1
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
2
|
Zhang B, Liu X, Bao J. High solids loading pretreatment: The core of lignocellulose biorefinery as an industrial technology - An overview. BIORESOURCE TECHNOLOGY 2023; 369:128334. [PMID: 36403909 DOI: 10.1016/j.biortech.2022.128334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Pretreatment is the first and most determinative, yet the least mature step of lignocellulose biorefinery chain. The current stagnation of biorefinery commercialization indicates the barriers of the existing pretreatment technologies are needed to be unlocked. This review focused on one of the core factors, the high lignocellulose solids loading in pretreatment. The high solids loading of pretreatment significantly reduces water input, energy requirement, toxic compound discharge, solid/liquid separation costs, and carbon dioxide emissions, improves the titers of sugars and biproducts to meet the industrial requirements. Meanwhile, lignocellulose feedstock after high solids loading pretreatment is compatible with the existing logistics system for densification, packaging, storage, and transportation. Both the technical-economic analysis and the cellulosic ethanol conversion performance suggest that the solids loading in the pretreatment step need to be further elevated towards an industrial technology and the effective solutions should be proposed to the technical barriers in high solids loading pretreatment operations.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiucai Liu
- Cathay Biotech Inc, 1690 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
3
|
Valorization of agricultural wastes for biofuel applications. Heliyon 2022; 8:e11117. [PMID: 36303926 PMCID: PMC9593297 DOI: 10.1016/j.heliyon.2022.e11117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/04/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Continuous environmental degradation, volatility in the oil market, and unimpressive functioning of fossil-based (FB) fuels in compression ignition engines have expanded the tempo of the search for alternative fuels. Due to the astronomical rise in global population, improved agricultural, commercial, and manufacturing activities, enhanced farming and other food production and utilization ventures, agricultural waste generation, renewable fuel consumption, and emission of toxic gases. The need for cost-effective, readily available, and environmentally benign agricultural waste to biofuels has never been more crucial. Biofuels are renewable, biodegradable, low-cost, and eco-friendly fuels that are produced by microorganisms from waste lignocellulosic biomass. Conversion of agricultural wastes to biofuel does not exacerbate food security, contributes to waste management, prevents environmental degradation, and ensures energy security. This study reviews the conversion of agricultural wastes into biofuels with special emphasis on bioethanol, biohydrogen, biobutanol, biomethane, biomethanol, and biodiesel for various applications. It is safe to conclude that wastes generated from agricultural activities and processes are useful and can be harnessed to meet the affordable and accessible global renewable energy target. The result of this investigation will improve the body of knowledge and provide novel strategies and pathways for the utilization of agricultural wastes. Going forward, more collaborative and interdisciplinary studies are required to evolve state-of-the-art, ecofriendly, and cost-effective conversion pathways for agricultural wastes to promote the utilization of the generated renewable fuels. More human, financial, and infrastructural investments are desirable to motivate the conversion of agricultural waste into biofuels to ensure environmental sanitation and sustainability, promote renewable fuel utilization, and avert the raging implosion of our planet.
Collapse
|
4
|
Saini R, Chen CW, Patel AK, Saini JK, Dong CD, Singhania RR. Valorization of Pineapple Leaves Waste for the Production of Bioethanol. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100557. [PMID: 36290525 PMCID: PMC9598059 DOI: 10.3390/bioengineering9100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
Being a lignocellulose-rich biomass, pineapple leaves waste (PL) could be a potential raw material for the production of biofuel, biochemicals, and other value-added products. The main aim of this study was to investigate the potential of pineapple leaves in the sustainable production of bioethanol via stepwise saccharification and fermentation. For this purpose, PL was subjected to hydrothermal pretreatment in a high-pressure reactor at 150 °C for 20 min without any catalyst, resulting in a maximum reducing sugar yield of 38.1 g/L in the liquid fraction after solid-liquid separation of the pretreated hydrolysate. Inhibitors (phenolics, furans) and oligomers production were also monitored during the pretreatment in the liquid fraction of pretreated PL. Enzymatic hydrolysis (EH) of both pretreated biomass slurry and cellulose-rich solid fraction maintained at a solid loading (dry basis) of 5% wt. was performed at 50 °C and 150 rpm using commercial cellulase at an enzyme dose of 10 FPU/gds. EH resulted in a glucose yield of 13.7 and 18.4 g/L from pretreated slurry and solid fractions, respectively. Fermentation of the sugar syrup obtained by EH of pretreated slurry and the solid fraction was performed at 30 °C for 72 h using Saccharomyces cerevisiae WLP300, resulting in significant ethanol production with more than 91% fermentation efficiency. This study reveals the potential of pineapple leaves waste for biorefinery application, and the role of inhibitors in the overall efficiency of the process when using whole biomass slurry as a substrate.
