1
|
Mamizadeh M, Pouryousef A, Mohammadi MR, Ahmadi MH, Nourmohammadi H, Asghari A. Prevalence, genetic diversity, and zoonotic potential of Giardia duodenalis in New and Old World Camelids: A comparative systematic review and meta-analysis. Comp Immunol Microbiol Infect Dis 2025; 118:102316. [PMID: 39947119 DOI: 10.1016/j.cimid.2025.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025]
Abstract
This study aimed to review and analyze the prevalence, genetic diversity, and zoonotic potential of Giardia duodenalis in New World Camelids (NWCs) and Old World Camelids (OWCs), highlighting geographic and host-related variations. The statistical analyses were conducted using CMA software to estimate pooled prevalence rates. Heterogeneity was evaluated with the I² statistic, and sensitivity analysis tested pooled prevalence after removing certain studies. Meta-regression examined the association between G. duodenalis prevalence in camelids and factors like publication year and sample size. Subgroup analyses investigated prevalence variations based on countries, continents, WHO regions, publication years, diagnostic methods, and sample sizes. A total of 22 studies/23 datasets were included, with eight on NWCs and 15 on OWCs, covering 5008 camelids across nine countries. The weighted G. duodenalis prevalence in camelids was 8.7 % (95 % CI: 5.6-13.3), with NWCs at 10.3 % (95 % CI: 3-29.7) and OWCs at 9.1 % (95 % CI: 6.7-12.2). Geographical analyses revealed the highest prevalence of G. duodenalis in South America (40.4 %) and the AMR WHO region (10.8 %), with notable rates in Peru (40.4 %) and Iraq (11.9 %). Sensitivity analysis showed that prevalence rates remain robust, unaffected by study exclusions. Neither the year of study nor sample size influenced infection rates in camelids. The identification of zoonotic assemblages A and E, and zoonotic sub-assemblage AI in camelids, is of public health significance. These insights enhance our understanding of G. duodenalis epidemiology in camelids, underscoring the need for ongoing surveillance and research regarding their effects on human and animal health.
Collapse
Affiliation(s)
- Mina Mamizadeh
- Department of Dermatology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Ali Pouryousef
- Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Mohammad Reza Mohammadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohammadreza Hafezi Ahmadi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran; Department of Pathobiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| | - Hassan Nourmohammadi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran; Department of Hematology & Oncology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| | - Ali Asghari
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
2
|
Mi R, Silayi A, Wang Y, Xia C, Tang W, Gong H, Huang Y, Zhang Y, Yan G, Chen Z. Molecular characterization of Cryptosporidium spp. in Bactrian camels ( Camelus bactrianus) from Yili Kazak Autonomous Prefecture of Xinjiang, China. Front Vet Sci 2024; 11:1411377. [PMID: 38915888 PMCID: PMC11195013 DOI: 10.3389/fvets.2024.1411377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/02/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction Cryptosporidium spp. is a significant zoonotic parasite. The prevalence and infection characteristics of Cryptosporidium spp. in Bactrian camels in Yili Kazak Autonomous Prefecture have yet to be fully understood. Thus, the molecular epidemiology of cryptosporidiosis in camels was investigated in this region. Methods A total of 1,455 fecal samples were collected from 6 counties in three regions (Altay, Tacheng, and Yili) in Yili Prefecture. Nested PCR targeting the small subunit ribosomal RNA (ssu rRNA) gene was used to identify the species or genotypes of Cryptosporidium infection in camels. For C. parvum positive samples, the subtypes were identified using the 60-kDa glycoprotein (gp60) gene. Results and discussion The overall infection rate was 8.7% (126/1,455), ranging from 5.6% to 11.7% in different regions, and 4.2% to 15.8% in different counties. A significant difference was observed amongst the counties (p < 0.001). Three species were detected, namely C. andersoni (65.1%, 82/126), C. parvum (34.1%, 43/126), and C. occultus (0.8%, 1/126). Three C. parvum subtypes, If-like-A15G2 (n = 29), IIdA15G1 (n = 4), and IIdA19G1(n = 1) were detected, with If-like-A15G2 being the most prevalent subtype. Camels aged 3-12 months exhibited the highest infection rate (11.4%, 44/387), with no significant difference among age groups (p > 0.05). C. parvum was predominant in camels under 3 months, while C. andersoni prevailed in camels over 3 months. There was an extremely significant difference observed among seasons (p < 0.001), summer had the highest infection rates (16.9%, 61/360). This study collected nearly 1,500 samples and, for the first time, investigated Cryptosporidium spp. infection in camels based on different age groups and seasons. All three Cryptosporidiumspecies identified were zoonotic, posing a potential threat to human health and requiring close attention.
