long-term trends. For multidrug-resistant strains, next-generation sequencing is recommended to elucidate the genetic basis of resistance.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary; (Á.S.); (Á.J.)
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| |
Collapse
|
4
|
Yan M, Wang W, Jin L, Deng G, Han X, Yu X, Tang J, Han X, Ma M, Ji L, Zhao K, Zou L. Emerging antibiotic and heavy metal resistance in spore-forming bacteria from pig manure, manure slurry and fertilized soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123270. [PMID: 39541816 DOI: 10.1016/j.jenvman.2024.123270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Spore-forming bacteria (SFB), like Bacillus, are the gram-positive bacteria with broad-spectrum activity that is one of the commonly used strains of probiotics. However, these bacteria also have significant resistance. In this study, we systematically investigated pig manure, manure slurry and soil by 16S rRNA high-throughput sequencing and traditional culture techniques. We found the SFB was widespread in manure, manure slurry and soil, Firmicutes was one of the main dominant phyla in pig manure, manure slurry and soil, the relative abundance of Bacillus were 0.98%, 0.01%, and 2.57%, respectively, and metals such as copper have complex relationships with bacteria. We isolated 504 SFB from 369 samples, with the highest number identified as Bacillus subtilis. SFB strains showed varying degrees of antibiotic resistance; the greatest against erythromycin, followed by imipenem. The MICs of SFB varied greatly against different heavy metals; with high (est) resistance against Zn2+, followed by Cu2+. Second-generation whole genome sequencing (WGS) revealed that nine Bacillus strains carried different subtypes of vancomycin resistance genes, among which vanRM had the highest frequency. The strain W129 included the vanRA-vanRM-vanSA-vanZF cluster. The nine Bacillus strains also contained antibiotic genes such as aminoglycoside (ant(9)-Ia), β-lactam (bcII), and macrolide (msrE). Twenty-six Bacillus isolates carried copper resistance clusters, including csoR-copZ, copA-copZ-csoR, and copZ-copA. WGS showed that strain W166 carried 11 vancomycin resistance genes and 11 copper resistance genes. There were 4 vancomycin resistance genes and 14 copper resistance genes on the W129 chromosome. Strain W129 also harbors the plasmid pLKYM01 that contains an intact transposon consisting of insertion sequence and vancomycin resistance genes vanYF and vanRA. This study explores the potential risks of using pig manure and fertilized soil to inform safe and effective use of probiotics in agriculture. It highlights scientific evidence for concern over the safe utilization and control of animal waste products.
Collapse
Affiliation(s)
- Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Jin
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Guoyou Deng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xinfeng Han
- College of Veterinary Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Junni Tang
- College of Food Sciences and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lin Ji
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
5
|
Basnet A, Kilonzo-Nthenge A. Antibiogram profiles of pathogenic and commensal bacteria in goat and sheep feces on smallholder farm. FRONTIERS IN ANTIBIOTICS 2024; 3:1351725. [PMID: 39816253 PMCID: PMC11732006 DOI: 10.3389/frabi.2024.1351725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/02/2024] [Indexed: 01/18/2025]
Abstract
Introduction The increase of antimicrobial resistance (AMR) in zoonotic pathogens poses a substantial threat to both animal production and human health. Although large-scale animal farms are acknowledged as major reservoirs for AMR, there is a notable knowledge gap concerning AMR in small-scale farms. This study seeks to address this gap by collecting and analyzing 137 fecal samples from goat and sheep farms in Tennessee and Georgia. Method Bacteria were identified using culture-dependent methods and polymerase chain reaction (PCR), and antimicrobial susceptibility testing (AST) was performed using the Kirby-Bauer Disk Diffusion method. Results and discussion The prevalence of E. coli (94.9%) in goats and sheep significantly exceeded (p < 0.05) that of S. aureus (81.0%), Shigella (35.0%), S. saprophyticus, and Salmonella (3.0%). Salmonella occurrence in goat feces (2.2%) was higher than in sheep (0.8%). Notably, 27% of goats and 8% of sheep tested positive for Shigella spp., while 60% of goats and 21% of sheep tested positive for S. aureus. Antibiotic resistance was observed primarily against ampicillin (79.4%), vancomycin (65.1%), and gentamycin (63.6%), significantly surpassing (p < 0.05) resistance to tetracycline (41.6%) and imipenem (21.8%). The penicillin (79.4%), glycopeptide (65.1%), and aminoglycoside (63.6%) antibiotic classes displayed significantly higher (p < 0.05) resistance compared to tetracyclines (45.7%) and carbapenem (21.8%). Our findings suggest that goats and sheep feces may serve as source for multidrug-resistant bacteria, raising concerns about the potential introduction of their fecal matter into soil, water, and eventually to the food chain. This highlights the need for proactive measures to address and mitigate AMR in goats and sheep within small-scale farms.
Collapse
|
6
|
English J, Newberry F, Hoyles L, Patrick S, Stewart L. Genomic analyses of Bacteroides fragilis: subdivisions I and II represent distinct species. J Med Microbiol 2023; 72. [PMID: 37910167 DOI: 10.1099/jmm.0.001768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Introduction. Bacteroides fragilis is a Gram-negative anaerobe that is a member of the human gastrointestinal microbiota and is frequently found as an extra-intestinal opportunistic pathogen. B. fragilis comprises two distinct groups - divisions I and II - characterized by the presence/absence of genes [cepA and ccrA (cfiA), respectively] that confer resistance to β-lactam antibiotics by either serine or metallo-β-lactamase production. No large-scale analyses of publicly available B. fragilis sequence data have been undertaken, and the resistome of the species remains poorly defined.Hypothesis/Gap Statement. Reclassification of divisions I and II B. fragilis as two distinct species has been proposed but additional evidence is required.Aims. To investigate the genomic diversity of GenBank B. fragilis genomes and establish the prevalence of division I and II strains among publicly available B. fragilis genomes, and to generate further evidence to demonstrate that B. fragilis division I and II strains represent distinct genomospecies.Methodology. High-quality (n=377) genomes listed as B. fragilis in GenBank were included in pangenome and functional analyses. Genome data were also subject to resistome profiling using The Comprehensive Antibiotic Resistance Database.Results. Average nucleotide identity and phylogenetic analyses showed B. fragilis divisions I and II represent distinct species: B. fragilis sensu stricto (n=275 genomes) and B. fragilis A (n=102 genomes; Genome Taxonomy Database designation), respectively. Exploration of the pangenome of B. fragilis sensu stricto and B. fragilis A revealed separation of the two species at the core and accessory gene levels.Conclusion. The findings indicate that B. fragilis A, previously referred to as division II B. fragilis, is an individual species and distinct from B. fragilis sensu stricto. The B. fragilis pangenome analysis supported previous genomic, phylogenetic and resistome screening analyses collectively reinforcing that divisions I and II are two separate species. In addition, it was confirmed that differences in the accessory genes of B. fragilis divisions I and II are primarily associated with carbohydrate metabolism and suggest that differences other than antimicrobial resistance could also be used to distinguish between these two species.
Collapse
Affiliation(s)
- Jamie English
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, UK
| | - Fiona Newberry
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Lesley Hoyles
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Sheila Patrick
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, UK
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Linda Stewart
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, UK
| |
Collapse
|