1
|
BenSouf I, Saidani M, Maazoun A, Bejaoui B, Larbi MB, M’Hamdi N, Aggad H, Joly N, Rojas J, Morillo M, Martin P. Use of Natural Biomolecules in Animal Feed to Enhance Livestock Reproduction. Int J Mol Sci 2025; 26:2328. [PMID: 40076947 PMCID: PMC11900002 DOI: 10.3390/ijms26052328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Feed additives are crucial in livestock production, enhancing performance, health, and reproductive efficiency. Recently, there has been a shift toward natural biomolecules as feed additives, specifically targeting improved reproductive outcomes and sperm quality. This transition arises from concerns about antibiotic misuse, antimicrobial resistance, and consumer preferences for eco-friendly products, along with the superior bioavailability, lower toxicity, and reduced environmental impact of natural biomolecules compared to synthetic alternatives. Collaboration among researchers, veterinarians, nutritionists, and regulators is essential to ensure safe and effective livestock management. The review explores advancements in using vital biomolecules in reproductive processes, including plant-derived bioactives such as phytochemicals and antioxidants. It investigates not only the mechanisms but also the intricate interactions of these compounds with animals' hormonal and physiological systems. Additionally, the review critically assesses challenges and prospects related to incorporating natural biomolecules into livestock practices. The potential benefits include enhanced reproductive efficiency and improved sperm quality. However, successful implementation requires understanding factors like precise dosing, potential interactions, and long-term health impacts. Overall, this comprehensive review highlights recent research, technological strides, and the future potential of integrating natural biomolecules into animal diets.
Collapse
Affiliation(s)
- Ikram BenSouf
- Animal and Food Resources Laboratory (LRAA), National Agronomic Institute of Tunisia, University of Carthage, 43 Av. Charles Nicolle, Tunis 1082, Tunisia; (I.B.); (N.M.)
| | - Mariem Saidani
- Research Unit of Biodiversity and Resource Development in Mountain Areas of Tunisia, UR17AGR14, Higher School of Agriculture of Mateur, University of Carthage, Tunis 1082, Tunisia; (M.S.); (M.B.L.)
| | - Asma Maazoun
- Horticultural Science Laboratory, LR13AGR01, National Agronomic Institute of Tunisia, University of Carthage, 43 Av. Charles Nicolle, Tunis 1082, Tunisia;
| | - Bochra Bejaoui
- Laboratory of Useful Materials, National Institute of Research and Pysico-Chemical Analysis (INRAP), Technopark of Sidi Thabet, Ariana 2020, Tunisia;
- Department of Chemistry, Faculty of Sciences of Bizerte, Zarzouna, University of Carthage, Bizerte 7021, Tunisia
| | - Manel Ben Larbi
- Research Unit of Biodiversity and Resource Development in Mountain Areas of Tunisia, UR17AGR14, Higher School of Agriculture of Mateur, University of Carthage, Tunis 1082, Tunisia; (M.S.); (M.B.L.)
| | - Naceur M’Hamdi
- Animal and Food Resources Laboratory (LRAA), National Agronomic Institute of Tunisia, University of Carthage, 43 Av. Charles Nicolle, Tunis 1082, Tunisia; (I.B.); (N.M.)
| | - Hebib Aggad
- Laboratory of Hygiene and Animal Pathology, Institute of Veterinary Science, University of Tiaret, Route d’Alger BP 78, Tiaret 14000, Algeria;
| | - Nicolas Joly
- Unité Transformations &Agroressources, ULR7519, Université d’Artois, UniLaSalle, F-62408 Béthune, France;
| | - Janne Rojas
- Biomoléculas Orgánicas Research Group, Faculty of Pharmacy and Bioanalysis, University of Los Andes, Mérida 5101, Venezuela;
| | - Marielba Morillo
- Ecology and Nutrition Research Group, Faculty of Pharmacy and Bioanalysis, University of Los Andes, Mérida 5101, Venezuela;
| | - Patrick Martin
- Unité Transformations &Agroressources, ULR7519, Université d’Artois, UniLaSalle, F-62408 Béthune, France;
| |
Collapse
|
2
|
Ma Q, Wang Y, Zhang W, Du Z, Tian Z, Li H. The Mechanism Involved in the Inhibition of Resveratrol and Genistein on the Contractility of Isolated Rat Uterus Smooth Muscle. Nutrients 2024; 16:3417. [PMID: 39408382 PMCID: PMC11478625 DOI: 10.3390/nu16193417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
PURPOSE This study aimed to compare the effects of the phytoestrogens resveratrol (RES) and genistein (GEN) on the contractility of isolated uterine smooth muscle from rats, focusing on both spontaneous and stimulated contractions, and to investigate the underlying mechanisms. METHODS Uterine strips were suspended vertically in perfusion chambers containing Kreb's solution, various concentrations of RES and GEN were added to the ex vivo uterine strips, and contractions were measured before and after incubation with RES or GEN. RESULTS (1) Both RES and GEN inhibited K+-induced contractions in a dose-dependent manner; the β/β2-adrenoceptor antagonist propranolol (PRO), ICI118551, the ATP-dependent K+ channel blocker glibenclamide (HB-419) and the NO synthase inhibitor N-nitro-L-arginine (L-NNA) diminished the inhibitory effects of RES and GEN on K+-induced contractions. (2) RES and GEN also dose-dependently inhibited PGF2α-induced uterine contractions. (3) The inhibitory effects of RES and GEN were observed in spontaneous contractile activities as well; PRO, ICI118551, HB-419 and L-NNA attenuated the inhibitory effects of RES and GEN on the spontaneous contractions of isolated uterine muscle strips. (4) RES and GEN significantly decreased the cumulative concentration response of Ca2+ and shifted the Ca2+ cumulative concentration-response curves to the right in high-K+ Ca2+-free Kreb's solution. (5) RES and GEN markedly reduced the first phasic contraction induced by oxytocin, acetylcholine, and prostaglandin F2α but did not alter the second phasic contraction caused by CaCl2 in Ca2+-free Kreb's solution. CONCLUSIONS RES and GEN can directly inhibit both spontaneous and activated contractions of isolated uterine smooth muscle. The mechanisms underlying the inhibitory effects of RES and GEN likely involve β adrenergic receptor activation, reduced Ca2+ influx and release, the activation of ATP-dependent K+ channels and increased NO production.
