1
|
Ding W, Shangguan L, Li H, Bao Y, Noor F, Haseeb A, Sun P, Zhang H, Yin W, Fan K, Yang H, Zhang Z, Sun N. Dietary supplementation of osthole and icariin improves the production performance of laying hens by promoting follicular development. Poult Sci 2024; 103:103579. [PMID: 38430778 PMCID: PMC10920958 DOI: 10.1016/j.psj.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Osthole (Ost) and icariin (Ica) are extracted from traditional Chinese medicine Cnidium monnieri and Epimedii Folium, respectively, and both exhibit estrogen-like biological activity. This study aimed to determine the efficacy and safety of combining Ost with Ica on the production performance of laying hens and to explore their possible mechanisms. The production performance, egg quality, residues of Ost and Ica in eggs, serum reproductive hormone levels, expression of ovarian reproductive hormone receptor, proliferation of granulosa cells in small yellow follicles (SYF), and progesterone secretion in large yellow follicles (LYF) related genes and proteins expression were detected. The results showed that adding 2 mg/kg Ost + 2 mg/kg Ica to the feed increased the laying rate, average egg weight, Haugh unit, and protein height of laying hens. Serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), and progesterone (P4) levels increased, and the expression of ovarian estrogen receptor (ER), follicle-stimulating hormone receptor (FSHR), and progesterone receptor (PGR) mRNA was up-regulated. Additionally, the mRNA and protein levels of steroidogenesis acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (P450scc), and 3β-hydroxysteroid dehydrogenase (3β-HSD) increased in LYF. Furthermore, mRNA and protein levels of proliferating cell nuclear antigen (PCNA), cyclin E1, and cyclin A2 were up-regulated in SYF. The residues of Ost and Ica in egg samples were not detected by high-performance liquid chromatography (HPLC). In conclusion, dietary supplementation of Ost and Ica increased granulosa cells proliferation in SYF and increased P4 secretion in granulosa cells of LYF, ultimately improving the production performance of laying hens.
Collapse
Affiliation(s)
- Wenwen Ding
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Linhui Shangguan
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Hongquan Li
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yinghui Bao
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Huanshan Group Co., Ltd, Qingdao 266000, Shandong, China
| | - Fida Noor
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Abdul Haseeb
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Panpan Sun
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Hua Zhang
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Wei Yin
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kuohai Fan
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Laboratory Animal Center, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Huizhen Yang
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Zhenbiao Zhang
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Na Sun
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
2
|
Lin H, You Q, Wei X, Chen Z, Wang X. Osthole, a Coumarin from Cnidium monnieri: A Review on Its Pharmacology, Pharmacokinetics, Safety, and Innovative Drug Delivery Platforms. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1397-1425. [PMID: 39327653 DOI: 10.1142/s0192415x24500678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Osthole, a coumarin compound mainly derived from Cnidium monnieri (L.), has attracted much interest from the scientific community owing to its multiple therapeutic properties. However, its pharmacological mechanism, pharmacokinetics, and toxicological effects are far from clear. Furthermore, the potential drug delivery platforms of osthole remain to be comprehensively delineated. The present review aimed to systematically summarize the most up-to-date information related to pharmacology, pharmacokinetics, and safety issues related to osthole, and discuss the investigations of novel drug delivery platforms. The information herein discussed was retrieved from authoritative databases, including PubMed, Web of Science, Google Scholar, Chinese National Knowledge Infrastructure (CNKI) and so on, reviewing information published up until February of 2024. New evidence shows that osthole induces a sequence of therapeutic actions and has a moderate absorption rate and rapid metabolic characteristics. In addition, this phytoconstituent possesses potential hepatotoxicity, and caution should be exercised against the risk of the drug combination. Furthermore, given its needy solubility in aqueous medium and non-organizational targeting, novel drug delivery methods have been designed to overcome these shortcomings. Given the properties of osthole, its therapeutic benefits ought to be elucidated in a greater array of comprehensive research studies, and the molecular mechanisms underlying these benefits should be explored.
