1
|
de Scordilli M, Bortolot M, Torresan S, Noto C, Rota S, Di Nardo P, Fumagalli A, Guardascione M, Ongaro E, Foltran L, Puglisi F. Precision oncology in biliary tract cancer: the emerging role of liquid biopsy. ESMO Open 2025; 10:105079. [PMID: 40311184 PMCID: PMC12084404 DOI: 10.1016/j.esmoop.2025.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/01/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025] Open
Abstract
Liquid biopsy has already proven effective in aiding diagnosis, risk stratification and treatment personalization in several malignancies, and it could represent a practice-changing tool also in biliary tract cancer, even though clinical applications are currently still limited. It is promising for early diagnosis, especially in high-risk populations, and several studies on circulating free DNA (cfDNA), circulating tumour cells and differential microRNA (miRNA) profiles in this setting are ongoing. Circulating tumour DNA (ctDNA) also appears as a feasible noninvasive biomarker in the curative setting, in detecting minimal residual disease after resection and in monitoring disease recurrence. As of today, it can be particularly valuable in biliary tract cancer for genomic profiling, with a good concordance with tissue samples for most molecular alterations. CtDNA analysis may especially be considered in clinical practice when the tumour tissue is not sufficient for next-generation sequencing, or when urgent therapeutic decisions are needed. Moreover, it offers the possibility of providing a real-time picture to monitor treatment response and dynamically identify resistance mutations, potentially representing a way to optimize treatment strategies.
Collapse
Affiliation(s)
- M de Scordilli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - M Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - S Torresan
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - C Noto
- Department of Medicine, University of Udine, Udine, Italy; Medical Oncology, ASUGI, Ospedale Maggiore, Trieste, Italy
| | - S Rota
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - P Di Nardo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - A Fumagalli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - M Guardascione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - E Ongaro
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - L Foltran
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - F Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
2
|
Kotsifa E, Saffioti F, Mavroeidis VK. Cholangiocarcinoma: The era of liquid biopsy. World J Gastroenterol 2025; 31:104170. [PMID: 40124277 PMCID: PMC11924015 DOI: 10.3748/wjg.v31.i11.104170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 02/14/2025] [Indexed: 03/13/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive and heterogeneous malignancy arising from the epithelial cells of the biliary tract. The limitations of the current methods in the diagnosis of CCA highlight the urgent need for new, accurate tools for early cancer detection, better prognostication and patient monitoring. Liquid biopsy (LB) is a modern and non-invasive technique comprising a diverse group of methodologies aiming to detect tumour biomarkers from body fluids. These biomarkers include circulating tumour cells, cell-free DNA, circulating tumour DNA, RNA and extracellular vesicles. The aim of this review is to explore the current and potential future applications of LB in CCA management, with a focus on diagnosis, prognostication and monitoring. We examine both its significant potential and the inevitable limitations associated with this technology. We conclude that LB holds considerable promise, but further research is necessary to fully integrate it into precision oncology for CCA.
