1
|
Pershina EG, Morozova KN, Bgatova NP. Ultrastructural organization of the liver of rat pups in early postnatal ontogenesis when pregnant and lactating rats are kept on a low-protein diet. Ultrastruct Pathol 2025; 49:93-107. [PMID: 39676344 DOI: 10.1080/01913123.2024.2441933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Protein deficiency in the diet during pregnancy and lactation has a serious impact on the offspring by programming a predisposition to such serious diseases as hypertension and type 2 diabetes mellitus. In our study, we examined liver ultrastructure of rat pups at ages 2, 21, and 40 days with maternal protein deficiency. Body weight of the pups progressively lagged behind the control throughout the experiment, and the timing of eye opening indicated a slowdown of development. In the liver of 2-day-old animals, the proportion of hematopoietic cells at early stages of differentiation was higher as compared to the control. At the ultrastructural level, no obvious pathological changes were revealed, but a decrease in the amount of organelles was observed simultaneously with accumulation of lipids and glycogen. In the course of the experiment, a progressive decrease in the amount of the rough endoplasmic reticulum and ribosomes and increasing accumulation of glycogen in the cytoplasm of hepatocytes were noted. The most pronounced difference in ultrastructure between periportal and pericentral hepatocytes of control rat pups was detected on the 40th day of development, whereas in the low-protein diet group, the difference was weakly pronounced throughout the experiment. Thus, we showed that with prenatal and early postnatal protein deficiency, the growth and development of rat pups slows down, and glycogen accumulates excessively in the liver concurrently with a decrease in the amount of organelles.
Collapse
Affiliation(s)
- Elena G Pershina
- Sector of Structural Cell Biology, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, National Research Novosibirsk State University, Novosibirsk, Russia
| | - Ksenia N Morozova
- Sector of Structural Cell Biology, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, National Research Novosibirsk State University, Novosibirsk, Russia
| | - Nataliya P Bgatova
- Sector of Structural Cell Biology, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
| |
Collapse
|
2
|
Hill DJ, Hill TG. Maternal diet during pregnancy and adaptive changes in the maternal and fetal pancreas have implications for future metabolic health. Front Endocrinol (Lausanne) 2024; 15:1456629. [PMID: 39377073 PMCID: PMC11456468 DOI: 10.3389/fendo.2024.1456629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Fetal and neonatal development is a critical period for the establishment of the future metabolic health and disease risk of an individual. Both maternal undernutrition and overnutrition can result in abnormal fetal organ development resulting in inappropriate birth size, child and adult obesity, and increased risk of Type 2 diabetes and cardiovascular diseases. Inappropriate adaptive changes to the maternal pancreas, placental function, and the development of the fetal pancreas in response to nutritional stress during pregnancy are major contributors to a risk trajectory in the offspring. This interconnected maternal-placental-fetal metabolic axis is driven by endocrine signals in response to the availability of nutritional metabolites and can result in cellular stress and premature aging in fetal tissues and the inappropriate expression of key genes involved in metabolic control as a result of long-lasting epigenetic changes. Such changes result is insufficient pancreatic beta-cell mass and function, reduced insulin sensitivity in target tissues such as liver and white adipose and altered development of hypothalamic satiety centres and in basal glucocorticoid levels. Whilst interventions in the obese mother such as dieting and increased exercise, or treatment with insulin or metformin in mothers who develop gestational diabetes, can improve metabolic control and reduce the risk of a large-for-gestational age infant, their effectiveness in changing the adverse metabolic trajectory in the child is as yet unclear.
Collapse
Affiliation(s)
- David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON, Canada
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON, Canada
| | - Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Faienza MF, Urbano F, Anaclerio F, Moscogiuri LA, Konstantinidou F, Stuppia L, Gatta V. Exploring Maternal Diet-Epigenetic-Gut Microbiome Crosstalk as an Intervention Strategy to Counter Early Obesity Programming. Curr Issues Mol Biol 2024; 46:4358-4378. [PMID: 38785533 PMCID: PMC11119222 DOI: 10.3390/cimb46050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Alterations in a mother's metabolism and endocrine system, due to unbalanced nutrition, may increase the risk of both metabolic and non-metabolic disorders in the offspring's childhood and adulthood. The risk of obesity in the offspring can be determined by the interplay between maternal nutrition and lifestyle, intrauterine environment, epigenetic modifications, and early postnatal factors. Several studies have indicated that the fetal bowel begins to colonize before birth and that, during birth and nursing, the gut microbiota continues to change. The mother's gut microbiota is primarily transferred to the fetus through maternal nutrition and the environment. In this way, it is able to impact the establishment of the early fetal and neonatal microbiome, resulting in epigenetic signatures that can possibly predispose the offspring to the development of obesity in later life. However, antioxidants and exercise in the mother have been shown to improve the offspring's metabolism, with improvements in leptin, triglycerides, adiponectin, and insulin resistance, as well as in the fetal birth weight through epigenetic mechanisms. Therefore, in this extensive literature review, we aimed to investigate the relationship between maternal diet, epigenetics, and gut microbiota in order to expand on current knowledge and identify novel potential preventative strategies for lowering the risk of obesity in children and adults.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy
| | - Flavia Urbano
- Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy; (F.U.); (L.A.M.)