Collapse
Affiliation(s)
- Qin Ma
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yudong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wei Zhang
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou 730000, China
| | - Zhongrui Du
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou 730000, China
| | - Zhifeng Tian
- Function Laboratory in College of Basic Medicine, Lanzhou University, Lanzhou 730000, China
| | - Hongfang Li
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
3
|
Tinco-Jayo JA, Pérez-Chauca LF, Castilla-Torres NV, Enciso-Roca EC, Taboada-Huaman D, Nuñez-Soto L, Moscoso-García LU, Arroyo-Acevedo JL, Aguilar-Felices EJ, Herrera-Calderon O. The Antioxidant Activity of Atomized Extracts of the Leaves and Stems of Cnidoscolus diacanthus (Pax & K. Hoffm.) J.F. Macbr. from Peru and Their Effect on Sex Hormone Levels in Rats. Molecules 2024; 29:4554. [PMID: 39407486 PMCID: PMC11478110 DOI: 10.3390/molecules29194554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
In this research, we aimed to determine the antioxidant activity of an atomized extract of Cnidoscolus diacanthus (Pax & K. Hoffm.) J.F. Macbr., known in Peru as "huanarpo hembra", and its effect on sex hormone levels. Its phytochemical profile was determined using liquid chromatography-mass spectrometry (LC-MS), while its total phenol content (TPC) and total flavonoids (TFs) were determined using the Folin-Ciocalteu method and the aluminum chloride method. Its antioxidant activity was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), the radical 2,2-azino-bis-3-ethylbenzthiazolin-6 sulfonic acid (ABTS), and ferric-reducing antioxidant power (FRAP). The biological activity of C. diacanthus and its effect on sexual hormones were determined in Holtzman rats of both sexes. Phytochemical analysis revealed the presence of flavonoids and phenolic compounds in its leaves and stems, mainly rutin, quercetin, chlorogenic acid, and genistein. However, the stem extract contained higher total phenol (464.38 ± 4.40 GAE/g) and flavonoid (369.17 ± 3.16 mg QE/g of extract) contents than the leaf extract (212.38 ± 3.19 mg GAE/g and 121.49 ± 2.69 mg QE/g). For DPPH, ABTS, and FRAP, the Trolox-equivalent antioxidant capacity (TEAC) was 597.20 ± 5.40 µmol/g, 452.67 ± 5.76 µmol/g, and 535.91 ± 1.56 µmol/g, respectively, for the stems, while for the leaves, it was 462.39 ± 3.99 µmol/g, 202.32 ± 5.20 µmol/g, and 198.13 ± 1.44 µmol/g, respectively. In terms of the values for hormonal levels, at a dose of 100 mg/kg of the extract, testosterone levels of 1.430 ng/mL (with the leaf extract) and 1.433 ng/mL (with the stem extract), respectively, were found in the male rats. Regarding estradiol levels, in the female rats, these were 10.425 ng/mL (leaf extract) and 8.775 ng/mL (stem extract), while their levels of luteinizing hormone were 0.320 mIU/mL (leaf extract) and 0.273 mIU/mL (stem extract). For the follicle-stimulating hormone, levels of 0.858 mIU/mL (leaf extract) and 0.840 mIU/mL (stem extract) were found in the female rats, and levels of 0.220 mIU/mL (leaf extract) and 0.200 mIU/mL (stem extract) were found in the male rats. It is concluded that the C. diacanthus stem extract had a greater antioxidant capacity than the leaf extract, while both extracts had a superior effect on the sex hormone levels in the female rats compared to the male rats.