Collapse
Affiliation(s)
- Evgenia Kotsifa
- The Second Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, Athens 11527, Greece
| | - Francesca Saffioti
- Department of Gastroenterology and Hepatology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
- University College London Institute for Liver and Digestive Health and Sheila Sherlock Liver Unit, Royal Free Hospital and University College London, London NW3 2QG, United Kingdom
- Division of Clinical and Molecular Hepatology, Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina 98124, Italy
| | - Vasileios K Mavroeidis
- Department of Transplant Surgery, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, United Kingdom
- Department of Gastrointestinal Surgery, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, United Kingdom
- Department of HPB Surgery, Bristol Royal Infirmary, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS2 8HW, United Kingdom
| |
Collapse
|
3
|
Yang M, Zhao Y, Li C, Weng X, Li Z, Guo W, Jia W, Feng F, Hu J, Sun H, Wang B, Li H, Li M, Wang T, Zhang W, Jiang X, Zhang Z, Liu F, Hu H, Wu X, Gu J, Yang G, Li G, Zhang H, Zhang T, Zang H, Zhou Y, He M, Yang L, Wang H, Chen T, Zhang J, Chen W, Wu W, Li M, Gong W, Lin X, Liu F, Liu Y, Liu Y. Multimodal integration of liquid biopsy and radiology for the noninvasive diagnosis of gallbladder cancer and benign disorders. Cancer Cell 2025; 43:398-412.e4. [PMID: 40068597 DOI: 10.1016/j.ccell.2025.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/04/2024] [Accepted: 02/11/2025] [Indexed: 05/13/2025]
Abstract
Gallbladder cancer (GBC) frequently mimics gallbladder benign lesions (GBBLs) in radiological images, leading to preoperative misdiagnoses. To address this challenge, we initiated a prospective, multicenter clinical trial (ChicCTR2100049249) and proposed a multimodal, non-invasive diagnostic model to distinguish GBC from GBBLs. A total of 301 patients diagnosed with gallbladder-occupying lesions (GBOLs) from 11 medical centers across 7 provinces in China were enrolled and divided into a discovery cohort and an independent external validation cohort. An artificial intelligence (AI)-based integrated model, GBCseeker, is created using cell-free DNA (cfDNA) genetic signatures, radiomic features, and clinical information. It achieves high accuracy in distinguishing GBC from GBBL patients (93.33% in the discovery cohort and 87.76% in the external validation cohort), reduces surgeons' diagnostic errors by 56.24%, and reclassifies GBOL patients into three categories to guide surgical options. Overall, our study establishes a tool for the preoperative diagnosis of GBC, facilitating surgical decision-making.
Collapse
Affiliation(s)
- Mao Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai 200127, China
| | - Yuhao Zhao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai 200127, China
| | - Chen Li
- Network and Information Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoling Weng
- Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai 200127, China
| | - Zhizhen Li
- Department of Biliary Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai 200438, China
| | - Wu Guo
- Network and Information Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenning Jia
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai 200127, China
| | - Feiling Feng
- Department of Biliary Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai 200438, China
| | - Jiaming Hu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Haonan Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Bo Wang
- Center of Gallstone Disease, East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Huaifeng Li
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ming Li
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu 215500, China
| | - Ting Wang
- Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai 200127, China
| | - Wei Zhang
- Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai 200127, China
| | - Xiaoqing Jiang
- Department of Biliary Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai 200438, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Fubao Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Hai Hu
- Center of Gallstone Disease, East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jianfeng Gu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu 215500, China
| | - Guocai Yang
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, China
| | - Guosong Li
- Department of General Surgery, The Second People's Hospital of Baoshan, Baoshan, Yunnan 678000, China
| | - Hui Zhang
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, China
| | - Tong Zhang
- Department of Hepatobiliary Hospital, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, China
| | - Hong Zang
- Department of General Surgery, The First People's Hospital of Nantong, Nantong, Jiangsu 226001, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Min He
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Linhua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Tao Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Junfeng Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of General Surgery, Central Hospital of Shanghai Jiading District, Shanghai 201800, China
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai 200127, China
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Xinhua Lin
- Network and Information Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fatao Liu
- Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai 200127, China.
| | - Yun Liu
- Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai 200127, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai 200127, China.
