1
|
Rzepka AM, Tile L, Chow CW, McDonald-Blumer H, Chaparro C, Ridout R, Cheung AM. Lung transplantation and bone health: A narrative review. J Heart Lung Transplant 2025; 44:849-857. [PMID: 39837402 DOI: 10.1016/j.healun.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/14/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025] Open
Abstract
Bone health after lung transplantation has not been comprehensively reviewed in over 2 decades. This narrative review summarizes the available literature on bone health in the context of lung transplantation, including epidemiology, presentation, and postoperative management. Osteoporosis is reported in approximately 30% to 50% of lung transplant candidates, largely due to disease-related impact on bone and lifestyle, and corticosteroid-related effects during end-stage lung disease (interstitial lung diseases, chronic obstructive pulmonary disease, and historically cystic fibrosis). After lung transplantation, many patients experience steroid-induced bone loss, followed by stabilization or recovery to baseline levels with pharmacologic management. Although evidence on fracture incidence is limited, fracture risk appears to increase in the year following transplantation, with common fracture sites including the vertebrae and the ribs. Vertebral and rib fractures restrict chest expansion and affect lung function, underscoring the importance of fracture prevention in lung transplant recipients. There is limited evidence on the pharmacologic management of osteoporosis after lung transplantation. Existing randomized controlled trials have focused on parenteral bisphosphonates and calcitriol but have been underpowered to evaluate their effect on fracture outcomes. Resistance training, particularly in conjunction with antiresorptive therapy, has also been shown to improve bone health when initiated 2 months after transplantation. No studies to date have documented the effectiveness of denosumab in lung transplant recipients; more studies on pharmacotherapy are warranted to elucidate optimal medical management. Considering the high osteoporosis prevalence and fracture risk in lung transplant populations, the development of formal guidance is warranted to promote improved management after transplantation.
Collapse
Affiliation(s)
- Anna M Rzepka
- Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Lianne Tile
- Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Ontario, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Chung-Wai Chow
- Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Ontario, Canada; Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Heather McDonald-Blumer
- Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Ontario, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Cecilia Chaparro
- Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Ontario, Canada; Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Rowena Ridout
- Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Ontario, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Angela M Cheung
- Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Chuachao P, Devaquet J, Sage E, Vallée A, Guen ML, Fischler M, Fessler J. Prediction of Postoperative Lung Graft Dysfunction During the Procedure: A Single-Center Cohort Study of Cystic Fibrosis Patients. J Cardiothorac Vasc Anesth 2025:S1053-0770(25)00351-9. [PMID: 40414788 DOI: 10.1053/j.jvca.2025.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/18/2025] [Accepted: 04/23/2025] [Indexed: 05/27/2025]
Abstract
OBJECTIVES To predict severe primary graft dysfunction (PGD3) after double-lung transplantation in cystic fibrosis (CF) patients using intraoperative data. DESIGN A retrospective single-center cohort study. SETTING University Hospital, France. PARTICIPANTS CF patients who underwent double-lung transplantation between 2012 and 2019. Patients younger than age 18 and those with multiorgan transplants, retransplantation, or intraoperative cardiopulmonary bypass were excluded. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Sixty-nine variables were recorded in real-time across the nine time-points. PGD3 occurred in 24 patients (15.5%). PGD3 WAS ASSESSED ON POSTOPERATIVE DAY 3: A logistic regression model to predict PGD3 was developed using data collected at nine predefined time-points during surgery, from start (recipient and donor variables) to finish. The model's area under the curve improved progressively during surgery, rising from 0.764 to 0.892. The optimal model incorporated five variables: three associated with reduced PGD3 risk (preoperative pulmonary hypertension, donor body mass index, and PaO₂/FiO₂ ratio at surgery's end) and two were linked to increased risk (lactate level at second pulmonary artery clamping and extracorporeal membrane oxygenation [ECMO] use at surgery's end). The risk of PGD3 increased by a factor of 11.48 (95% CI 4.48-29.39; p < 0.001) when ECMO was required at the end of surgery and by 1.29 (95% CI: 1.02-1.63; p = 0.035) for each 1 mEq/L rise in lactate concentration at time-point 7 (second pulmonary artery clamping). CONCLUSIONS This predictive model underscores the adverse impact of sustained ECMO placed at the end of surgery and elevated intraoperative lactate levels on PGD3 risk.