Collapse
Affiliation(s)
- Johnny Aldo Tinco-Jayo
- Department of Human Medicine, Faculty of Health Sciences, Universidad Nacional de San Cristobal de Huamanga, Portal Independencia 57, Ayacucho 05003, Peru; (J.A.T.-J.); (N.V.C.-T.); (E.C.E.-R.); (E.J.A.-F.)
| | - León Fernando Pérez-Chauca
- Academic Department of Chemical Engineering, Universidad Nacional de San Cristóbal de Huamanga, Portal Independencia 57, Ayacucho 05003, Peru;
| | - Nancy Victoria Castilla-Torres
- Department of Human Medicine, Faculty of Health Sciences, Universidad Nacional de San Cristobal de Huamanga, Portal Independencia 57, Ayacucho 05003, Peru; (J.A.T.-J.); (N.V.C.-T.); (E.C.E.-R.); (E.J.A.-F.)
| | - Edwin Carlos Enciso-Roca
- Department of Human Medicine, Faculty of Health Sciences, Universidad Nacional de San Cristobal de Huamanga, Portal Independencia 57, Ayacucho 05003, Peru; (J.A.T.-J.); (N.V.C.-T.); (E.C.E.-R.); (E.J.A.-F.)
| | - Diana Taboada-Huaman
- Professional School of Pharmacy and Biochemistry, Faculty of Health Sciences, Universidad Nacional de San Cristobal de Huamanga, Portal Independencia 57, Ayacucho 05003, Peru; (D.T.-H.); (L.N.-S.)
| | - Litman Nuñez-Soto
- Professional School of Pharmacy and Biochemistry, Faculty of Health Sciences, Universidad Nacional de San Cristobal de Huamanga, Portal Independencia 57, Ayacucho 05003, Peru; (D.T.-H.); (L.N.-S.)
| | - Luis Uriel Moscoso-García
- Academic Department of Biological Sciences, Faculty of Biological Sciences, Universidad Nacional de San Cristobal de Huamanga, Portal Independencia 57, Ayacucho 05003, Peru;
| | - Jorge Luis Arroyo-Acevedo
- Department of Dynamic Sciences, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Lima 15001, Peru;
| | - Enrique Javier Aguilar-Felices
- Department of Human Medicine, Faculty of Health Sciences, Universidad Nacional de San Cristobal de Huamanga, Portal Independencia 57, Ayacucho 05003, Peru; (J.A.T.-J.); (N.V.C.-T.); (E.C.E.-R.); (E.J.A.-F.)
| | - Oscar Herrera-Calderon
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 15001, Peru
| |
Collapse
|
4
|
Mastromonaco G. 40 'wild' years: the current reality and future potential of assisted reproductive technologies in wildlife species. Anim Reprod 2024; 21:e20240049. [PMID: 39286364 PMCID: PMC11404876 DOI: 10.1590/1984-3143-ar2024-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/25/2024] [Indexed: 09/19/2024] Open
Abstract
Over the past 40 years, assisted reproductive technologies (ARTs) have grown significantly in scale and innovation, from the bovine embryo industry's shift from in vivo derived to in vitro produced embryos and the development of somatic cell-based approaches for embryo production. Domestic animal models have been instrumental in the development of ARTs for wildlife species in support of the One Plan Approach to species conservation that integrates in situ and ex situ population management strategies. While ARTs are not the sole solution to the biodiversity crisis, they can offer opportunities to maintain, and even improve, the genetic composition of the captive and wild gene pools over time. This review focuses on the application of sperm and embryo technologies (artificial insemination and multiple ovulation/in vitro produced embryo transfer, respectively) in wildlife species, highlighting impactful cases in which significant progress or innovation has transpired. One of the key messages following decades of efforts in this field is the importance of collaboration between researchers and practitioners from zoological, academic, governmental, and private sectors.
