1
|
Tang L, Liu Y, Yan J, Yuan L, Wang Z, Li Z. Transcription factor GTF2I regulates osteoclast differentiation through mediating miR-134-5p and MAT2A expressions. J Cell Commun Signal 2025; 19:e70010. [PMID: 40191097 PMCID: PMC11968177 DOI: 10.1002/ccs3.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
This study explored the possible effect of transcription factor GTF2I on the differentiation of osteoclasts and its regulation on the miR-134-5p/MAT2A axis. RANKL-induced osteoclasts were measured for expressions of GTF2I, miR-134-5p, and MAT2A. The number and size of osteoclasts were assessed after TRAP staining. The expressions of osteoclast differentiation biomarkers, NFATC1, TRAP, and CTSK, were detected as well. The relationships of the GTF2I/miR-134-5p/MAT2A axis were verified by ChIP, dual luciferase, and RNA pull-down assay. In vivo experiments were conducted on ovariectomized (OVX)-treated mice to determine the effect of GTF2I overexpression on osteoclast differentiation and bone loss. RANKL-induced osteoclasts had suppressed expressions of GTF2I and miR-134-5p and increased expression of MAT2A. GTF2I overexpression or miR-134-5p overexpression contributed to decreased cell number and size and suppressed cell differentiation, whereas such an effect can be abolished by overexpression of MAT2A. GTF2I can bind the miR-134-5p promoter to regulate its expression, whereas miR-134-5p can negatively regulate MAT2A expression. The protective effect of GTF2I overexpression against bone loss and cell differentiation was verified by in vivo experiments. Collectively, these results indicate that GTF2I can mediate miR-134-5p expression to increase MAT2A expression, contributing to the suppression of osteoclast differentiation.
Collapse
Affiliation(s)
- Lian Tang
- Department of OrthopedicsAffiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Yanshi Liu
- Department of OrthopedicsAffiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Jiyuan Yan
- Department of OrthopedicsAffiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Lin Yuan
- Department of Clinical Skills CenterAffiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | | | - Zhong Li
- Department of OrthopedicsAffiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
- Stem Cell Immunity and Regeneration Key Laboratory of LuzhouAffiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
2
|
Wang C, Guo Y, Wang L, Nie Z, Zhu J, Yan Q. Rare features of giant cell tumors of the bone: A case report. Exp Ther Med 2024; 28:409. [PMID: 39268365 PMCID: PMC11391172 DOI: 10.3892/etm.2024.12698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/18/2024] [Indexed: 09/15/2024] Open
Abstract
Giant cell tumors of the bone are local invasive diseases that are mainly composed of neoplastic monocytes and nonneoplastic multinucleated giant cells, mostly in the long bones of patients with mature bones. A specific H3F3A mutation is the key to its diagnosis. The present paper reports a case of giant cell tumor of the bone (GCTB) characterized by diffuse cholesterol crystals with few multinucleated giant cells. Imaging examination combined with immunohistochemical H3.3 G34W positivity was used to diagnose the patient with GCTB. Understanding the unique histological morphology of this patient will help doctors correctly diagnose giant cell tumors of bone and avoid misdiagnosis.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pathology, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Ying Guo
- Department of Pathology, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China
- Department of Pathology, Xi'an Daxing Hospital, Xi'an, Shaanxi 710003, P.R. China
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Lu Wang
- Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Zunzhen Nie
- Department of Pathology, Xi'an Daxing Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jin Zhu
- Department of Pathology, Xi'an Daxing Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Qingguo Yan
- Department of Pathology, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China
- Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
3
|
Paulus J, Sewald N. Small molecule- and peptide-drug conjugates addressing integrins: A story of targeted cancer treatment. J Pept Sci 2024; 30:e3561. [PMID: 38382900 DOI: 10.1002/psc.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 02/23/2024]
Abstract
Targeted cancer treatment should avoid side effects and damage to healthy cells commonly encountered during traditional chemotherapy. By combining small molecule or peptidic ligands as homing devices with cytotoxic drugs connected by a cleavable or non-cleavable linker in peptide-drug conjugates (PDCs) or small molecule-drug conjugates (SMDCs), cancer cells and tumours can be selectively targeted. The development of highly affine, selective peptides and small molecules in recent years has allowed PDCs and SMDCs to increasingly compete with antibody-drug conjugates (ADCs). Integrins represent an excellent target for conjugates because they are overexpressed by most cancer cells and because of the broad knowledge about native binding partners as well as the multitude of small-molecule and peptidic ligands that have been developed over the last 30 years. In particular, integrin αVβ3 has been addressed using a variety of different PDCs and SMDCs over the last two decades, following various strategies. This review summarises and describes integrin-addressing PDCs and SMDCs while highlighting points of great interest.