Collapse
Affiliation(s)
- Pimnara Chuachao
- Department of Epidemiology, Data, Biostatistics, Delegation of Clinical Research and Innovation, Hôpital Foch, Suresnes, France
| | - Jérome Devaquet
- Department of Intensive Care Medicine, Hôpital Foch, Suresnes, France
| | - Edouard Sage
- Department of Thoracic Surgery, Hôpital Foch, Suresnes, France; Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Alexandre Vallée
- Department of Epidemiology and Public Health, Hôpital Foch, Suresnes, France
| | - Morgan Le Guen
- Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France; Department of Anesthesiology, Hôpital Foch, Suresnes, France
| | - Marc Fischler
- Department of Anesthesiology, Hôpital Foch, Suresnes, France
| | - Julien Fessler
- Department of Anesthesiology, Hôpital Foch, Suresnes, France.
| |
Collapse
|
3
|
Xia W, Liu W, He Z, Song C, Liu J, Chen R, Chen J, Wang X, Xu H, Mao W. Machine Learning for Predicting Primary Graft Dysfunction After Lung Transplantation: An Interpretable Model Study. Transplantation 2025:00007890-990000000-00978. [PMID: 39789697 DOI: 10.1097/tp.0000000000005326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
BACKGROUND Primary graft dysfunction (PGD) develops within 72 h after lung transplantation (Lung Tx) and greatly influences patients' prognosis. This study aimed to establish an accurate machine learning (ML) model for predicting grade 3 PGD (PGD3) after Lung Tx. METHODS This retrospective study incorporated 802 patients receiving Lung Tx between July 2018 and October 2023 (640 in the derivation cohort and 162 in the external validation cohort), and 640 patients were randomly assigned to training and internal validation cohorts in a 7:3 ratio. Independent risk factors for PGD3 were determined by integrating the univariate logistic regression and least absolute shrinkage and selection operator regression analyses. Subsequently, 9 ML models were used to construct prediction models for PGD3 based on selected variables. Their prediction performances were further evaluated. Besides, model stratification performance was assessed with 3 posttransplant metrics. Finally, the SHapley Additive exPlanations algorithm was used to understand the predictive importance of selected variables. RESULTS We identified 9 independent clinical risk factors as selected variables. Among 9 ML models, the random forest (RF) model displayed optimal performance (area under the curve [AUC] = 0.9415, sensitivity [Se] = 0.8972, specificity [Sp] = 0.8795 in the training cohort; AUC = 0.7975, Se = 0.7520, Sp = 0.7313 in the internal validation cohort; and AUC = 0.8214, Se = 0.8235, Sp = 0.6667 in the external validation cohort). Further assessments on calibration and clinical usefulness indicated the promising applicability of the RF model in PGD3 prediction. Meanwhile, the RF model also performed best in terms of risk stratification for postoperative support (extracorporeal membrane oxygenation time: P < 0.001, mechanical ventilation time: P = 0.006, intensive care unit time: P < 0.001). CONCLUSIONS The RF model had the optimal performance in PGD3 prediction and postoperative risk stratification for patients after Lung Tx.
Collapse
Affiliation(s)
- Wei Xia
- Department of Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Zhao He
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Chenghu Song
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jiwei Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ruo Chen
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jingyu Chen
- Department of Lung Transplantation, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xiaokun Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Hongyang Xu
- Department of Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Jeong JC, Gelman AE, Chong AS. Update on the immunological mechanisms of primary graft dysfunction and chronic lung allograft dysfunction. Curr Opin Organ Transplant 2024; 29:412-419. [PMID: 39422603 PMCID: PMC11537820 DOI: 10.1097/mot.0000000000001175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
PURPOSE OF REVIEW Primary graft dysfunction (PGD) and chronic lung allograft dysfunction (CLAD) are the leading causes of graft loss in lung transplant recipients. The development of mouse lung transplant models has allowed for the genetic dissection of cellular and molecular pathways that prevent graft survival. This review provides an overview into recent mechanistic insights into PGD and CLAD. RECENT FINDINGS Mouse orthotopic lung transplant models and investigations of human lung transplant recipeints have revealed new molecular and cellular targets that promote PGD and CLAD. Donor and recipient-derived innate immune cells promote PGD and CLAD. PGD is driven by communication between classical monocytes and tissue-resident nonclassical monocytes activating alveolar macrophages to release chemokines that recruit neutrophils. Products of cell damage trigger neutrophil NET release, which together with NK cells, antibodies and complement, that further promote PGD. The development of CLAD involves circuits that activate B cells, CD8 + T cells, classical monocytes, and eosinophils. SUMMARY Effective targeted management of PGD and CLAD in lung transplant recipient to improve their long-term outcome remains a critical unmet need. Current mechanistic studies and therapeutic studies in mouse models and humans identify new possibilities for prevention and treatment.