Collapse
|
5
|
Borgert CJ, Burgoon LD, Matthews JC. The physiological and biochemical basis of potency thresholds modeled using human estrogen receptor alpha: implications for identifying endocrine disruptors. Arch Toxicol 2024; 98:1795-1807. [PMID: 38704805 PMCID: PMC11106131 DOI: 10.1007/s00204-024-03723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/29/2024] [Indexed: 05/07/2024]
Abstract
The endocrine system functions by interactions between ligands and receptors. Ligands exhibit potency for binding to and interacting with receptors. Potency is the product of affinity and efficacy. Potency and physiological concentration determine the ability of a ligand to produce physiological effects. The kinetic behavior of ligand-receptor interactions conforms to the laws of mass action. The laws of mass action define the relationship between the affinity of a ligand and the fraction of cognate receptors that it occupies at any physiological concentration. We previously identified the minimum ligand potency required to produce clinically observable estrogenic agonist effects via the human estrogen receptor-alpha (ERα). By examining data on botanical estrogens and dietary supplements, we demonstrated that ERα ligands with potency lower than one one-thousandth that of the primary endogenous hormone 17β-estradiol (E2) do not produce clinically observable estrogenic effects. This allowed us to propose a Human-Relevant Potency Threshold (HRPT) for ERα ligands of 1 × 10-4 relative to E2. Here, we test the hypothesis that the HRPT for ERα arises from the receptor occupancy by the normal metabolic milieu of endogenous ERα ligands. The metabolic milieu comprises precursors to hormones, metabolites of hormones, and other normal products of metabolism. We have calculated fractional receptor occupancies for ERα ligands with potencies below and above the previously established HRPT when normal circulating levels of some endogenous ERα ligands and E2 were also present. Fractional receptor occupancy calculations showed that individual ERα ligands with potencies more than tenfold higher than the HRPT can compete for occupancy at ERα against individual components of the endogenous metabolic milieu and against mixtures of those components at concentrations found naturally in human blood. Ligands with potencies less than tenfold higher than the HRPT were unable to compete successfully for ERα. These results show that the HRPT for ERα agonism (10-4 relative to E2) proposed previously is quite conservative and should be considered strong evidence against the potential for disruption of the estrogenic pathway. For chemicals with potency 10-3 of E2, the potential for estrogenic endocrine disruption must be considered equivocal and subject to the presence of corroborative evidence. Most importantly, this work demonstrates that the endogenous metabolic milieu is responsible for the observed ERα agonist HRPT, that this HRPT applies also to ERα antagonists, and it provides a compelling mechanistic explanation for the HRPT that is grounded in basic principles of molecular kinetics using well characterized properties and concentrations of endogenous components of normal metabolism.
Collapse
Affiliation(s)
- Christopher J Borgert
- Applied Pharmacology and Toxicology, Inc. and CEHT, Univ. FL College of Vet. Med., Gainesville, FL, USA.
| | | | - John C Matthews
- University of Mississippi School of Pharmacy, University, MS, USA
| |
Collapse
|
6
|
Chavda VP, Chaudhari AZ, Balar PC, Gholap A, Vora LK. Phytoestrogens: Chemistry, potential health benefits, and their medicinal importance. Phytother Res 2024; 38:3060-3079. [PMID: 38602108 DOI: 10.1002/ptr.8196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/27/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Phytoestrogens, also known as xenoestrogens, are secondary metabolites derived from plants that have similar structures and biological effects as human estrogens. These compounds do not directly affect biological functions but can act as agonists or antagonists depending on the level of endogenous estrogen in the body. Phytoestrogens may have an epigenetic mechanism of action independent of estrogen receptors. These compounds are found in more than 300 plant species and are synthesized through the phenylpropanoid pathway, with specific enzymes leading to various chemical structures. Phytoestrogens, primarily phenolic compounds, include isoflavonoids, flavonoids, stilbenes, and lignans. Extensive research in animals and humans has demonstrated the protective effects of phytoestrogens on estrogen-dependent diseases. Clinical trials have also shown their potential benefits in conditions such as osteoporosis, Parkinson's disease, and certain types of cancer. This review provides a concise overview of phytoestrogen classification, chemical diversity, and biosynthesis and discusses the potential therapeutic effects of phytoestrogens, as well as their preclinical and clinical development.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Amit Z Chaudhari
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Pankti C Balar
- Pharmacy section, L.M. College of Pharmacy, Ahmedabad, India
| | - Amol Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | | |
Collapse
|
7
|
Shea Z, Ogando do Granja M, Fletcher EB, Zheng Y, Bewick P, Wang Z, Singer WM, Zhang B. A Review of Bioactive Compound Effects from Primary Legume Protein Sources in Human and Animal Health. Curr Issues Mol Biol 2024; 46:4203-4233. [PMID: 38785525 PMCID: PMC11120442 DOI: 10.3390/cimb46050257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The global demand for sustainable and nutritious food sources has catalyzed interest in legumes, known for their rich repertoire of health-promoting compounds. This review delves into the diverse array of bioactive peptides, protein subunits, isoflavones, antinutritional factors, and saponins found in the primary legume protein sources-soybeans, peas, chickpeas, and mung beans. The current state of research on these compounds is critically evaluated, with an emphasis on the potential health benefits, ranging from antioxidant and anticancer properties to the management of chronic diseases such as diabetes and hypertension. The extensively studied soybean is highlighted and the relatively unexplored potential of other legumes is also included, pointing to a significant, underutilized resource for developing health-enhancing foods. The review advocates for future interdisciplinary research to further unravel the mechanisms of action of these bioactive compounds and to explore their synergistic effects. The ultimate goal is to leverage the full spectrum of benefits offered by legumes, not only to advance human health but also to contribute to the sustainability of food systems. By providing a comprehensive overview of the nutraceutical potential of legumes, this manuscript sets a foundation for future investigations aimed at optimizing the use of legumes in the global pursuit of health and nutritional security.