| |
Collapse
|
4
|
Macias RIR, Kanzaki H, Berasain C, Avila MA, Marin JJG, Hoshida Y. The Search for Risk, Diagnostic, and Prognostic Biomarkers of Cholangiocarcinoma and Their Biological and Clinicopathologic Significance. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:422-436. [PMID: 39103092 PMCID: PMC11841489 DOI: 10.1016/j.ajpath.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 08/07/2024]
Abstract
Cholangiocarcinomas (CCAs) are a heterogeneous group of malignant tumors that originate from the biliary tract. They are usually diagnosed in advanced stages, leading to a poor prognosis for affected patients. As CCA often arises as a sporadic cancer in individuals lacking specific risk factors or with heterogeneous backgrounds, and there are no defined high-risk groups, the implementation of effective surveillance programs for CCA is problematic. The identification and validation of new biomarkers useful for risk stratification, diagnosis, prognosis, and prediction of treatment response remains an unmet need for patients with CCA, even though numerous studies have been conducted lately to try to discover and validate CCA biomarkers. In this review, we overview the available information about the different types of biomarkers that have been investigated in recent years using minimally invasive biospecimens (blood, serum/plasma, bile, and urine) and their potential usefulness in diagnosis, prognosis, and risk stratification. It is widely accepted that early detection of CCA will impact patients' outcomes, by improving survival rates, quality of life, and the possibility of less invasive and/or curative treatments; however, challenges to its translation and clinical application for patients with CCA need to be resolved.
Collapse
Affiliation(s)
- Rocio I R Macias
- Experimental Hepatology and Drug Targeting Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases, Carlos III National Institute of Health, Madrid, Spain.
| | - Hiroaki Kanzaki
- Division of Digestive and Liver Diseases, Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carmen Berasain
- Center for the Study of Liver and Gastrointestinal Diseases, Carlos III National Institute of Health, Madrid, Spain; Hepatology Laboratory, Solid Tumors Program, Center for Applied Medical Research, Cancer Center University of Navarra, Pamplona, Spain
| | - Matias A Avila
- Center for the Study of Liver and Gastrointestinal Diseases, Carlos III National Institute of Health, Madrid, Spain; Hepatology Laboratory, Solid Tumors Program, Center for Applied Medical Research, Cancer Center University of Navarra, Pamplona, Spain
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases, Carlos III National Institute of Health, Madrid, Spain
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
5
|
Awosika JA, Monge C, Greten TF. Integration of circulating tumor DNA in biliary tract cancer: the emerging landscape. Hepat Oncol 2024; 11:2403334. [PMID: 39881555 PMCID: PMC11486096 DOI: 10.1080/20450923.2024.2403334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/09/2024] [Indexed: 01/31/2025] Open
Abstract
Precision medicine has emerged as a cornerstone in cancer treatment revolutionizing our approach across malignancies. Molecular profiling of biliary tract cancers (BTCs) has changed the treatment landscape positively by prolonging survival in an aggressively fatal malignancy in its advanced stages. The acquisition of tissue tumor DNA for genomic analysis in BTC is often anatomically challenging, limited by quantity and quality. In response, ctDNA has emerged as a noninvasive means of molecular profiling. The utility of both plasma and bile ctDNA has been explored in several studies demonstrating the high mutation detection rates and the ability to isolate targetable mutations when present. In addition, the concordance between plasma and tissue DNA provides validity in utilizing ctDNA results to infer treatment decisions. Analysis of ctDNA in BTC has also provided prognostic information and facilitated evaluation of clonal evolution with ease of serial measurements. Insight into novel mechanisms of resistance to targeted therapies are being uncovered in ctDNA. As research endeavors continue to deepen our understanding in the field particularly in the space of ctDNA surveillance after curative intent, the tremendous progress made so far has enabled integration of ctDNA into the clinical practice of BTCs.
Collapse
Affiliation(s)
- Joy A Awosika
- Gastrointestinal Malignancies Section, Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD20892, USA
| | - Cecilia Monge
- Gastrointestinal Malignancies Section, Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD20892, USA
| | - Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD20892, USA
| |
Collapse
|
6
|
Battaglin F, Lenz HJ. Clinical Applications of Circulating Tumor DNA Profiling in GI Cancers. JCO Oncol Pract 2024; 20:1481-1490. [PMID: 39531845 PMCID: PMC11567053 DOI: 10.1200/op.24.00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 11/16/2024] Open
Abstract
Over the next few years, the analysis of circulating tumor DNA (ctDNA) through liquid biopsy is expected to enter clinical practice and revolutionize the approach to biomarker testing and treatment selection in GI cancers. In fact, growing evidence support the use of ctDNA testing as a noninvasive, effective, and highly specific tool for molecular profiling in GI cancers. Analysis of blood ctDNA has been investigated in multiple settings including early tumor detection, minimal residual disease evaluation, tumor diagnosis and evaluation of prognostic/predictive biomarkers for targeted treatment selection, longitudinal monitoring of treatment response, and identification of resistance mechanisms. Here, we review the clinical applications, advantages, and limitations of ctDNA profiling for precision oncology in GI cancers.