Collapse
Affiliation(s)
- Jannik Paulus
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Halpert MM, Burns BA, Rosario SR, Withers HG, Trivedi AJ, Hofferek CJ, Gephart BD, Wang H, Vazquez-Perez J, Amanya SB, Hyslop ST, Yang J, Kemnade JO, Sandulache VC, Konduri V, Decker WK. Multifactoral immune modulation potentiates durable remission in multiple models of aggressive malignancy. FASEB J 2024; 38:e23644. [PMID: 38738472 PMCID: PMC11155525 DOI: 10.1096/fj.202302675r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
Tumors typically lack canonical danger signals required to activate adaptive immunity and also frequently employ substantial immunomodulatory mechanisms that downregulate adaptive responses and contribute to escape from immune surveillance. Given the variety of mechanisms involved in shielding tumors from immune recognition, it is not surprising that single-agent immunomodulatory approaches have been largely unsuccessful in generating durable antitumor responses. Here we report a unique combination of immunomodulatory and cytostatic agents that recondition the tumor microenvironment and eliminate complex and/or poor-prognosis tumor types including the non-immunogenic 4T-1 model of TNBC, the aggressive MOC-2 model of HNSCC, and the high-risk MYCN-amplified model of neuroblastoma. A course of therapy optimized for TNBC cured a majority of tumors in both ectopic and orthotopic settings and eliminated metastatic spread in all animals tested at the highest doses. Immune responses were transferable between therapeutic donor and naïve recipient through adoptive transfer, and a sizeable abscopal effect on distant, untreated lesions could be demonstrated experimentally. Similar results were observed in HNSCC and neuroblastoma models, with characteristic remodeling of the tumor microenvironment documented in all model systems. scRNA-seq analysis implicated upregulation of innate immune responses and antigen presentation in tumor cells and the myeloid cell compartment as critical early events. This analysis also highlighted the potential importance of the autonomic nervous system in the governance of inflammatory processes. The data indicate that the targeting of multiple pathways and mechanisms of action can result in substantial synergistic antitumor effects and suggest follow-up in the neoadjuvant setting may be warranted.
Collapse
Affiliation(s)
- MM Halpert
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - BA Burns
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - SR Rosario
- Department of Biostatistics and Bioinformatics, Baylor College of Medicine, Houston, TX 77030 United States
- Acquired Resistance to Therapy Network (ARTNet) U24/U54 Investigator, Baylor College of Medicine, Houston, TX 77030 United States
| | - HG Withers
- Department of Biostatistics and Bioinformatics, Baylor College of Medicine, Houston, TX 77030 United States
| | - AJ Trivedi
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - CJ Hofferek
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - BD Gephart
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - H Wang
- Department of Medicine, Section of Hematology & Oncology, Baylor College of Medicine, Houston, TX 77030 United States
| | - J Vazquez-Perez
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - SB Amanya
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - ST Hyslop
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - J Yang
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030 United States
| | - JO Kemnade
- Department of Medicine, Section of Hematology & Oncology, Baylor College of Medicine, Houston, TX 77030 United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 United States
| | - VC Sandulache
- Acquired Resistance to Therapy Network (ARTNet) U24/U54 Investigator, Baylor College of Medicine, Houston, TX 77030 United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 United States