| | - Federico Anaclerio
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | | | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
4
|
Schavinski AZ, Reis NG, Morgan HJN, Assis AP, Moro ML, Valentim RR, Seni-Silva AC, Ramos ES, Kettelhut IC, Navegantes LCC. Maternal Vitamin D Deficiency Impairs the Development of β Cells in Offspring Rats in a Sex-Dependent Manner. Int J Mol Sci 2024; 25:4136. [PMID: 38673723 PMCID: PMC11050228 DOI: 10.3390/ijms25084136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Recent studies have shown that maternal vitamin D deficiency (VDD) causes long-term metabolic changes in offspring. However, little is known about the impact of maternal VDD on offspring endocrine pancreas development and insulin secretion in the adult life of male and female animals. Female rats (Wistar Hannover) were fed either control (1000 IU Vitamin D3/kg), VDD (0 IU Vitamin D3/kg), or a Ca2+-enriched VDD diet (0 IU Vitamin D3/kg + Ca2+ and P/kg) for 6 weeks and during gestation and lactation. At weaning, VDD status was confirmed based on low serum calcidiol levels in dams and pups. Next, male and female offspring were randomly separated and fed a standard diet for up to 90 days. At this age, serum calcidiol levels were restored to normal levels in all groups, but serum insulin levels were decreased in VDD males without affecting glucagon levels, glycemia, or glucose tolerance. Islets isolated from VDD males showed lower insulin secretion in response to different glucose concentrations, but this effect was not observed in VDD females. Furthermore, VDD males, but not females, showed a smaller total pancreatic islet area and lower β cell mass, an effect that was accompanied by reduced gene expression of Ins1, Ins2, Pdx1, and SLC2A2. The decrease in Pdx1 expression was not related to the methylation profile of the promoter region of this gene. Most of these effects were observed in the male VDD+Ca2+ group, indicating that the effects were not due to alterations in Ca2+ metabolism. These data show that maternal VDD selectively impairs the morphology and function of β cells in adult male offspring rats and that female offspring are fully protected from these deleterious effects.
Collapse
Affiliation(s)
- Aline Z. Schavinski
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (A.Z.S.); (N.G.R.); (H.J.N.M.); (M.L.M.); (R.R.V.)
| | - Natany G. Reis
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (A.Z.S.); (N.G.R.); (H.J.N.M.); (M.L.M.); (R.R.V.)
| | - Henrique J. N. Morgan
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (A.Z.S.); (N.G.R.); (H.J.N.M.); (M.L.M.); (R.R.V.)
| | - Ana Paula Assis
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (A.P.A.); (I.C.K.)
| | - Matheus L. Moro
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (A.Z.S.); (N.G.R.); (H.J.N.M.); (M.L.M.); (R.R.V.)
| | - Rafael R. Valentim
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (A.Z.S.); (N.G.R.); (H.J.N.M.); (M.L.M.); (R.R.V.)
| | - Ana Carolina Seni-Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (A.C.S.-S.); (E.S.R.)
| | - Ester S. Ramos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (A.C.S.-S.); (E.S.R.)
| | - Isis C. Kettelhut
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (A.P.A.); (I.C.K.)
| | - Luiz C. C. Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (A.Z.S.); (N.G.R.); (H.J.N.M.); (M.L.M.); (R.R.V.)
| |
Collapse
|
5
|
Maleknia M, Ahmadirad N, Golab F, Katebi Y, Haj Mohamad Ebrahim Ketabforoush A. DNA Methylation in Cancer: Epigenetic View of Dietary and Lifestyle Factors. Epigenet Insights 2023; 16:25168657231199893. [PMID: 37720354 PMCID: PMC10504848 DOI: 10.1177/25168657231199893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Background Alterations in DNA methylation play an important role in cancer development and progression. Dietary nutrients and lifestyle behaviors can influence DNA methylation patterns and thereby modulate cancer risk. Introduction To comprehensively review available evidence on how dietary and lifestyle factors impact DNA methylation and contribute to carcinogenesis through epigenetic mechanisms. Materials and methods A literature search was conducted using PubMed to identify relevant studies published between 2005 and 2022 that examined relationships between dietary/lifestyle factors and DNA methylation in cancer. Studies investigating the effects of dietary components (eg, micronutrients, phytochemicals), physical activity, smoking, and obesity on global and gene-specific DNA methylation changes in animal and human cancer models were included. Data on specific dietary/lifestyle exposures, cancer types, DNA methylation targets and underlying mechanisms were extracted. Results Multiple dietary and lifestyle factors were found to influence DNA methylation patterns through effects on DNA methyltransferase activity, methyl donor availability, and generation of oxidative stress. Altered methylation of specific genes regulating cell proliferation, apoptosis, and inflammation were linked to cancer development and progression. Conclusion Dietary and lifestyle interventions aimed at modulating DNA methylation have potential for both cancer prevention and treatment through epigenetic mechanisms. Further research is needed to identify actionable targets for nutrition and lifestyle-based epigenetic therapies.
Collapse
Affiliation(s)
- Mohsen Maleknia
- Noorgene Genetic & Clinical Laboratory, Molecular Research Center, Ahvaz, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yasmina Katebi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|