1
|
Tufa TB, Amenu K, Fasil N, Regassa F, Beyene TJ, Revie CW, Hogeveen H, Stegeman JA. Prudent use and antimicrobial prescription practices in Ethiopian veterinary clinics located in different agroecological areas. BMC Vet Res 2024; 20:538. [PMID: 39614253 DOI: 10.1186/s12917-024-04380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Understanding antimicrobial prescribing (AMP) practices and their prudent use in livestock can support the implementation of stewardship programs in veterinary medicine. Empiric therapy using antimicrobials is widely practiced in resource-poor settings, including Ethiopia. This could significantly contribute to the global burden of antimicrobial resistance (AMR) and the potential accumulation of residues in food. This study assessed AMP practices in Ethiopian veterinary clinics located in different agroecological zones (AEZs) as well as adherence to antimicrobial stewardship principles (ASPs). METHODS Data were collected from case book records from four district veterinary clinics located in different AEZs in Ethiopia from 2015 to 2019. To identify factors associated with non-prudent AMP practices (i.e., the use of antimicrobials without therapeutic effects or benefits to the animal), data from registered clinical veterinary cases were selected using a systematic random sampling method. This led to the inclusion of approximately one-third of all records, including animal characteristics, disease symptoms and diagnosis, and details about the prescribed drugs. Descriptive statistics were used to report the proportions of drugs prescribed and adherence to the ASPs. The Chi-square test was used to establish an association between the drugs prescribed and the disease diagnoses and the districts. The factors associated with cases receiving antimicrobials and non-prudent AMP practices were also assessed using a multivariable logistic regression analysis. RESULTS In total, 12,438 clinical case records were considered. Approximately 97% of these cases received treatment without laboratory confirmation, and 15,243 drugs were prescribed. Among these prescriptions, 75% were for antimicrobials, with oxytetracycline (29%) and a combined formulation of penicillin-dihydrostreptomycin (19%) being the most often prescribed drugs. Overall, 19% of the cases were treated non-prudently with antimicrobials, with high incidences at Holeta (32%) and Sekoru (19%) (p < 0.001). Most cases, including viruses and other non-pathogens (100%), toxicants (97%), unknown causes (94%), fungi (70%), nutritional (64%), risk of bacterial infection (42%), and endo-ectoparasites (24%), were treated non-prudently. Cases receiving antimicrobials and non-prudent AMP were associated with Holeta and Sekoru study clinics, major clinical signs of bloat and loss of body condition, and illness due to viral infections (p < 0.05). Conversely, species of animals and cases diagnosed with multiple etiologic agents and respiratory diseases were negatively associated with prudent AMP practices (p < 0.05). CONCLUSIONS Much of the prescription practice observed in this study did not adhere to the ASPs; there were significant discrepancies between the prescribed drugs and disease diagnoses. Prescribing antimicrobials for unrelated diagnoses may contribute to an increase in AMR. The study thus underlines the need for mechanisms to improve accurate disease diagnosis and prescriber adherence to prudent AMP in countries with limited resources.
Collapse
Affiliation(s)
- Takele Beyene Tufa
- College of Veterinary Medicine and Agriculture, Ababa Addis University, Bishoftu, Ethiopia.