Collapse
Affiliation(s)
- Jong Cheol Jeong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, Illinois, USA
| | - Andrew E. Gelman
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Anita S Chong
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Courtwright AM, Whyte AM, Devarajan J, Fritz AV, Martin AK, Wilkey B, Stollings L, Cassara CM, Tawil JN, Miltiades AN, Bottiger BA, Pollak AL, Boisen ML, Harika RS, Street C, Terracciano W, Green J, Subramani S, Gelzinis TA. The Year in Cardiothoracic Transplant Anesthesia: Selected Highlights From 2022 Part I: Lung Transplantation. J Cardiothorac Vasc Anesth 2024; 38:2516-2545. [PMID: 39256076 DOI: 10.1053/j.jvca.2024.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 09/12/2024]
Abstract
These highlights focus on the research in lung transplantation (LTX) that was published in 2022 and includes the assessment and optimization of candidates for LTX, donor optimization, the use of organs from donation after circulatory death, and outcomes when using marginal or novel donors; recipient factors affecting LTX, including age, disease, the use of extracorporeal life support; and special situations, such as coronavirus disease2019, pediatric LTX, and retransplantation. The remainder of the article focuses on the perioperative management of LTX, including the perioperative risk factors for acute renal failure (acute kidney injury); the incidence and management of phrenic nerve injury, delirium, and pain; and the postoperative management of hyperammonemia, early postoperative infections, and the use of donor-derived cell-free DNA to detect rejection.
Collapse
Affiliation(s)
- Andrew M Courtwright
- Department of Clinical Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Alice M Whyte
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | - Barbara Wilkey
- Department of Anesthesiology, University of Colorado, CO
| | - Lindsay Stollings
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA
| | | | - Justin N Tawil
- Department of Anesthesiology, University of Wisconsin, WI
| | - Andrea N Miltiades
- Department of Anesthesiology, Columbia University Medical Center, New York, NY
| | - Brandi A Bottiger
- Associate Professor, Department of Anesthesiology, Duke University, Durham, NC
| | - Angela L Pollak
- Associate Professor, Department of Anesthesiology, Duke University, Durham, NC
| | - Michael L Boisen
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Ricky S Harika
- Department of Anesthesiology, Virginia Mason University, Seattle, WA
| | - Christina Street
- Department of Anesthesiology, Virginia Mason University, Seattle, WA
| | | | - Jeff Green
- Department of Anesthesiology, Virginia Mason University, Seattle, WA
| | - Sudhakar Subramani
- Department of Anesthesiology, University of Iowa Hospitals & Clinics, Iowa City, IA
| | | |
Collapse
|
6
|
Mineura K, Tanaka S, Goda Y, Terada Y, Yoshizawa A, Umemura K, Sato A, Yamada Y, Yutaka Y, Ohsumi A, Nakajima D, Hamaji M, Mennju T, Kreisel D, Date H. Fibrotic progression from acute cellular rejection is dependent on secondary lymphoid organs in a mouse model of chronic lung allograft dysfunction. Am J Transplant 2024; 24:944-953. [PMID: 38403187 PMCID: PMC11144565 DOI: 10.1016/j.ajt.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
Chronic lung allograft dysfunction (CLAD) remains one of the major limitations to long-term survival after lung transplantation. We modified a murine model of CLAD and transplanted left lungs from BALB/c donors into B6 recipients that were treated with intermittent cyclosporine and methylprednisolone postoperatively. In this model, the lung allograft developed acute cellular rejection on day 15 which, by day 30 after transplantation, progressed to severe pleural and peribronchovascular fibrosis, reminiscent of changes observed in restrictive allograft syndrome. Lung transplantation into splenectomized B6 alymphoplastic (aly/aly) or splenectomized B6 lymphotoxin-β receptor-deficient mice demonstrated that recipient secondary lymphoid organs, such as spleen and lymph nodes, are necessary for progression from acute cellular rejection to allograft fibrosis in this model. Our work uncovered a critical role for recipient secondary lymphoid organs in the development of CLAD after pulmonary transplantation and may provide mechanistic insights into the pathogenesis of this complication.