- Bobby R. Alford Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030 United States
| | - V Konduri
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 United States
| | - WK Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
- Acquired Resistance to Therapy Network (ARTNet) U24/U54 Investigator, Baylor College of Medicine, Houston, TX 77030 United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030 United States
| |
Collapse
|
5
|
Nirala BK, Yamamichi T, Petrescu DI, Shafin TN, Yustein JT. Decoding the Impact of Tumor Microenvironment in Osteosarcoma Progression and Metastasis. Cancers (Basel) 2023; 15:5108. [PMID: 37894474 PMCID: PMC10605493 DOI: 10.3390/cancers15205108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Osteosarcoma (OS) is a heterogeneous, highly metastatic bone malignancy in children and adolescents. Despite advancements in multimodal treatment strategies, the prognosis for patients with metastatic or recurrent disease has not improved significantly in the last four decades. OS is a highly heterogeneous tumor; its genetic background and the mechanism of oncogenesis are not well defined. Unfortunately, no effective molecular targeted therapy is currently available for this disease. Understanding osteosarcoma's tumor microenvironment (TME) has recently gained much interest among scientists hoping to provide valuable insights into tumor heterogeneity, progression, metastasis, and the identification of novel therapeutic avenues. Here, we review the current understanding of the TME of OS, including different cellular and noncellular components, their crosstalk with OS tumor cells, and their involvement in tumor progression and metastasis. We also highlight past/current clinical trials targeting the TME of OS for effective therapies and potential future therapeutic strategies with negligible adverse effects.
Collapse
Affiliation(s)
| | | | | | | | - Jason T. Yustein
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA 30322, USA; (B.K.N.); (T.Y.); (D.I.P.); (T.N.S.)
| |
Collapse
|
6
|
Liu Z, Zhang L, Zhong Y. Characterization of osteosarcoma subtypes mediated by macrophage-related genes and creation and validation of a risk score system to quantitatively assess the prognosis of osteosarcoma and reflect the tumor microenvironment. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1318. [PMID: 36660647 PMCID: PMC9843337 DOI: 10.21037/atm-22-5613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Background Macrophages are the main immune components in the microenvironment of osteosarcoma. The treatment strategy centered on macrophages has become a hot topic to improve cancer treatment. However, the research on the role of macrophages in the treatment of osteosarcoma is still in its infancy. Methods The data of osteosarcoma samples were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and GSE21257 datasets, and the macrophage enrichment fraction of osteosarcoma samples in TARGET was calculated by single-sample gene set enrichment analysis (ssGSEA) method to screen macrophage-related genes for consensus clustering. Differential expression analysis, univariable Cox, and least absolute shrinkage and selection operator (LASSO) regression were conducted to select reliable predictors and create a risk score system. The GSE21257 dataset was used as a verification set to verify the accuracy of risk score system. Results We identified 2 osteosarcoma clusters mediated by 22 macrophage score-related genes, namely cluster 1 (C1) and cluster 2 (C2). Compared with C2, C1 had a significant advantage in prognosis, and the degree of immune cell infiltration in tumor microenvironment (TME) was significantly higher, the expression of immune checkpoint molecules was significantly enhanced, and the Tumor Immune Dysfunction and Exclusion (TIDE) score was also significantly down-regulated. A robust risk score system