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Kebede Amenu
- College of Veterinary Medicine and Agriculture, Ababa Addis University, Bishoftu, Ethiopia
- Health Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Nardos Fasil
- Animal Welfare Department, Brooke Hospital for Animals (Brooke-Ethiopia), Addis Ababa, Ethiopia
| | - Fikru Regassa
- College of Veterinary Medicine and Agriculture, Ababa Addis University, Bishoftu, Ethiopia
- Ministry of Agriculture, Addis Ababa, Ethiopia
| | - Tariku J Beyene
- Veterans Affairs Palo Alto Healthcare Systems, Palo Alto, CA, USA
| | - Crawford W Revie
- Computer and Information Sciences, University of Strathclyde, Glasgow, UK
| | - Henk Hogeveen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Business Economics Group, Wageningen University, Wageningen, The Netherlands
| | - J A Stegeman
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Shimogawa MM, Jonnalagadda K, Hill KL. FAP20 is required for flagellum assembly in Trypanosoma brucei. Mol Biol Cell 2024; 35:br22. [PMID: 39382839 PMCID: PMC11617092 DOI: 10.1091/mbc.e23-12-0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Trypanosoma brucei is a human and animal pathogen that depends on flagellar motility for transmission and infection. The trypanosome flagellum is built around a canonical "9+2" axoneme, containing nine doublet microtubules (DMTs) surrounding two singlet microtubules. Each DMT contains a 13-protofilament A-tubule and a 10-protofilament B-tubule, connected to the A-tubule by a conserved, non-tubulin inner junction (IJ) filament made up of alternating PACRG and FAP20 subunits. Here we investigate FAP20 in procyclic form T. brucei. A FAP20-NeonGreen fusion protein localized to the axoneme as expected. Surprisingly, FAP20 knockdown led to a catastrophic failure in flagellum assembly and concomitant lethality. This differs from other organisms, where FAP20 is required for normal flagellum motility, but generally dispensable for flagellum assembly and viability. Transmission electron microscopy demonstrates failed flagellum assembly in FAP20 mutants is associated with a range of DMT defects and defective assembly of the paraflagellar rod, a lineage-specific flagellum filament that attaches to DMT 4-7 in trypanosomes. Our studies reveal a lineage-specific requirement for FAP20 in trypanosomes, offering insight into adaptations for flagellum stability and motility in these parasites and highlighting pathogen versus host differences that might be considered for therapeutic intervention in trypanosome diseases.
Collapse
Affiliation(s)
- Michelle M. Shimogawa
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095
| | - Keya Jonnalagadda
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
3
|
Ogolla KO, Mugunieri LG, Mdachi RE, Wanjala KB, Mireji PO, Mang'era CM, Kurgat RK, Alusi PM, Malimo KN, Chemuliti JK. Quality, supply chain, and use of Trypanocidal drugs among camel keepers in north-eastern Kenya: A cross-sectional study. Vet Parasitol Reg Stud Reports 2024; 54:101095. [PMID: 39237236 DOI: 10.1016/j.vprsr.2024.101095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
The non-cyclic trypanosomiasis (surra), caused by Trypanosoma evansi, and mechanically transmitted by biting flies, hinders camel productivity in Kenya. Trypanocides are the most commonly used drugs to control surra. However, emergence of drug resistance by the parasites is a major limitation to control efforts. There is limited information on the quality of trypanocides, the supply chain and drug-use practices among camel keepers potentially contributing to development of drug resistance in Kenya. We sought to fill this gap by conducting a cross-sectional study among camel keepers in Isiolo and Marsabit counties, Kenya. We mapped the trypanocide drugs supply chain through quantitative and qualitative surveys. We administered a semi-structured questionnaire to camel keepers to generate data on trypanocides-use practices, including the types, sources, person who administers treatment, reconstitution, dosage, route and frequency of administration, among others. Additionally, we tested the quality of trypanocidal drugs retailed in the region. We mapped a total of 55 and 49 agro-veterinary outlets and general (ordinary) shops retailing veterinary drugs in the two counties, respectively. These comprised of 29 and 26 agro-veterinary outlets, as well as 24 and 25 general shops in Isiolo and Marsabit counties, respectively. Overall, the respondents experienced 283 surra cases in the three-month recall period, which were treated with trypanocides. The majority of these cases were diagnosed by camel owners (71.7%) and herders (24.1%). A significant proportion of the cases were treated by camel owners (54.8%), herders (35.3%), the owner's son (3.2%) and veterinary personnel (1.1%) (χ2 = 24.99, p = 0.000). Most of the households sourced the drugs from agro-veterinary outlets (59.0%), followed by general shops (19.8%), veterinary personnel (2.1%), and open-air markets (0.4%) (χ2 = 319.24, p = 0.000). Quinapyramine was the most (56.9%) predominantly used trypanocide in treatment of surra, followed by homidium (19.8%), isometamidium (15.9%), diminazene aceturate (6.7%), and ethidium (0.7%) (χ2 = 340.75, p < 0.000). Only a meager proportion of respondents (15.2%) used the drugs correctly as instructed by the manufacturers. We recorded an association between correct drug usage, with the person who administers the treatment (χ2 = 17.7, p = 0.003), and the type of trypanocide used (χ2 = 19.4, p < 0.001). All the drug samples tested had correct concentrations of active ingredient (100.0%), and therefore of good quality. We have demonstrated that whereas the trypanocides retailed in the region by authorized vendors are of good quality, there is widespread incorrect handling and use of the drugs by unqualified individuals, which may contribute to treatment failure and emergence of trypanocide resistance.