Collapse
Affiliation(s)
- Zachary Shea
- United States Department of Agriculture–Agricultural Research Service, Raleigh Agricultural Research Station, Raleigh, NC 27606, USA;
| | - Matheus Ogando do Granja
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Elizabeth B. Fletcher
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Yaojie Zheng
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Patrick Bewick
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Zhibo Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
- Donald Danforth Plant Science Center, Olivette, MO 63132, USA
| | - William M. Singer
- Center for Advanced Innovation in Agriculture, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| |
Collapse
|
8
|
Agulló V, Favari C, Pilla N, Bresciani L, Tomás-Barberán FA, Crozier A, Del Rio D, Mena P. Using Targeted Metabolomics to Unravel Phenolic Metabolites of Plant Origin in Animal Milk. Int J Mol Sci 2024; 25:4536. [PMID: 38674121 PMCID: PMC11050474 DOI: 10.3390/ijms25084536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Milk holds a high nutritional value and is associated with diverse health benefits. The understanding of its composition of (poly)phenolic metabolites is limited, which necessitates a comprehensive evaluation of the subject. This study aimed at analyzing the (poly)phenolic profile of commercial milk samples from cows and goats and investigating their sterilization treatments, fat content, and lactose content. Fingerprinting of phenolic metabolites was achieved by using ultra-high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-QqQ-MS/MS). Two hundred and three potential microbial and phase II metabolites of the main dietary (poly)phenols were targeted. Twenty-five metabolites were identified, revealing a diverse array of phenolic metabolites in milk, including isoflavones and their microbial catabolites equol and O-desmethylangolensin, phenyl-γ-valerolactones (flavan-3-ol microbial catabolites), enterolignans, urolithins (ellagitannin microbial catabolites), benzene diols, and hippuric acid derivates. Goat's milk contained higher concentrations of these metabolites than cow's milk, while the sterilization process and milk composition (fat and lactose content) had minimal impact on the metabolite profiles. Thus, the consumption of goat's milk might serve as a potential means to supplement bioactive phenolic metabolites, especially in individuals with limited production capacity. However, further research is needed to elucidate the potential health effects of milk-derived phenolics.
Collapse
Affiliation(s)
- Vicente Agulló
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy; (C.F.); (N.P.); (L.B.); (D.D.R.)
| | - Claudia Favari
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy; (C.F.); (N.P.); (L.B.); (D.D.R.)
| | - Niccolò Pilla
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy; (C.F.); (N.P.); (L.B.); (D.D.R.)
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy; (C.F.); (N.P.); (L.B.); (D.D.R.)
| | - Francisco A. Tomás-Barberán
- Quality, Safety, and Bioactivity of Plant Foods Research Group, Laboratory of Food & Health, CEBAS–CSIC, Espinardo P.O. Box 164, 30100 Murcia, Spain;
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia;
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy; (C.F.); (N.P.); (L.B.); (D.D.R.)
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy; (C.F.); (N.P.); (L.B.); (D.D.R.)
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy
| |
Collapse
|
9
|
Hu YF, Luo S, Wang SQ, Chen KX, Zhong WX, Li BY, Cao LY, Chen HH, Yin YS. Exploring functional genes' correlation with ( S)-equol concentration and new daidzein racemase identification. Appl Environ Microbiol 2024; 90:e0000724. [PMID: 38501861 PMCID: PMC11022573 DOI: 10.1128/aem.00007-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
With its estrogenic activity, (S)-equol plays an important role in maintaining host health and preventing estrogen-related diseases. Exclusive production occurs through the transformation of soy isoflavones by intestinal bacteria, but the reasons for variations in (S)-equol production among different individuals and species remain unclear. Here, fecal samples from humans, pigs, chickens, mice, and rats were used as research objects. The concentrations of (S)-equol, along with the genetic homology and evolutionary relationships of (S)-equol production-related genes [daidzein reductase (DZNR), daidzein racemase (DDRC), dihydrodaidzein reductase (DHDR), tetrahydrodaidzein reductase (THDR)], were analyzed. Additionally, in vitro functional verification of the newly identified DDRC gene was conducted. It was found that approximately 40% of human samples contained (S)-equol, whereas 100% of samples from other species contained (S)-equol. However, there were significant variations in (S)-equol content among the different species: rats > pigs > chickens > mice > humans. The distributions of the four genes displayed species-specific patterns. High detection rates across various species were exhibited by DHDR, THDR, and DDRC. In contrast, substantial variations in detection rates among different species and individuals were observed with respect to DZNR. It appears that various types of DZNR may be associated with different concentrations of (S)-equol, which potentially correspond to the regulatory role during (S)-equol synthesis. This enhances our understanding of individual variations in (S)-equol production and their connection with functional genes in vitro. Moreover, the newly identified DDRC exhibits higher potential for (S)-equol synthesis compared to the known DDRC, providing valuable resources for advancing in vitro (S)-equol production. IMPORTANCE (S)-equol ((S)-EQ) plays a crucial role in maintaining human health, along with its known capacity to prevent and treat various diseases, including cardiovascular diseases, metabolic syndromes, osteoporosis, diabetes, brain-related diseases, high blood pressure, hyperlipidemia, obesity, and inflammation. However, factors affecting individual variations in (S)-EQ production and the underlying regulatory mechanisms remain elusive. This study examines the association between functional genes and (S)-EQ production, highlighting a potential correlation between the DZNR gene and (S)-EQ content. Various types of DZNR may be linked to the regulation of (S)-EQ synthesis. Furthermore, the identification of a new DDRC gene offers promising prospects for enhancing in vitro (S)-EQ production.