Collapse
Affiliation(s)
- Rongsheng Mi
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Amanguli Silayi
- Yili Prefecture Center for Animal Disease Control and Diagnosis of Xinjiang, Yining, China
| | - Yongsheng Wang
- Yili Prefecture Center for Animal Disease Control and Diagnosis of Xinjiang, Yining, China
| | - Chenyang Xia
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Wenqiang Tang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yan Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yan Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Genqiang Yan
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhaoguo Chen
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
3
|
Albayati HH, Al Khafaji AM, Al-Karagoly H, Kamel A. Microscopic examination of internal parasites in Iraqi camels ( Camelus dromedarius) with molecular focus on Trichostrongylus spp. Helminthologia 2024; 61:116-123. [PMID: 39040801 PMCID: PMC11260313 DOI: 10.2478/helm-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/25/2024] [Indexed: 07/24/2024] Open
Abstract
The camel has played a role in human civilization since its inception and holds significant importance in the customs and agricultural practices of various nations. This study examined the prevalence of internal parasitic infestations in camels within the Al-Diwaniyah and Al-Najaf provinces of Iraq from December 2021 to September 2022. A total of 200 fecal samples were randomly collected from farm camels, revealing that these animals were affected by one or more types of intestinal parasites. Nematodes exhibited the highest prevalence at 56 %, followed by Protozoa at 28.5 %, Cestodes at 14.5 %, and Trematodes at 1 %. Among these parasites, Trichostrongylus spp. had the highest percentage at 33 %, followed by Moneizia benedeni (12.5 %), Fasciola hepatica (10.5 %), Strongyloides spp. (8 %), Giardia spp. (7 %), Nematodirus spp. (6 %), and Eimeria spp. (6 %). Furthermore, mixed-species or single-species infections in camels were observed, including Anoplcephala perfoliata (4 %), Haemonchus spp. (3.5 %), Dictyocaulus spp. (3 %), Trichuris trichura (2.5 %), Entamoeba spp. (2 %), and Balantidium coli (1 %). Additionally, nested PCR was employed to identify Trichostrongylus spp., with 45.4 % of camels testing positive for this particular parasite.