Collapse
Affiliation(s)
- Kennedy O Ogolla
- Biotechnology Research Institute, KALRO, P.O. Box 362, -00902, Kikuyu, Kenya.
| | | | - Raymond E Mdachi
- Biotechnology Research Institute, KALRO, P.O. Box 362, -00902, Kikuyu, Kenya
| | - Kennedy B Wanjala
- Biotechnology Research Institute, KALRO, P.O. Box 362, -00902, Kikuyu, Kenya
| | - Paul O Mireji
- Biotechnology Research Institute, KALRO, P.O. Box 362, -00902, Kikuyu, Kenya
| | - Clarence M Mang'era
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
| | - Richard K Kurgat
- Biotechnology Research Institute, KALRO, P.O. Box 362, -00902, Kikuyu, Kenya
| | - Phylis M Alusi
- Biotechnology Research Institute, KALRO, P.O. Box 362, -00902, Kikuyu, Kenya
| | - Kelvin N Malimo
- Biotechnology Research Institute, KALRO, P.O. Box 362, -00902, Kikuyu, Kenya
| | - Judith K Chemuliti
- Biotechnology Research Institute, KALRO, P.O. Box 362, -00902, Kikuyu, Kenya
| |
Collapse
|
4
|
Ogolla KO, Bwana BK, Mang’era CM, Onyango T, Otiende MY, Ochieng B, Hassanali A, Mugambi JM, Omondi P, Mireji PO. Putative bloodmeal sources in Glossina austeni tsetse fly of Arabuko Sokoke National Reserve in Kenya. PLoS One 2024; 19:e0299243. [PMID: 38446817 PMCID: PMC10917249 DOI: 10.1371/journal.pone.0299243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
Tsetse flies, the sole biological vectors of trypanosomiasis, are predominantly controlled using visual traps and targets baited with attractant lures. Formulation of the lures is informed by compositions of odors from vertebrate hosts preferred by specific tsetse species. However, there are no effective lures for Glossina austeni, a major vector of trypanosomiasis along eastern-coastal region of Africa. Formulation of the lure can be informed by knowledge of G. austeni, preferred vertebrate hosts. We thus sought to understand these hosts by assessment of putative bloodmeal sources of this tsetse fly in Arabuko Sokoke National Reserve where this species is naturally present. We sampled tsetse flies using NGU traps, isolated non-teneral G. austeni flies based on their feeding status, and identified vertebrate source of bloodmeals in their midgut contents using vertebrate 16S rRNA-PCR High-Resolution Melting analysis. We analyzed the relative vertebrate species frequencies in the bloodmeals using Fisher's exact tests. Overall, we trapped 122 flies, most of which (66.39%) were non-teneral, among which we successfully identified the vertebrate bloodmeals in 30 samples. Specifically, we detected putative suni antelope (Neotragus moschatus), harnessed bushbuck (Tragelaphus scriptus), buffalo (Syncerus caffer) and cattle (Bos taurus) derived bloodmeals. Putative suni antelope bloodmeals were significantly more frequent (63.22%), than those of the harnessed bushbuck (23.33%), buffalo (10.00%) or cattle (3.33%) (p < 0.05 Fisher's exact tests) among the samples analyzed. Suni antelope thus appears to predominate vertebrate bloodmeal source for G. austeni in the reserve, coincident with findings reported elsewhere, and is therefore a viable candidate for bioprospecting for G. austeni responsive attractants.