Collapse
Affiliation(s)
- Francesca Battaglin
- Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Heinz-Josef Lenz
- Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Shroff RT, Bachini M. Treatment options for biliary tract cancer: unmet needs, new targets and opportunities from both physicians' and patients' perspectives. Future Oncol 2024; 20:1435-1450. [PMID: 38861288 PMCID: PMC11376410 DOI: 10.1080/14796694.2024.2340959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/05/2024] [Indexed: 06/12/2024] Open
Abstract
Biliary tract cancer (BTC) is a rare cancer with poor prognosis, characterized by considerable pathophysiological and molecular heterogeneity. While this makes it difficult to treat, it also provides targeted therapy opportunities. Current standard-of-care is chemotherapy ± immunotherapy, but several targeted agents have recently been approved. The current investigational landscape in BTC emphasizes the importance of biomarker testing at diagnosis. MDM2/MDMX are important negative regulators of the tumor suppressor p53 and provide an additional target in BTC (∼5-8% of tumors are MDM2-amplified). Brigimadlin (BI 907828) is a highly potent MDM2-p53 antagonist that has shown antitumor activity in preclinical studies and promising results in early clinical trials; enrollment is ongoing in a potential registrational trial for patients with BTC.
Collapse
Affiliation(s)
- Rachna T Shroff
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA
| | - Melinda Bachini
- Cholangiocarcinoma Foundation, 5526 West 13400 South, #510, Herriman, UT USA
| |
Collapse
|
8
|
Esmail A, Badheeb M, Alnahar B, Almiqlash B, Sakr Y, Khasawneh B, Al-Najjar E, Al-Rawi H, Abudayyeh A, Rayyan Y, Abdelrahim M. Cholangiocarcinoma: The Current Status of Surgical Options including Liver Transplantation. Cancers (Basel) 2024; 16:1946. [PMID: 38893067 PMCID: PMC11171350 DOI: 10.3390/cancers16111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Cholangiocarcinoma (CCA) poses a substantial threat as it ranks as the second most prevalent primary liver tumor. The documented annual rise in intrahepatic CCA (iCCA) incidence in the United States is concerning, indicating its growing impact. Moreover, the five-year survival rate after tumor resection is only 25%, given that tumor recurrence is the leading cause of death in 53-79% of patients. Pre-operative assessments for iCCA focus on pinpointing tumor location, biliary tract involvement, vascular encasements, and metastasis detection. Numerous studies have revealed that portal vein embolization (PVE) is linked to enhanced survival rates, improved liver synthetic functions, and decreased overall mortality. The challenge in achieving clear resection margins contributes to the notable recurrence rate of iCCA, affecting approximately two-thirds of cases within one year, and results in a median survival of less than 12 months for recurrent cases. Nearly 50% of patients initially considered eligible for surgical resection in iCCA cases are ultimately deemed ineligible during surgical exploration. Therefore, staging laparoscopy has been proposed to reduce unnecessary laparotomy. Eligibility for orthotopic liver transplantation (OLT) requires certain criteria to be granted. OLT offers survival advantages for early-detected unresectable iCCA; it can be combined with other treatments, such as radiofrequency ablation and transarterial chemoembolization, in specific cases. We aim to comprehensively describe the surgical strategies available for treating CCA, including the preoperative measures and interventions, alongside the current options regarding liver resection and OLT.