Collapse
Affiliation(s)
- Yun-Fei Hu
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Shu Luo
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Sheng-Qi Wang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ke-Xin Chen
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wei-Xuan Zhong
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Bai-Yuan Li
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lin-Yan Cao
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hua-Hai Chen
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Ye-Shi Yin
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| |
Collapse
|
10
|
Shao Y, Xu J, Wang M, Ren Y, Wei M, Tian B, Luo J, Loor JJ, Shi H. Preliminary Results on the Effects of Soybean Isoflavones on Growth Performance and Ruminal Microbiota in Fattening Goats. Animals (Basel) 2024; 14:1188. [PMID: 38672337 PMCID: PMC11047704 DOI: 10.3390/ani14081188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Soybean isoflavones (SIFs), a group of secondary metabolites, have antioxidant, anti-inflammatory, and hormone-like activities. Supplementation with SIFs in the diet was reported to promote lactation performance in ruminants. The present study was performed to further decipher the effect of various concentrations of SIFs on growth and slaughter performance, serum parameters, meat quality, and ruminal microbiota in fattening goats. After a two-week acclimation, a total of 27 5-month-old Guanzhong male goats (18.29 ± 0.44 kg) were randomly assigned to control (NC), 100 mg/d SIF (SIF1), or 200 mg/d SIF (SIF2) groups. The experimental period lasted 56 days. The weight of the large intestine was greater (p < 0.05) in the SIF1 and SIF2 groups compared with the NC group. Meat quality parameters indicated that SIF1 supplementation led to lower (p < 0.05) cooking loss and shear force (0.05 < p < 0.10). The 16S rRNA sequencing analysis demonstrated that SIF1 supplementation led to lower (p < 0.05) proportions of Papillibacter and Prevotellaceae_UCG-004 but greater (p < 0.05) CAG-352 abundance in the rumen; these responses might have contributed to the improvement in production performance. In conclusion, meat quality and ruminal microbiome could be manipulated in a positive way by oral supplementation with 100 mg/d of SIFs in fattening goats. Thus, this study provides new insights and practical evidence for the introduction of SIFs as a novel additive in goat husbandry.
Collapse
Affiliation(s)
- Yuexin Shao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Junhong Xu
- Weinan Agricultural Products Quality and Safety Inspection and Testing Center, Weinan 714000, China;
| | - Mengyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Yalun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Manhong Wei
- College of Animal Engineering, Yangling Vocational & Technical College, Yangling 712100, China;
| | - Bowen Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Jun Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Juan J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Huaiping Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| |
Collapse
|
11
|
Wyse JM, Nevard RP, Loy J, Weston PA, Gurusinghe S, McCormick J, Weston LA, Stephen CP. Effects of Mixed Pasture Legume Phytoestrogens on Superovulatory Response and Embryo Quality in Angus Cows. Animals (Basel) 2024; 14:1125. [PMID: 38612365 PMCID: PMC11011016 DOI: 10.3390/ani14071125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Ovulation and artificial insemination rates have been observed to decrease in sheep and cows when exposed to dietary phytoestrogens at concentrations greater than 25 mg/kg DM. A grazing trial was undertaken to investigate the effects of coumestrol and other key phytoestrogens on the superovulatory response, embryo numbers and quality in beef cows grazing legume pastures. A 7-week controlled grazing trial was conducted with legume and ryegrass pasture treatments, with cows exposed to legumes at two timed treatments, 4 and 7 weeks. Twenty Angus cows were subjected to a conventional estrus synchronization and superovulation protocol. Embryos were recovered via conventional uterine body flushing 7 days post artificial insemination (AI). Numerous phytoestrogens were identified in both pasture and plasma samples, including coumestrol and formononetin. Concentrations of phytoestrogens in the pasture ranged from 0.001 to 47.5 mg/kg DM and 0 to 2.6 ng/mL in plasma. Approximately 50% of cows produced viable embryos 7 days post AI. A significant interaction between the effect of treatment groups on the embryo stage was observed (p < 0.05). The results suggest that concentrations of >25 mg/kg DM of phytoestrogens less than 20 days preceding AI may negatively affect oocyte developmental competence, reduce progesterone production and thus contribute to early embryonic loss.
Collapse
Affiliation(s)
- Jessica M. Wyse
- School of Agricultural, Environmental and Veterinary Science, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (J.L.)
- Gulbali Institute for Agriculture, Water and the Environment, Charles Sturt University, Wagga Wagga, NSW 2650, Australia (P.A.W.); (S.G.); (L.A.W.)
| | - Rory P. Nevard
- Gulbali Institute for Agriculture, Water and the Environment, Charles Sturt University, Wagga Wagga, NSW 2650, Australia (P.A.W.); (S.G.); (L.A.W.)