was presented and validated, which demonstrated accuracy and independence in assessing the risk of death of osteosarcoma. The risk score system could also monitor TME infiltration in osteosarcoma samples and showed a close relationship with osteosarcoma biology, including metastasis and immunity. Conclusions We identified 2 types of clusters mediated by macrophage-related genes and helped to analyze the cluster suitable for immunotherapy. A new prognostic risk score system was created to quantitatively evaluate the prognosis and TME of osteosarcoma, and to provide a new entry point for the design of personalized treatment.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Orthopedics, Jiangxi Cancer Hospital, Nanchang, China
| | - Lei Zhang
- Department of Orthopedics, Jiangxi Cancer Hospital, Nanchang, China
| | - Yun Zhong
- Department of Lymphohematology and Oncology, Jiangxi Cancer Hospital, Nanchang, China
| |
Collapse
|
7
|
Sajjadi E, Gaudioso G, Terrasi A, Boggio F, Venetis K, Ivanova M, Bertolasi L, Lopez G, Runza L, Premoli A, Lorenzini D, Guerini-Rocco E, Ferrero S, Vaira V, Fusco N. Osteoclast-like stromal giant cells in breast cancer likely belong to the spectrum of immunosuppressive tumor-associated macrophages. Front Mol Biosci 2022; 9:894247. [PMID: 36090031 PMCID: PMC9462457 DOI: 10.3389/fmolb.2022.894247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/28/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Breast cancer with osteoclast-like stromal giant cells (OSGC) is an exceedingly rare morphological pattern of invasive breast carcinoma. The tumor immune microenvironment (TIME) of these tumors is populated by OSGC, which resemble osteoclasts and show a histiocytic-like immunophenotype. Their role in breast cancer is unknown. The osteoclast maturation in the bone is regulated by the expression of cytokines that are also present in the TIME of tumors and in breast cancer tumor-associated macrophages (TAMs). TAMs-mediated anti-tumor immune pathways are regulated by miRNAs akin to osteoclast homeostasis. Here, we sought to characterize the different cellular compartments of breast cancers with OSGC and investigate the similarities of OSGC with tumor and TIME in terms of morphology, protein, and miRNA expression, specifically emphasizing on monocytic signatures. Methods and Results: Six breast cancers with OSGC were included. Tumor-infiltrating lymphocytes (TILs) and TAMs were separately quantified. The different cellular populations (i.e., normal epithelium, cancer cells, and OSGC) were isolated from tissue sections by laser-assisted microdissection. After RNA purification, 752 miRNAs were analyzed using a TaqMan Advanced miRNA Low-Density Array for all samples. Differentially expressed miRNAs were identified by computing the fold change (log2Ratio) using the Kolmogorov-Smirnov test and p values were corrected for multiple comparisons using the false discovery rate (FDR) approach. As a similarity analysis among samples, we used the Pearson test. The association between pairs of variables was investigated using Fisher exact test. Classical and non-classical monocyte miRNA signatures were finally applied. All OSGC displayed CD68 expression, TILs (range, 45–85%) and high TAMs (range, 35–75%). Regarding the global miRNAs profile, OSGC was more similar to cancer cells than to non-neoplastic ones. Shared deregulation of miR-143-3p, miR-195-5p, miR-181a-5p, and miR-181b-5p was observed between OSGC and cancer cells. The monocyte-associated miR-29a-3p and miR-21-3p were dysregulated in OSGCs compared with non-neoplastic or breast cancer tissues. Conclusion: Breast cancers with OSGC have an activated TIME. Shared epigenetic events occur during the ontogenesis of breast cancer cells and OSGC but the innumophenotype and miRNA profiles of the different cellular compartmens suggest that OSGC likely belong to the spectrum of M2 TAMs.