Collapse
Affiliation(s)
- H. H. Albayati
- Department of Microbiology, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah58001, Iraq
| | - A. M. Al Khafaji
- Department of Microbiology, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah58001, Iraq
| | - H. Al-Karagoly
- Department of Internal and Preventive Medicine, College of Veterinary medicine, University of Al-Qadisiyah, Al-Diwaniyah58001, Iraq
| | - A. Kamel
- College of Medical & Health Technology, Middle Technical University, Baghdad10001, Iraq
| |
Collapse
|
4
|
Gao JF, Zhou L, Zhang AH, Hou MR, Liu XW, Zhang XH, Wang JW, Wang X, Bai X, Jiao CL, Yang Y, Lan Z, Qiu HY, Wang CR. Prevalence and Molecular Characterization of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in Cattle in Heilongjiang Province, Northeast China. Animals (Basel) 2024; 14:1635. [PMID: 38891682 PMCID: PMC11171270 DOI: 10.3390/ani14111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Crytosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are important diarrheal pathogens with a global distribution that threatens the health of humans and animals. Despite cattle being potential transmission hosts of these protozoans, the associated risks to public health have been neglected. In the present study, a total of 1155 cattle fecal samples were collected from 13 administrative regions of Heilongjiang Province. The prevalence of Cryptosporidium spp., G. duodenalis, and E. bieneusi were 5.5% (64/1155; 95% CI: 4.2-6.9), 3.8% (44/1155; 95% CI: 2.7-4.9), and 6.5% (75/1155; 95% CI: 5.1-7.9), respectively. Among these positive fecal samples, five Cryptosporidium species (C. andersoni, C. bovis, C. ryanae, C. parvum, and C. occultus), two G. duodenalis assemblages (E and A), and eight E. bieneusi genotypes (BEB4, BEB6, BEB8, J, I, CHS7, CHS8, and COS-I) were identified. Phylogenetic analysis showed that all eight genotypes of E. bieneusi identified in the present study belonged to group 2. It is worth noting that some species/genotypes of these intestinal protozoans are zoonotic, suggesting a risk of zoonotic disease transmission in endemic areas. The findings expanded our understanding of the genetic composition and zoonotic potential of Cryptosporidium spp., G. duodenalis, and E. bieneusi in cattle in Heilongjiang Province.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Chun-Ren Wang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affair, Key Laboratory of Prevention and Control of Zoonotic Diseases of Daqing, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.-F.G.); (L.Z.); (A.-H.Z.); (M.-R.H.); (X.-W.L.); (X.-H.Z.); (J.-W.W.); (X.W.); (X.B.); (C.-L.J.); (Y.Y.); (Z.L.); (H.-Y.Q.)
| |
Collapse
|
5
|
Gomes-Gonçalves S, Santos-Silva S, Cruz AVS, Rodrigues C, Soeiro V, Barradas P, Mesquita JR. A Thorny Tale of Parasites: Screening for Enteric Protozoan Parasites in Hedgehogs from Portugal. Animals (Basel) 2024; 14:326. [PMID: 38275786 PMCID: PMC10812701 DOI: 10.3390/ani14020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Enteric protozoan parasites, such as Blastocystis sp., Balantioides coli, Cryptosporidium spp., and Giardia duodenalis, may have implications for both animal and human health.Transmitted through the fecal-oral route, these parasites cause symptoms such as diarrhea, abdominal pain, and weight loss. This study investigated the presence of these enteric protozoan parasites and genetically characterized them in hedgehogs from Portugal. A total of 110 hedgehog stool samples were collected. Molecular detection methods showed an overall occurrence of protozoa in 1.82% (2/110 95% CI: 0.22-6.41) of hedgehogs, with Blastocystis being found in one hedgehog and Cryptosporidium being found in another. No evidence for the presence of B. coli or G. duodenalis was found. This study suggests that there is a need to stay aware of hedgehogs as potential hosts of enteric protozoa. Ongoing research and surveillance efforts are recommended to explore practical prevention and control strategies. The results contribute to the limited knowledge of these parasites in Portuguese hedgehog populations and underscore their potential relevance to both veterinary and public health.
Collapse
Affiliation(s)
- Sara Gomes-Gonçalves
- Department of Biology, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Sérgio Santos-Silva
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; (S.S.-S.); (A.V.S.C.)
| | - Andreia V. S. Cruz
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; (S.S.-S.); (A.V.S.C.)
| | - Clarisse Rodrigues
- Centro de Recuperação e Interpretação do Ouriço—CRIDO, 4470-372 Maia, Portugal;
| | - Vanessa Soeiro
- Parque Biológico de Gaia, 4430-812 Vila Nova de Gaia, Portugal;
| | - Patrícia Barradas
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, Cooperativa de Ensino Superior Politécnico e Universitário, CRL(CESPU, CRL), 4585-116 Gandra, Portugal;
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - João R. Mesquita
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; (S.S.-S.); (A.V.S.C.)
