1
|
Miranda CC, Marco JCPD, Pinto ADA, Pelegrini A. Secular trend in height and associated factors among adolescents in Florianópolis, Santa Catarina, Brazil, between 2007 and 2017/2018. REVISTA PAULISTA DE PEDIATRIA : ORGAO OFICIAL DA SOCIEDADE DE PEDIATRIA DE SAO PAULO 2025; 43:e2024159. [PMID: 40332221 PMCID: PMC12052308 DOI: 10.1590/1984-0462/2025/43/2024159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/21/2024] [Indexed: 05/08/2025]
Abstract
OBJECTIVE To assess the secular trend in height among adolescents in Florianópolis between 2007 and 2017/2018, and identify factors associated with height by sex. METHODS The sample included 664 adolescents from public schools in 2007 and 1,008 in 2017/2018. Height was the dependent variable, with age, economic status, sexual maturity, physical activity, body fat (skinfold thickness), and fat-free mass as independent variables. Analysis of covariance evaluated the secular trend, and multiple linear regression identified associated factors. RESULTS There was a positive secular trend in height in both sexes when comparing the two surveys, with average increases of 3.5 cm in both sexes. Fat-free mass was a positive predictor and body fat was a negative predictor of height in both sexes. Additionally, physical activity emerged as a negative predictor of height specifically in boys. CONCLUSIONS The research revealed a positive secular trend in the height of adolescents in Florianópolis. Fat-free mass contributes positively to gains in height, whereas body fat provides a negative contribution.
Collapse
|
2
|
Zhou B, Qu X, Li M, Wang X, Xu Q, Wang J, Liu X, Zhang L, Zhang T, Gu J, Zhou L, Peng N, Niu W, Wang L. Correlation of bone age development with overweight and obesity in 23,305 children from Beijing. Endocrine 2025; 87:304-313. [PMID: 39129043 PMCID: PMC11739253 DOI: 10.1007/s12020-024-03988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE The aim of this study was to observe the influence of differential nutritional status on bone age (BA) change according to body mass index (BMI) and analyze the risk of advanced bone age in children with overweight and obesity. METHODS In total 23,305 children from Beijing were included in this cross-sectional study. Childhood overweight and obesity were defined according to the China and World Health Organization growth criteria. The data were analyzed by the R coding platform version 4.3.0. RESULTS Under the Chinese criteria, 29%, 15%, and 4% of boys with overweight; 33%, 33%, and 3% of boys with obesity; 39%, 25%, and 2% of girls with overweight; and 37%, 42% and 1% of girls with obesity had advanced, significantly advanced and delayed BA, respectively. After adjustment, overweight (odds ratio, 95% confidence interval, P under the Chinese criteria: 2.52, 2.30-2.75, <0.001 and 4.54, 4.06-5.09, <0.001) and obesity (4.31, 3.85-4.82, <0.001 and 14.01, 12.39-15.85, <0.001) were risk factors for both advanced BA and significantly advanced BA. CONCLUSIONS Different nutritional statuses lead to differences in children's BA development. Children with overweight and obesity have higher rates of advanced BA under two growth criteria, and girls have more advances in BA than boys do. Overweight and obesity are risk factors for advanced BA.
Collapse
Affiliation(s)
- Bo Zhou
- Child Healthcare Center, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Xia Qu
- Child Healthcare Center, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjun Li
- Child Healthcare Center, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Xi Wang
- Child Healthcare Center, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Qi Xu
- Child Healthcare Center, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Jianhong Wang
- Child Healthcare Center, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoli Liu
- Child Healthcare Center, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Lili Zhang
- Child Healthcare Center, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Jialu Gu
- Child Healthcare Center, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Lijun Zhou
- Child Healthcare Center, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Nan Peng
- Child Healthcare Center, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Wenquan Niu
- Center for Evidence-Based Medicine, Capital Institute of Pediatrics, Beijing, China.