Collapse
Affiliation(s)
- Abdullah Esmail
- Section of GI Oncology, Department of Medicine, Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Mohamed Badheeb
- Department of Internal Medicine, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT 06605, USA
| | - Batool Alnahar
- College of Medicine, Almaarefa University, Riyadh 13713, Saudi Arabia
| | - Bushray Almiqlash
- Zuckerman College of Public Health, Arizona State University, Tempe, AZ 85287, USA
| | - Yara Sakr
- Department of GI Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bayan Khasawneh
- Section of GI Oncology, Department of Medicine, Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Ebtesam Al-Najjar
- Section of GI Oncology, Department of Medicine, Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Hadeel Al-Rawi
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ala Abudayyeh
- Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yaser Rayyan
- Department of Gastroenterology & Hepatology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Maen Abdelrahim
- Section of GI Oncology, Department of Medicine, Houston Methodist Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Lee SH, Song SY. Recent Advancement in Diagnosis of Biliary Tract Cancer through Pathological and Molecular Classifications. Cancers (Basel) 2024; 16:1761. [PMID: 38730713 PMCID: PMC11083053 DOI: 10.3390/cancers16091761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Biliary tract cancers (BTCs), including intrahepatic, perihilar, and distal cholangiocarcinomas, as well as gallbladder cancer, are a diverse group of cancers that exhibit unique molecular characteristics in each of their anatomic and pathological subtypes. The pathological classification of BTCs compromises distinct growth patterns, including mass forming, periductal infiltrating, and intraductal growing types, which can be identified through gross examination. The small-duct and large-duct types of intrahepatic cholangiocarcinoma have been recently introduced into the WHO classification. The presentation of typical clinical symptoms, as well as the extensive utilization of radiological, endoscopic, and molecular diagnostic methods, is thoroughly detailed in the description. To overcome the limitations of traditional tissue acquisition methods, new diagnostic modalities are being explored. The treatment landscape is also rapidly evolving owing to the emergence of distinct subgroups with unique molecular alterations and corresponding targeted therapies. Furthermore, we emphasize the crucial aspects of diagnosing BTC in practical clinical settings.
Collapse
Affiliation(s)
- Sang-Hoon Lee
- Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Republic of Korea;
| | - Si Young Song
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03772, Republic of Korea
| |
Collapse
|
10
|
Moris D, Palta M, Kim C, Allen PJ, Morse MA, Lidsky ME. Advances in the treatment of intrahepatic cholangiocarcinoma: An overview of the current and future therapeutic landscape for clinicians. CA Cancer J Clin 2023; 73:198-222. [PMID: 36260350 DOI: 10.3322/caac.21759] [Citation(s) in RCA: 224] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver tumor and remains a fatal malignancy in the majority of patients. Approximately 20%-30% of patients are eligible for resection, which is considered the only potentially curative treatment; and, after resection, a median survival of 53 months has been reported when sequenced with adjuvant capecitabine. For the 70%-80% of patients who present with locally unresectable or distant metastatic disease, systemic therapy may delay progression, but survival remains limited to approximately 1 year. For the past decade, doublet chemotherapy with gemcitabine and cisplatin has been considered the most effective first-line regimen, but results from the recent use of triplet regimens and even immunotherapy may shift the paradigm. More effective treatment strategies, including those that combine systemic therapy with locoregional therapies like radioembolization or hepatic artery infusion, have also been developed. Molecular therapies, including those that target fibroblast growth factor receptor and isocitrate dehydrogenase, have recently received US Food and Drug Administration approval for a defined role as second-line treatment for up to 40% of patients harboring these actionable genomic alterations, and whether they should be considered in the first-line setting is under investigation. Furthermore, as the oncology field seeks to expand indications for immunotherapy, recent data demonstrated that combining durvalumab with standard cytotoxic therapy improved survival in patients with ICC. This review focuses on the current and future strategies for ICC treatment, including a summary of the primary literature for each treatment modality and an algorithm that can be used to drive a personalized and multidisciplinary approach for patients with this challenging malignancy.