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Jaymie Loy
- School of Agricultural, Environmental and Veterinary Science, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (J.L.)
| | - Paul A. Weston
- Gulbali Institute for Agriculture, Water and the Environment, Charles Sturt University, Wagga Wagga, NSW 2650, Australia (P.A.W.); (S.G.); (L.A.W.)
| | - Saliya Gurusinghe
- Gulbali Institute for Agriculture, Water and the Environment, Charles Sturt University, Wagga Wagga, NSW 2650, Australia (P.A.W.); (S.G.); (L.A.W.)
| | - Jeffrey McCormick
- School of Agricultural, Environmental and Veterinary Science, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (J.L.)
- Gulbali Institute for Agriculture, Water and the Environment, Charles Sturt University, Wagga Wagga, NSW 2650, Australia (P.A.W.); (S.G.); (L.A.W.)
| | - Leslie A. Weston
- Gulbali Institute for Agriculture, Water and the Environment, Charles Sturt University, Wagga Wagga, NSW 2650, Australia (P.A.W.); (S.G.); (L.A.W.)
| | - Cyril P. Stephen
- School of Agricultural, Environmental and Veterinary Science, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (J.L.)
- Gulbali Institute for Agriculture, Water and the Environment, Charles Sturt University, Wagga Wagga, NSW 2650, Australia (P.A.W.); (S.G.); (L.A.W.)
| |
Collapse
|
12
|
Hashem NM, Essawi WM, El-Raghi AA. Ovarian activity, hormone profile, pro-inflammatory cytokines and reproductive performance of buffalo cows fed diets with different estrogenicity. J Anim Physiol Anim Nutr (Berl) 2024; 108:1-12. [PMID: 37377415 DOI: 10.1111/jpn.13854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Buffalo cows play a vital role in milk and meat production; however, they are characterised by several reproductive disorders. Feeding diets with high oestrogenic activity may be a disrupting factor. This study aimed to evaluate the effects of feeding roughages with different oestrogenic activity on the reproductive performance of early postpartum buffalo cows. A total of 30 buffalo cows were equally stratified into two experimental groups and fed either Trifolium alexandrinum (Berseem clover, phytoestrogenic roughage) or corn silage (nonoestrogenic roughage) for 90 consecutive days. After 35 days from the beginning of the feeding treatments, buffalo cows in both groups were synchronized for oestrus using a double i.m. injection of 2 mL prostaglandin F2α , 11 days apart, subsequently, overt signs of oestrus were observed and recorded. Moreover, ovarian structures, numbers and sizes of follicles and corpora lutea, were ultrasonography examined at day-12 (represents Day 35 of feeding treatment), Day 0 (day of oestrus) and Day 11 after oestrous synchronization (mid-luteal phase). Pregnancy was diagnosed 35 days postinsemination. Blood serum samples were analysed for progesterone (P4 ), estradiol (E2 ), tumor necrosis factor (TNF-α), interlukein-1β (IL-1β) and nitric oxide (NO). The high performance liquid chromatography-analysis of roughages showed the abundance of isoflavones in Berseem clover, with about 58 times higher concentration than that in corn silage group. During the experimental period, the numbers of ovarian follicles of all size categories were higher in the Berseem clover group than that in the corn silage group. No significant difference in the numbers of corpora lutea was observed between both experimental groups, but lower (p < 0.05) diameter of corpus luteum was observed in the Berseem clover group than that in the corn silage group. The Berseem clover group had higher (p < 0.05) overall concentrations of blood serum E2 , IL-1β and TNF-α, but lower (p < 0.05) overall concentrations of blood serum P4 than those recorded in the corn silage group. Oestrous rate, onset of oestrus time and oestrous duration were not significantly affected by the treatment. The conception rate was significantly (p < 0.05) reduced in the Berseem clover group compared with that in the corn silage group. In conclusion, feeding roughage with a high oestrogenic activity such as Berseem clover can negatively affect the conception rate of buffalo cows. This reproductive loss seems to be associated with inadequate luteal function and P4 concentration during early pregnancy.