Collapse
Affiliation(s)
- Hao Lin
- Department of Pharmacy, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, P. R. China
| | - Qiang You
- Clinical Trial Center, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, P. R. China
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, P. R. China
| | - Xing Wei
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Sichuan University, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Zongjun Chen
- Department of Pharmacy, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, P. R. China
| | - Xianwei Wang
- Department of Digestive Endoscopy, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, P. R. China
| |
Collapse
|
3
|
Hou Y, Hu J, Li J, Li H, Lu Y, Liu X. MFN2 regulates progesterone biosynthesis and proliferation of granulosa cells during follicle selection in hens. J Cell Physiol 2024; 239:51-66. [PMID: 37921053 DOI: 10.1002/jcp.31143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Follicle selection in hens refers to a biological process that only one small yellow follicle (SYF) is selected daily or near-daily for following hierarchical development (from F5/F6 to F1) until ovulation. MFN2 is a kind of GTPases located on the mitochondrial outer membrane, which plays a crucial role in mitochondrial fusion. This study aimed to elucidate the role of MFN2 in proliferation and progesterone biosynthesis of granulosa cells (GCs) during follicle selection in hens. The results showed that GCs began to produce progesterone (P4) after follicle selection, accompanied with changes from multi-layer with flat cells to single layer with cubic cells. MFN2 was detected in GCs of follicles from SYF to F1. After follicle selection, the expression level of MFN2 in GCs upregulated significantly, accompanied with increases in P4 biosynthesis, ATP production, mitochondrial DNA (mtDNA) copy numbers of granulosa cells. FSH (80 ng/mL) facilitated the effects of P4 biosynthesis and secretion, ATP production, mtDNA copy numbers, cell proliferation and the MFN2 transcription of granulosa cells from F5 (F5G) in vitro. However, FSH treatment did not promote P4 secretion in granulosa cells from SYF (SYFG) in vitro. Meanwhile, we observed that change fold of MFN2 transcription, ATP production, mtDNA copy numbers and cell proliferation rate in F5G after treatment with FSH were greater than those in SYFG. Furthermore, expression levels of MFN2 protein and messenger RNA in F5G were significantly higher than those in SYFG after treatment with FSH. P4 biosynthesis, ATP production, mtDNA copy numbers as well as cell proliferation reduced significantly in F5G with MFN2 knockdown. Oppositely, P4 biosynthesis, ATP production, mtDNA copy numbers and cell proliferation increased significantly in SYFG after the overexpression of MFN2. Our results suggest that the upregulation of MFN2 may be involved in the initiation of P4 biosynthesis, and promotion of GCs proliferation during follicle selection.
Collapse
Affiliation(s)
- Yuanyuan Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jianing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xingting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Yan L, Hu M, Gu L, Lei M, Chen Z, Zhu H, Chen R. Effect of Heat Stress on Egg Production, Steroid Hormone Synthesis, and Related Gene Expression in Chicken Preovulatory Follicular Granulosa Cells. Animals (Basel) 2022; 12:ani12111467. [PMID: 35681931 PMCID: PMC9179568 DOI: 10.3390/ani12111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary The debilitating effects of heat stress on poultry production have been well documented. Heat stress already results in severe economic loss worldwide. Regarding the decline in the reproductive performance of heat-stressed hens, the exact mechanisms involved are still unknown. The present study was conducted to elucidate the molecular mechanisms underlying heat-stress-induced abnormal egg production in laying hens. Our results confirmed that laying hens reared under heat stress had impaired laying performance. Follicular granulosa cells cultured in vitro are sensitive to the effects of heat stress, showing an increase in apoptosis and cellular ultrastructural changes. These effects appeared in the form of heat-stress-elevated progesterone, with the increased expression of steroidogenic acute regulatory protein, cytochrome P450 family 11 subfamily A member 1, and 3b-hydroxysteroid dehydrogenase, along with inhibited estradiol synthesis through the decreased expression of follicle-stimulating hormone receptor and the cytochrome P450 family 19 subfamily A member 1. Collectively, laying hens exposed to high temperatures showed damage to granulosa cells that brought about a decline in egg production. This study provides a molecular mechanism for the abnormal laying performance of hens subjected to heat stress, which may help when developing novel strategies to reverse the adverse impact. Abstract This study was conducted to elucidate the molecular mechanisms underlying heat stress (HS)-induced abnormal egg-laying in laying hens. Hy-Line brown laying hens were exposed to HS at 32 °C or maintained at 22 °C (control) for 14 days. In addition, granulosa cells (GCs) from preovulatory follicles were subjected to normal (37 °C) or high (41 °C or 43 °C) temperatures in vitro. Proliferation, apoptosis, and steroidogenesis were investigated, and the expression of estrogen and progesterone synthesis-related genes was detected. The results confirmed that laying hens reared under HS had impaired laying performance. HS inhibited proliferation, increased apoptosis, and altered the GC ultrastructure. HS also elevated progesterone secretion by increasing the expression of steroidogenic acute regulatory protein (StAR), cytochrome P450 family 11 subfamily A member 1 (CYP11A1), and 3b-hydroxysteroid dehydrogenase (3β-HSD). In addition, HS inhibited estrogen synthesis in GCs by decreasing the expression of the follicle-stimulating hormone receptor (FSHR) and cytochrome P450 family 19 subfamily A member 1 (CYP19A1). The upregulation of heat shock 70 kDa protein (HSP70) under HS was also observed. Collectively, laying hens exposed to high temperatures experienced damage to follicular GCs and steroidogenesis dysfunction, which reduced their laying performance. This study provides a molecular mechanism for the abnormal laying performance of hens subjected to HS.
Collapse
Affiliation(s)
- Leyan Yan
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (M.H.); (M.L.); (Z.C.)
| | - Mengdie Hu
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (M.H.); (M.L.); (Z.C.)
| | - Lihong Gu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China;
| | - Mingming Lei
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (M.H.); (M.L.); (Z.C.)
| | - Zhe Chen
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (M.H.); (M.L.); (Z.C.)
| | - Huanxi Zhu
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (M.H.); (M.L.); (Z.C.)
- Correspondence: (H.Z.); (R.C.)
| | - Rong Chen
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (M.H.); (M.L.); (Z.C.)
- Correspondence: (H.Z.); (R.C.)
| |
Collapse
|