| | - Lin Wang
- Child Healthcare Center, Children's Hospital, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
3
|
Wang L, Yi Q, Xu H, Liu H, Tan B, Deng H, Chen Y, Wang R, Tang F, Cheng X, Zhu J. Alterations in the gut microbiota community are associated with childhood obesity and precocious puberty. BMC Microbiol 2024; 24:311. [PMID: 39182062 PMCID: PMC11344344 DOI: 10.1186/s12866-024-03461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE To explore the distribution and differences in the intestinal microbiota in girls with obesity-related precocious puberty and the relationship between intestinal microbiota and obesity-related precocious puberty. METHODS 16 S rRNA gene amplicons from fecal samples from girls with precocious puberty and obesity-complicated precocious puberty and healthy children were sequenced to define microbial taxa. RESULTS The α- and β-diversity indices of the microbiome significantly differed among the three groups. At the phylum level, the proportions of Firmicutes, Actinobacteriota, Bacteroidota, Bacteria, Campylobacterota, and Acidobacteriota were different. At the genus level, there were differences in Bifidobacterium, Bacteroides, Anaerostipes, Fusicatenibacter, Klebsiella, Lachnospiraceae, ErysipelotrichaceaeUCG-003, Prevotella9, Ruminococcus gnavus group, and Lachnoclostridium. Additionally, Bifidobacterium, Anaerostipes, Bacteroides, Candidatus Microthrix, Eubacterium hallii group, Klebsiella, and Erysipelotrichaceae UCG-003 were identified as bacterial biomarkers by LEfSe. Furthermore, Sellimonas, Intestinibacter, Anaerostipes, Ruminococcus gnavus group, and Oscillibacter were identified as the differential biomarkers by random forest. A receiver operating characteristic (ROC) curve was used to evaluate the biomarkers with high predictive value for obesity-related precocious puberty. Spearman correlation analysis confirmed that Anaerostipes levels were negatively correlated with body weight, body mass index (BMI), bone age, luteinizing hormone, follicle-stimulating hormone, and estradiol. CONCLUSIONS There was a significant correlation between obesity-associated precocious puberty and gut microbiota, especially the functional characteristics of the microbiome and its interactions, which can provide a theoretical basis for the clinical intervention of obesity and precocious puberty through the microbiome.
Collapse
Affiliation(s)
- Li Wang
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Disease, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yi
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Disease, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Xu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Disease, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Huiwen Liu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Disease, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Disease, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongrong Deng
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Disease, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunxia Chen
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Disease, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Wang
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Disease, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Tang
- Department of Endocrine Genetics and Metabolism, School of Medicine, Chengdu Women's and Children's Center Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xinran Cheng
- Department of Endocrine Genetics and Metabolism, School of Medicine, Chengdu Women's and Children's Center Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Jing Zhu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Disease, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Wu J, Li Z, Zhu H, Chang Y, Li Q, Chen J, Shen G, Feng J. Childhood overweight and obesity: age stratification contributes to the differences in metabolic characteristics. Obesity (Silver Spring) 2024; 32:571-582. [PMID: 38112246 DOI: 10.1002/oby.23964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/11/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE The aim of this study was to identify the differential metabolic characteristics of children with overweight and obesity and understand their potential mechanism in different age stratifications. METHODS Four hundred seventy-three children were recruited and divided into two age stratifications: >4 years (older children) and ≤4 years (younger children), and overweight and obesity were defined according to their BMI percentile. A one dimensional proton nuclear magnetic resonance (1 H-NMR)-based metabolomics strategy combined with pattern recognition methods was used to identify the metabolic characteristics of childhood overweight and obesity. RESULTS Four and sixteen potential biomarkers related to overweight and two and twenty potential biomarkers related to obesity were identified from younger and older children, respectively. Fluctuations in phenylalanine, tyrosine, glutamine, leucine, histidine, and ascorbate co-occurred in children with obesity at two age stratifications. The disturbances in biosynthesis and metabolism of amino acids, lipid metabolism, and galactose metabolism disturbance were mainly involved in children with overweight and obesity. CONCLUSIONS The metabolic disturbances show a significant progression from overweight to obesity in children, and different metabolic characteristics were demonstrated in age stratifications. The changes in the levels of phenylalanine, tyrosine, glutamine, leucine, histidine, and ascorbate were tracked with the persistence of childhood obesity. These findings will promote the mechanistic understanding of childhood overweight and obesity.
Collapse
Affiliation(s)
- Jinxia Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Zhenchang Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Hongwei Zhu
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yajie Chang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Quanquan Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jing Chen
- Department of Child Health, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| |
Collapse
|