Collapse
Affiliation(s)
- Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Walaa M Essawi
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Ali A El-Raghi
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| |
Collapse
|
13
|
Miedziaszczyk M, Maciejewski A, Idasiak-Piechocka I, Karczewski M, Lacka K. Effects of Isoflavonoid and Vitamin D Synergism on Bone Mineral Density-A Systematic and Critical Review. Nutrients 2023; 15:5014. [PMID: 38140273 PMCID: PMC10745652 DOI: 10.3390/nu15245014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Phytoestrogens are non-steroidal plant compounds, which bind to α and β estrogen receptors, thereby causing specific effects. The best-known group of phytoestrogens are flavonoids, including isoflavonoids-genistein and daidzein. They play a role in the metabolism of bone tissue, improving its density and preventing bone loss, which contributes to reducing the risk of fractures. Vitamin D is found in the form of cholecalciferol (vitamin D3) and ergocalciferol (vitamin D2) and is traditionally recognized as a regulator of bone metabolism. The aim of this review was to evaluate the synergistic effect of isoflavonoids and vitamin D on bone mineral density (BMD). The MEDLINE (PubMed), Scopus and Cochrane databases were searched independently by two authors. The search strategy included controlled vocabulary and keywords. Reference publications did not provide consistent data regarding the synergistic effect of isoflavonoids on BMD. Some studies demonstrated a positive synergistic effect of these compounds, whereas in others, the authors did not observe any significant differences. Therefore, further research on the synergism of isoflavonoids and vitamin D may contribute to a significant progress in the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Miłosz Miedziaszczyk
- Department of General and Transplant Surgery, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (M.M.); (I.I.-P.); (M.K.)
| | - Adam Maciejewski
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland;
| | - Ilona Idasiak-Piechocka
- Department of General and Transplant Surgery, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (M.M.); (I.I.-P.); (M.K.)
| | - Marek Karczewski
- Department of General and Transplant Surgery, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (M.M.); (I.I.-P.); (M.K.)
| | - Katarzyna Lacka
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland;
| |
Collapse
|
14
|
Guelfi G, Pasquariello R, Anipchenko P, Capaccia C, Pennarossa G, Brevini TAL, Gandolfi F, Zerani M, Maranesi M. The Role of Genistein in Mammalian Reproduction. Molecules 2023; 28:7436. [PMID: 37959856 PMCID: PMC10647478 DOI: 10.3390/molecules28217436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Genistein is a natural compound belonging to flavonoids, having antioxidant, anti-inflammatory, and anti-neoplastic properties. Genistein is considered a phytoestrogen. As such, genistein can bind estrogen receptors (ERα and ERβ), although with a lower affinity than that of estradiol. Despite considerable work, the effects of genistein are not well established yet. This review aims to clarify the role of genistein on female and male reproductive functions in mammals. In females, at a high dose, genistein diminishes the ovarian activity regulating several pathway molecules, such as topoisomerase isoform I and II, protein tyrosine kinases (v-src, Mek-4, ABL, PKC, Syk, EGFR, FGFR), ABC, CFTR, Glut1, Glut4, 5α-reductase, PPAR-γ, mitogen-activated protein kinase A, protein histidine kinase, and recently circulating RNA-miRNA. The effect of genistein on pregnancy is still controversial. In males, genistein exerts an estrogenic effect by inducing testosterone biosynthesis. The interaction of genistein with both natural and synthetic endocrine disruptors has a negative effect on testis function. The positive effect of genistein on sperm quality is still in debate. In conclusion, genistein has a potentially beneficial effect on the mechanisms regulating the reproduction of females and males. However, this is dependent on the dose, the species, the route, and the time of administration.
Collapse
Affiliation(s)
- Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| | - Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy; (R.P.); (F.G.)
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| | - Camilla Capaccia
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| | - Georgia Pennarossa
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy;
| | - Tiziana A. L. Brevini
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy; (R.P.); (F.G.)
| | - Massimo Zerani
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| |
Collapse
|
15
|
Pavlopoulos DT, Myrtsi ED, Tryfinopoulou P, Iliopoulos V, Koulocheri SD, Haroutounian SA. Phytoestrogens as Biomarkers of Plant Raw Materials Used for Fish Feed Production. Molecules 2023; 28:molecules28083623. [PMID: 37110857 PMCID: PMC10144496 DOI: 10.3390/molecules28083623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The intensive use of plant materials as a sustainable alternative for fish feed production, combined with their phytochemical content, which affects the growth and production characteristics of farmed fishes, necessitates their monitoring for the presence of raw materials of plant origin. This study reported herein concerns the development, validation and application of a workflow using high-performance liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) for the quantification of 67 natural phytoestrogens in plant-derived raw materials that were used to produce fish feeds. Specifically, we verified the presence of 8 phytoestrogens in rapeseed meal samples, 20 in soybean meal samples, 12 in sunflower meal samples and only 1 in wheat meal samples in quantities enabling their efficient incorporation into clusters. Among the various constituents, the soybean phytoestrogens daidzein, genistein, daidzin, glycitin, apigenin, calycosin and coumestrol, as well as the sunflower neochlorogenic, caffeic and chlorogenic phenolic acids, displayed the highest correlations with their origin descriptions. A hierarchical cluster analysis of the studied samples, based on their phytoestrogen contents, led to the efficient clustering of raw materials. The accuracy and efficiency of this clustering were tested through the incorporation of additional samples of soybean meal, wheat meal and maize meal, which verified the utilization of the phytoestrogen content as a valuable biomarker for the discrimination of raw materials used for fish feed production.
Collapse
Affiliation(s)
- Dionysios T Pavlopoulos
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Eleni D Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Paschalitsa Tryfinopoulou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Vasilios Iliopoulos
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Sofia D Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Serkos A Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|