Collapse
Affiliation(s)
- Kennedy O. Ogolla
- Biotechnology Research Institute, Kenya Agricultural and, Livestock Research Organization, Kikuyu, Kenya
| | - Billiah K. Bwana
- Biotechnology Research Institute, Kenya Agricultural and, Livestock Research Organization, Kikuyu, Kenya
| | - Clarence M. Mang’era
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
| | - Tevin Onyango
- Wildlife Research and Training Institute, Naivasha, Kenya
| | | | - Benard Ochieng
- Wildlife Research and Training Institute, Naivasha, Kenya
| | - Ahmed Hassanali
- Biotechnology Research Institute, Kenya Agricultural and, Livestock Research Organization, Kikuyu, Kenya
| | - John M. Mugambi
- Biotechnology Research Institute, Kenya Agricultural and, Livestock Research Organization, Kikuyu, Kenya
| | - Patrick Omondi
- Wildlife Research and Training Institute, Naivasha, Kenya
| | - Paul O. Mireji
- Biotechnology Research Institute, Kenya Agricultural and, Livestock Research Organization, Kikuyu, Kenya
| |
Collapse
|
5
|
Shimogawa MM, Jonnalagadda K, Hill KL. FAP20 is required for flagellum assembly in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.19.576295. [PMID: 38293126 PMCID: PMC10827224 DOI: 10.1101/2024.01.19.576295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Trypanosoma brucei is a human and animal pathogen that depends on flagellar motility for transmission and infection. The trypanosome flagellum is built around a canonical "9+2" axoneme, containing nine doublet microtubules (DMTs) surrounding two singlet microtubules. Each DMT contains a 13-protofilament A-tubule and a 10-protofilament B-tubule, connected to the A-tubule by a conserved, non-tubulin inner junction (IJ) filament made up of alternating PACRG and FAP20 subunits. Here we investigate FAP20 in procyclic form T. brucei. A FAP20-NeonGreen fusion protein localized to the axoneme as expected. Surprisingly, FAP20 knockdown led to a catastrophic failure in flagellum assembly and concomitant lethal cell division defect. This differs from other organisms, where FAP20 is required for normal flagellum motility, but generally dispensable for flagellum assembly and viability. Transmission electron microscopy demonstrates failed flagellum assembly in FAP20 mutants is associated with a range of DMT defects and defective assembly of the paraflagellar rod, a lineage-specific flagellum filament that attaches to DMT 4-7 in trypanosomes. Our studies reveal a lineage-specific requirement for FAP20 in trypanosomes, offering insight into adaptations for flagellum stability and motility in these parasites and highlighting pathogen versus host differences that might be considered for therapeutic intervention in trypanosome diseases.
Collapse
Affiliation(s)
- Michelle M. Shimogawa
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Keya Jonnalagadda
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
6
|
Kumawat J, Jain S, Misra N, Dwivedi J, Kishore D. 1,3,5-Triazine: Recent Development in Synthesis of its Analogs and Biological Profile. Mini Rev Med Chem 2024; 24:2019-2071. [PMID: 38847171 DOI: 10.2174/0113895575309800240526180356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 10/25/2024]
Abstract
Triazine is an important pharmacophore in the field of research for the development of novel medications due to its presence in numerous powerful physiologically active compounds with significant medical potential, such as anti-tumor, anti-viral, anti-inflammatory, anti-microbial, anti- HIV, anti-leishmanial and others. The easy availability of triazine, high reactivity, simple synthesis of their analog, and their notable broad range of biological activities have garnered chemist interest in designing s-triazine-based drugs. The interest of medicinal chemists has been sparked by the structure-activity relationship of these biologically active entities, leading to the discovery of several promising lead molecules. Its importance for medicinal chemistry research is demonstrated by the remarkable progress made with triazine derivatives in treating a variety of disorders in a very short period. Authors have collated and reviewed the medicinal potential of s-triazine analogous to afford medicinal chemists with a thorough and target-oriented overview of triazine-derived compounds. We hope the present compilation will help people from the industry and research working in the medicinal chemistry area.
Collapse
Affiliation(s)
- Jyoti Kumawat
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Namita Misra
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| |
Collapse
|
7
|
Verma R, Punia V, Das G, Kumar S, Nath S, Swamy M. Assessment of genetic diversity of Trypanosoma evansi in the domestic animal populations through ITS-1 gene sequence analysis. Parasitol Res 2023; 123:2. [PMID: 38047956 DOI: 10.1007/s00436-023-08024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
Trypanosoma evansi infects domestic animals, causing a debilitating and occasionally fatal disease. The disease leads to significant economic losses to farmers and poses a substantial impediment to the growth of livestock production in developing nations, including India. Considering the challenges associated with managing this infection, there is an urgent need to enhance our understanding of the molecular and genetic diversity of T. evansi. Therefore, this study was planned to analyze the genetic diversity of T. evansi using available internal transcribed spacer-1 (ITS-1) gene sequences from India and compare them with sequences from around the globe. Blood samples used in this study were collected from naturally infected animals including dogs, cattle, and buffaloes in the Indian state of Madhya Pradesh. Using the ITS-1 gene, we amplified a 540 base pairs (bp) segment using polymerase chain reaction (PCR), sequenced it, and identified intra-specific variations. Phylogenetic analysis of 90 sequences, including 27 from India, revealed three distinct clusters with high bootstrap support values. A haplotype network analysis identified 34 haplotypes, with H7 being the most prevalent, indicating a complex evolutionary history involving multiple countries. The genetic analysis of the Indian population revealed distinct characteristics. Despite low nucleotide diversity, there was high haplotype diversity in comparison to other populations. Tajima's D, Fu and Li's D, and Fu and Li's F exhibited non-significant negative values, indicating potential stability. Additionally, the slightly positive values in Fu's Fs, Raggedness (r), and Ramos-Onsins and Rozas (R2) statistics suggested a lack of recent significant selective pressures or population expansions. Furthermore, the presence of genetic differentiation and gene flow among T. evansi populations highlighted ongoing evolutionary processes. These findings collectively depicted a complex genetic landscape, suggesting both stability and ongoing evolutionary dynamics within the Indian population of T. evansi. The findings of this study are important for understanding the evolutionary history and population dynamics of T. evansi, and they may help us develop effective control strategies.