Collapse
Affiliation(s)
- Dimitrios Moris
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Manisha Palta
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Charles Kim
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Peter J Allen
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael A Morse
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael E Lidsky
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
11
|
Labiano I, Huerta AE, Arrazubi V, Hernandez-Garcia I, Mata E, Gomez D, Arasanz H, Vera R, Alsina M. State of the Art: ctDNA in Upper Gastrointestinal Malignancies. Cancers (Basel) 2023; 15:1379. [PMID: 36900172 PMCID: PMC10000247 DOI: 10.3390/cancers15051379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Circulating tumor DNA (ctDNA) has emerged as a promising non-invasive source to characterize genetic alterations related to the tumor. Upper gastrointestinal cancers, including gastroesophageal adenocarcinoma (GEC), biliary tract cancer (BTC) and pancreatic ductal adenocarcinoma (PADC) are poor prognostic malignancies, usually diagnosed at advanced stages when no longer amenable to surgical resection and show a poor prognosis even for resected patients. In this sense, ctDNA has emerged as a promising non-invasive tool with different applications, from early diagnosis to molecular characterization and follow-up of tumor genomic evolution. In this manuscript, novel advances in the field of ctDNA analysis in upper gastrointestinal tumors are presented and discussed. Overall, ctDNA analyses can help in early diagnosis, outperforming current diagnostic approaches. Detection of ctDNA prior to surgery or active treatment is also a prognostic marker that associates with worse survival, while ctDNA detection after surgery is indicative of minimal residual disease, anticipating in some cases the imaging-based detection of progression. In the advanced setting, ctDNA analyses characterize the genetic landscape of the tumor and identify patients for targeted-therapy approaches, and studies show variable concordance levels with tissue-based genetic testing. In this line, several studies also show that ctDNA serves to follow responses to active therapy, especially in targeted approaches, where it can detect multiple resistance mechanisms. Unfortunately, current studies are still limited and observational. Future prospective multi-center and interventional studies, carefully designed to assess the value of ctDNA to help clinical decision-making, will shed light on the real applicability of ctDNA in upper gastrointestinal tumor management. This manuscript presents a review of the evidence available in this field up to date.
Collapse
Affiliation(s)
- Ibone Labiano
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Ana Elsa Huerta
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Virginia Arrazubi
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Irene Hernandez-Garcia
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Elena Mata
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - David Gomez
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Hugo Arasanz
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Ruth Vera
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Maria Alsina
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
12
|
Arrichiello G, Nacca V, Paragliola F, Giunta EF. Liquid biopsy in biliary tract cancer from blood and bile samples: current knowledge and future perspectives. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:362-374. [PMID: 36045913 PMCID: PMC9400719 DOI: 10.37349/etat.2022.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/18/2022] [Indexed: 12/05/2022] Open
Abstract
Biliary tract cancer (BTC) is an aggressive tumor characterized by a poor prognosis. In the latest years, targetable genetic alterations have been discovered in BTC patients, leading to the approval of new targeted therapies. Liquid biopsy, which is a non-invasive method for detecting tumor biomarkers from fluid samples, is a useful tool for diagnosis and molecular characterization, but also for prognosis assessment and monitoring of treatment response. In this review, recent works on liquid biopsy in BTC patients were analyzed, focusing on some relevant aspects for clinical use and trying to depict the future role of this technique. Moreover, differences between plasma and bile samples were pointed out, in light of the peculiar biology of BTC and the possibility of using bile as an alternative source of cell-free DNA (cfDNA) for genomic analysis. In the era of precision oncology, the increasing adoption of liquid biopsy in BTC patients will certainly improve the management of this disease.
Collapse
Affiliation(s)
- Gianluca Arrichiello
- Oncology Unit, Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Valeria Nacca
- Oncology Unit, Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Fernando Paragliola
- Oncology Unit, Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Emilio Francesco Giunta
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|