Collapse
Affiliation(s)
- Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Gabriella Gaudioso
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Terrasi
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Francesca Boggio
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Letizia Bertolasi
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca Lopez
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Letterio Runza
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Alice Premoli
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Lorenzini
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- *Correspondence: Nicola Fusco,
| |
Collapse
|
8
|
Mo C, Wu Y, Ma J, Xie L, Huang Y, Xu Y, Peng H, Chen Z, Zeng M, Mao R. Clinicopathological value of the upregulation of cyclin-dependent kinases regulatory subunit 2 in osteosarcoma. BMC Med Genomics 2022; 15:81. [PMID: 35410253 PMCID: PMC9004629 DOI: 10.1186/s12920-022-01234-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background Cyclin-dependent kinase subunit 2 (CKS2) is a member of cyclin dependent kinase subfamily and the relationship between CKS2 and osteosarcoma (OS) remains to be further analyzed. Methods 80 OS and 41 non-tumor tissue samples were arranged to perform immunohistochemistry (IHC) to evaluate CKS2 expression between OS and non-tumor samples. The standard mean deviation (SMD) was calculated based on in-house IHC and tissue microarrays, and exterior high-throughput datasets for further verification of CKS2 expression trend in OS. The effect of CKS2 expression on clinicopathological parameters of OS patients, and single-cell in OS tissues was analyzed through public high-throughput datasets and functional enrichment analysis was conducted for co-expression genes of CKS2 in accordance with weighted correlation network analysis. Results A total of 217 OS samples and 87 non-tumor samples (including tissue and cell line) were obtained from in-house IHC, microarrays and exterior high-throughput datasets. The analysis of integrated expression status demonstrated up-regulation of CKS2 in OS (SMD = 1.57, 95%CI [0.27–2.86]) and the significant power of CKS2 expression in distinguishing OS samples from non-tumor samples (AUC = 0.97 95%CI [0.95–0.98]). Clinicopathological analysis of GSE21257 indicated that OS patients with higher CKS2 expression was more likely to suffer OS metastasis. Although Kaplan–Meier curves showed no remarkable difference of overall survival rate between OS patients with high and low-CKS2, CKS2 was found up-regulated in proliferating osteosarcoma cells. Co-expression genes of CKS2 were mainly assembled in function and pathways such as cell cycle, cell adhesion, and intercellular material transport. Conclusions In summary, up-regulation of CKS2 expression in OS tissue was found through multiple technical approaches. In addition, scRNA-seq and co-expression analysis showed that CKS2 may have an impact on important biological process linked with cell cycle, cell adhesion, and intercellular material transport. Present study on CKS2 in OS indicated a promising prospect for CKS2 as a biomarker for OS. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01234-8.
Collapse
Affiliation(s)
- Chaohua Mo
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, 528300, Guangdong, China
| | - Yanxing Wu
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, 528300, Guangdong, China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Le Xie
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, 528300, Guangdong, China
| | - Yingxin Huang
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, 528300, Guangdong, China
| | - Yuanyuan Xu
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, 528300, Guangdong, China
| | - Huizhi Peng
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, 528300, Guangdong, China
| | - Zengwei Chen
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, 528300, Guangdong, China
| | - Min Zeng
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, 528300, Guangdong, China
| | - Rongjun Mao
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, 528300, Guangdong, China.
| |
Collapse
|
9
|
Biochanin A Suppresses Tumor Progression and PD-L1 Expression via Inhibiting ZEB1 Expression in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3224373. [PMID: 35242187 PMCID: PMC8888121 DOI: 10.1155/2022/3224373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/15/2022] [Indexed: 12/23/2022]
Abstract
Objective. To investigate the regulatory effect of ZEB1 on PD-L1 expression and the pharmacodynamic effects of Biochanin A on the malignant biological behaviors of colorectal cancer (CRC). Methods. The correlation between epithelial-mesenchymal transition (EMT) score and features of the tumor microenvironment (TME) was investigated using the Cancer Genome Atlas (TCGA) dataset. The correlation between ZEB1 and PD-L1 expression was validated using immunohistochemistry (IHC) staining, and the regulatory effect of ZEB1 on PD-L1 expression was explored by in vitro assays. Moreover, the pharmacodynamic effects of Biochanin A on ZEB1 and PD-L1 expression, as well as malignant biological behaviors of CRC cells, were evaluated by in vitro and in vivo assays. Results. EMT score was positively correlated with a majority of immunostimulators, immune checkpoints, activities of antitumor immunity cycles, and infiltration levels of most immune cells in the TCGA dataset. In addition, ZEB1 was correlated with and positively regulated PD-L1 expression in CRC. Besides, Biochanin A, an inhibitor for the ZEB1/PD-L1 axis, notably inhibited ZEB1-mediated aggressiveness and PD-L1 expression of CRC cells. Moreover, Biochanin A also exerted a tumor-inhibitory role in vivo in the CRC mouse model. Conclusion. Overall, we found that ZEB1 is a main regulator of PD-L1 expression in CRC. In addition, we also identified Biochanin A as a novel inhibitor for the ZEB1/PD-L1 axis, which could inhibit tumor progression and immune escape.
Collapse
|