Collapse
Affiliation(s)
- Reetu Saini
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow 226029, India
| | - Jitendra Kumar Saini
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow 226029, India
- Correspondence: (C.-D.D.); (R.R.S.)
| | - Reeta Rani Singhania
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow 226029, India
- Correspondence: (C.-D.D.); (R.R.S.)
| |
Collapse
|
5
|
Djoko Kusworo T, Yulfarida M, Cahyo Kumoro A, Puji Utomo D. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Khoshkho SM, Mahdavian M, Karimi F, Karimi-Maleh H, Razaghi P. Production of bioethanol from carrot pulp in the presence of Saccharomyces cerevisiae and beet molasses inoculum; A biomass based investigation. CHEMOSPHERE 2022; 286:131688. [PMID: 34346327 DOI: 10.1016/j.chemosphere.2021.131688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/18/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, ethanol (ethyl alcohol, bioethanol) is one of the most commonly used liquid biofuels, playing a vital role in industrial development. There are some advanced technologies available to produce ethanol by fermentation of agricultural wastes, fruit wastes, municipal and industrial wastes. Herein, the dried carrot pulp as a source of raw material has been utilized for the production of bioethanol by using the yeast Saccharomyces cerevisiae and beet molasses inoculated at 28 °C for 72 h. The results have revealed that the highest amount of alcohol (10.3 ml (40.63 g/l)) has been obtained in a sample containing 50 ml of inoculum, 150 ml of water, and 10 g of dried waste. This study has proved the potential of dried carrot pulp to be converted into a value-added product such as ethanol.
Collapse
Affiliation(s)
| | - Majid Mahdavian
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran.
| | - Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran
| | - Hassan Karimi-Maleh
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran.
| | - Parisa Razaghi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
7
|
Del Río PG, Gullón B, Romaní A, Garrote G. Fast-growing Paulownia wood fractionation by microwave-assisted hydrothermal treatment: A kinetic assessment. BIORESOURCE TECHNOLOGY 2021; 338:125535. [PMID: 34293622 DOI: 10.1016/j.biortech.2021.125535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Microwave hydrothermal treatment (MHT), a novel advanced technology, was proposed for the fractionation of Paulownia wood (PW) at temperatures ranging 200-230 °C and residence times of 0-50 min, corresponding to severities of 2.93-4.70. This procedure allowed 80% of xylan recovery as xylooligosaccharides and an average of 95% cellulose recovery in the pretreated PW biomass, showing the selectivity of the treatment, that was also compared to conduction-convection heating autohydrolysis. Finally, a kinetic model was proposed for the prediction of PW fractionation using MHT, with the ultimate goal of being applied to a wide range of feedstocks and minimizing the number of parameters used. For that, two strategies were approached, allowing the reduction of 80 to 34 parameters, without significant influence in the kinetic fitting. To the best of our knowledge, this is the first kinetic modelization of MHT of PW, taking into account all the lignocellulosic fractions.
Collapse
Affiliation(s)
- Pablo G Del Río
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Beatriz Gullón
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Aloia Romaní
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Gil Garrote
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain.
| |
Collapse
|
8
|
Abstract
In order to exploit a fast-growing Paulownia hardwood as an energy crop, a xylose-enriched hydrolysate was obtained in this work to increase the ethanol concentration using the hemicellulosic fraction, besides the already widely studied cellulosic fraction. For that, Paulownia elongata x fortunei was submitted to autohydrolysis treatment (210 °C or S0 of 4.08) for the xylan solubilization, mainly as xylooligosaccharides. Afterwards, sequential stages of acid hydrolysis, concentration, and detoxification were evaluated to obtain fermentable sugars. Thus, detoxified and non-detoxified hydrolysates (diluted or not) were fermented for ethanol production using a natural xylose-consuming yeast, Scheffersomyces stipitis CECT 1922, and an industrial Saccharomyces cerevisiae MEC1133 strain, metabolic engineered strain with the xylose reductase/xylitol dehydrogenase pathway. Results from fermentation assays showed that the engineered S. cerevisiae strain produced up to 14.2 g/L of ethanol (corresponding to 0.33 g/g of ethanol yield) using the non-detoxified hydrolysate. Nevertheless, the yeast S. stipitis reached similar values of ethanol, but only in the detoxified hydrolysate. Hence, the fermentation data prove the suitability and robustness of the engineered strain to ferment non-detoxified liquor, and the appropriateness of detoxification of liquor for the use of less robust yeast. In addition, the success of hemicellulose-to-ethanol production obtained in this work shows the Paulownia biomass as a suitable renewable source for ethanol production following a suitable fractionation process within a biorefinery approach.
Collapse
|
9
|
Maize Silage Pretreatment via Steam Refining and Subsequent Enzymatic Hydrolysis for the Production of Fermentable Carbohydrates. Molecules 2020; 25:molecules25246022. [PMID: 33352640 PMCID: PMC7767005 DOI: 10.3390/molecules25246022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/29/2022] Open
Abstract
Maize, also called corn, is one of the most available feedstocks worldwide for lignocellulosic biorefineries. However, a permanent biomass supply over the year is essential for industrial biorefinery application. In that context, ensiling is a well-known agricultural application to produce durable animal feed for the whole year. In this study, ensiled maize was used for steam refining experiments with subsequent enzymatic hydrolysis using the Cellic® CTec2 to test the application possibilities of an ensiled material for the biorefinery purpose of fermentable carbohydrate production. Steam refining was conducted from mild (log R0 = 1.59) to severe conditions (log R0 = 4.12). The yields were determined, and the resulting fractions were characterized. Hereafter, enzymatic hydrolysis of the solid fiber fraction was conducted, and the carbohydrate recovery was calculated. A conversion to monomers of around 50% was found for the mildest pretreatment (log R0 = 1.59). After pretreatment at the highest severity of 4.12, it was possible to achieve a conversion of 100% of the theoretical available carbohydrates. From these results, it is clear that a sufficient pretreatment is necessary to achieve sufficient recovery rates. Thus, it can be concluded that ensiled maize pretreated by steam refining is a suitable and highly available feedstock for lignocellulosic biorefineries. Ultimately, it can be assumed that ensiling is a promising storage method to pave the way for a full-year biomass supply for lignocellulosic biorefinery concepts.
Collapse
|