Collapse
Affiliation(s)
- Rupesh Verma
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University, South Civil Lines, Jabalpur, MP, 482001, India.
| | - Vikram Punia
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University, South Civil Lines, Jabalpur, MP, 482001, India
| | - Giridhari Das
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University, South Civil Lines, Jabalpur, MP, 482001, India
| | - Suman Kumar
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University, South Civil Lines, Jabalpur, MP, 482001, India
| | - Subhradal Nath
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University, South Civil Lines, Jabalpur, MP, 482001, India
| | - Madhu Swamy
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University, South Civil Lines, Jabalpur, MP, 482001, India
| |
Collapse
|
8
|
Bachmaier S, Gould MK, Polatoglou E, Omelianczyk R, Brennand AE, Aloraini MA, Munday JC, Horn D, Boshart M, de Koning HP. Novel kinetoplastid-specific cAMP binding proteins identified by RNAi screening for cAMP resistance in Trypanosoma brucei. Front Cell Infect Microbiol 2023; 13:1204707. [PMID: 37475965 PMCID: PMC10354285 DOI: 10.3389/fcimb.2023.1204707] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
Cyclic AMP signalling in trypanosomes differs from most eukaryotes due to absence of known cAMP effectors and cAMP independence of PKA. We have previously identified four genes from a genome-wide RNAi screen for resistance to the cAMP phosphodiesterase (PDE) inhibitor NPD-001. The genes were named cAMP Response Protein (CARP) 1 through 4. Here, we report an additional six CARP candidate genes from the original sample, after deep sequencing of the RNA interference target pool retrieved after NPD-001 selection (RIT-seq). The resistance phenotypes were confirmed by individual RNAi knockdown. Highest level of resistance to NPD-001, approximately 17-fold, was seen for knockdown of CARP7 (Tb927.7.4510). CARP1 and CARP11 contain predicted cyclic AMP binding domains and bind cAMP as evidenced by capture and competition on immobilised cAMP. CARP orthologues are strongly enriched in kinetoplastid species, and CARP3 and CARP11 are unique to Trypanosoma. Localization data and/or domain architecture of all CARPs predict association with the T. brucei flagellum. This suggests a crucial role of cAMP in flagellar function, in line with the cell division phenotype caused by high cAMP and the known role of the flagellum for cytokinesis. The CARP collection is a resource for discovery of unusual cAMP pathways and flagellar biology.
Collapse
Affiliation(s)
- Sabine Bachmaier
- Faculty of Biology, Genetics, Ludwig-Maximillians University Munich (LMU), Martinsried, Germany
| | - Matthew K. Gould
- Faculty of Biology, Genetics, Ludwig-Maximillians University Munich (LMU), Martinsried, Germany
| | - Eleni Polatoglou
- Faculty of Biology, Genetics, Ludwig-Maximillians University Munich (LMU), Martinsried, Germany
| | - Radoslaw Omelianczyk
- Faculty of Biology, Genetics, Ludwig-Maximillians University Munich (LMU), Martinsried, Germany
| | - Ana E. Brennand
- Faculty of Biology, Genetics, Ludwig-Maximillians University Munich (LMU), Martinsried, Germany
| | - Maha A. Aloraini
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jane C. Munday
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael Boshart
- Faculty of Biology, Genetics, Ludwig-Maximillians University Munich (LMU), Martinsried, Germany
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|