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| |
Collapse
|
6
|
Elmahallawy EK, Gareh A, Abu-Okail A, Köster PC, Dashti A, Asseri J, Gouda AA, Mubaraki MA, Mohamed SAA, Mohamed YM, Hassan EA, Elgendy M, Hernández-Castro C, Bailo B, González-Barrio D, Xiao L, Carmena D. Molecular characteristics and zoonotic potential of enteric protists in domestic dogs and cats in Egypt. Front Vet Sci 2023; 10:1229151. [PMID: 37483300 PMCID: PMC10357006 DOI: 10.3389/fvets.2023.1229151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Domestic dogs and cats can be a source of human infection by a wide diversity of zoonotic pathogens including parasites. Genotyping and subtyping tools are useful in assessing the true public health relevance of canine and feline infections by these pathogens. This study investigated the occurrence, genetic diversity, and zoonotic potential of common diarrhea-causing enteric protist parasites in household dogs and cats in Egypt, a country where this information is particularly scarce. Methods In this prospective, cross-sectional study a total of 352 individual fecal samples were collected from dogs (n = 218) and cats (n = 134) in three Egyptian governorates (Dakahlia, Gharbeya, and Giza) during July-December 2021. Detection and identification of Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi, and Blastocystis sp. were carried out by PCR and Sanger sequencing. Basic epidemiological variables (geographical origin, sex, age, and breed) were examined for association with occurrence of infection by enteric protists. Results and discussion The overall prevalence rates of Cryptosporidium spp. and G. duodenalis were 1.8% (95% CI: 0.5-4.6) and 38.5% (95% CI: 32.0-45.3), respectively, in dogs, and 6.0% (95% CI: 2.6-11.4) and 32.1% (95% CI: 24.3-40.7), respectively, in cats. All canine and feline fecal samples analyzed tested negative for E. bieneusi and Blastocystis sp. Dogs from Giza governorate and cats from Dakahlia governorate were at higher risk of infection by Cryptosporidium spp. (p = 0.0006) and G. duodenalis (p = 0.00001), respectively. Sequence analyses identified host-adapted Cryptosporidium canis (n = 4, one of them belonging to novel subtype XXe2) and G. duodenalis assemblages C (n = 1) and D (n = 3) in dogs. In cats the zoonotic C. parvum (n = 5) was more prevalent than host-adapted C. felis (n = 1). Household dogs had a limited (but not negligible) role as source of human giardiasis and cryptosporidiosis, but the unexpected high frequency of zoonotic C. parvum in domestic cats might be a public health concern. This is the first molecular-based description of Cryptosporidium spp. infections in cats in the African continent to date. Molecular epidemiological data provided here can assist health authorities and policy makers in designing and implementing effective campaigns to minimize the transmission of enteric protists in Egypt.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Ahmed Gareh
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Akram Abu-Okail
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Pamela C. Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Spain
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Spain
| | - Jamal Asseri
- Department of Biology, College of Science and Humanities, Shaqra University, Dawadmi, Saudi Arabia
| | - Asmaa Aboelabbas Gouda
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Murad A. Mubaraki
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sara Abdel-Aal Mohamed
- Department of Parasitology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Yasser M. Mohamed
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ehssan Ahmed Hassan
- Department of Biology, College of Science and Humanities in Al-kharj, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- Department of Zoology, Faculty of Science, Suez Canal University, El-Sheikh Zayed, Ismailia, Egypt
| | - Mohamed Elgendy
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Carolina Hernández-Castro
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Spain
- Parasitology Group, Faculty of Medicine, Academic Corporation for the Study of Tropical Pathologies, University of Antioquia, Medellín, Colombia
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Spain
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Spain
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - David Carmena
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Center for Biomedical Research in Infectious Diseases, Carlos III Health Institute (ISCIII), Madrid, Spain
| |
Collapse
|