Collapse
Affiliation(s)
- Katsutaka Mineura
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Satona Tanaka
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Yasufumi Goda
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuriko Terada
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Keisuke Umemura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshito Yamada
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yojiro Yutaka
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Ohsumi
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Nakajima
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masatsugu Hamaji
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshi Mennju
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Xuan C, Gu J, Xu Z, Chen J, Xu H. A novel nomogram for predicting prolonged mechanical ventilation in lung transplantation patients using extracorporeal membrane oxygenation. Sci Rep 2024; 14:11692. [PMID: 38778128 PMCID: PMC11111670 DOI: 10.1038/s41598-024-62601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Prolonged mechanical ventilation (PMV) is commonly associated with increased post-operative complications and mortality. Nevertheless, the predictive factors of PMV after lung transplantation (LTx) using extracorporeal membrane oxygenation (ECMO) as a bridge remain unclear. The present study aimed to develop a novel nomogram for PMV prediction in patients using ECMO as a bridge to LTx. A total of 173 patients who used ECMO as a bridge following LTx from January 2022 to June 2023 were divided into the training (122) and validation sets (52). A mechanical ventilation density plot of patients after LTx was then performed. The training set was divided in two groups, namely PMV (95) and non-prolonged ventilation (NPMV) (27). For the survival analysis, the effect of PMV was assessed using the log-rank test. Univariate and multivariate logistic regression analyses were performed to assess factors associated with PMV. A risk nomogram was established based on the multivariate analysis, and model performance was further assessed in terms of calibration, discrimination, and clinical usefulness. Internal validation was additionally conducted. The difference in survival curves in PMV and NPMV groups was statistically significant (P < 0.001). The multivariate analysis and risk factors in the nomogram revealed four factors to be significantly associated with PMV, namely the body mass index (BMI), operation time, lactic acid at T0 (Lac), and driving pressure (DP) at T0. These four factors were used to develop a nomogram, with an area under the curve (AUC) of 0.852 and good calibration. After internal validation, AUC was 0.789 with good calibration. Furthermore, goodness-of-fit test and decision-curve analysis (DCA) indicated satisfactory performance in the training and internal validation sets. The proposed nomogram can reliably and accurately predict the risk of patients to develop PMV after LTx using ECMO as a bridge. Four modifiable factors including BMI, operation time, Lac, and DP were optimized, which may guide preventative measures and improve prognosis.
Collapse
Affiliation(s)
- Chenhao Xuan
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Jingxiao Gu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Zhongping Xu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Jingyu Chen
- Wuxi Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Hongyang Xu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China.
| |
Collapse
|
8
|
Jenkins JA, Verdiner R, Omar A, Farina JM, Wilson R, D’Cunha J, Reck Dos Santos PA. Donor and recipient risk factors for the development of primary graft dysfunction following lung transplantation. Front Immunol 2024; 15:1341675. [PMID: 38380332 PMCID: PMC10876853 DOI: 10.3389/fimmu.2024.1341675] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Primary Graft Dysfunction (PGD) is a major cause of both short-term and long-term morbidity and mortality following lung transplantation. Various donor, recipient, and technical risk factors have been previously identified as being associated with the development of PGD. Here, we present a comprehensive review of the current literature as it pertains to PGD following lung transplantation, as well as discussing current strategies to mitigate PGD and future directions. We will pay special attention to recent advances in lung transplantation such as ex-vivo lung perfusion, thoracoabdominal normothermic regional perfusion, and up-to-date literature published in the interim since the 2016 ISHLT consensus statement on PGD and the COVID-19 pandemic.
Collapse
Affiliation(s)
- J. Asher Jenkins
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Ricardo Verdiner
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Ashraf Omar
- Division of Pulmonology and Critical Care Medicine, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Juan Maria Farina
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Renita Wilson
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Jonathan D’Cunha
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, AZ, United States
| | | |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Primary graft dysfunction (PGD) is a clinical syndrome occurring within the first 72 h after lung transplantation and is characterized clinically by progressive hypoxemia and radiographically by patchy alveolar infiltrates. Resulting from ischemia-reperfusion injury, PGD represents a complex interplay between donor and recipient immunologic factors, as well as acute inflammation leading to alveolar cell damage. In the long term, chronic inflammation invoked by PGD can contribute to the development of chronic lung allograft dysfunction, an important cause of late mortality after lung transplant. RECENT FINDINGS Recent work has aimed to identify risk factors for PGD, focusing on donor, recipient and technical factors both inherent and potentially modifiable. Although no PGD-specific therapy currently exists, supportive care remains paramount and early initiation of ECMO can improve outcomes in select patients. Initial success with ex-vivo lung perfusion platforms has been observed with respect to decreasing PGD risk and increasing lung transplant volume; however, the impact on survival is not well delineated. SUMMARY This review will summarize the pathogenesis and clinical features of PGD, as well as highlight treatment strategies and emerging technologies to mitigate PGD risk in patients undergoing lung transplantation.
Collapse
Affiliation(s)
- Mallory L. Hunt
- Division of Cardiovascular Surgery, University of Pennsylvania Perelman School of Medicine, 1 Convention Avenue Pavilion 2 City, Philadelphia PA, 19104 USA
| | - Edward Cantu
- Division of Cardiovascular Surgery, University of Pennsylvania Perelman School of Medicine, 1 Convention Avenue Pavilion 2 City, Philadelphia PA, 19104 USA
| |
Collapse
|