1
|
De la Cruz Gómez AG, Campos-García H, Mendoza GD, García-López JC, Álvarez-Fuentes G, Hernández-García PA, Jiménez JAR, Cifuentes-Lopez O, Relling AE, Lee-Rangel HA. Macroalgae Compound Characterizations and Their Effect on the Ruminal Microbiome in Supplemented Lambs. Vet Sci 2024; 11:653. [PMID: 39728993 DOI: 10.3390/vetsci11120653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
The impact of macroalgae species on rumen function remains largely unexplored. This present study aimed to identify the biocompounds of the three types of marine macroalgae described: Macrocystis pyrifera (Brown), Ulva spp. (Lettuce), Mazzaella spp. (Red) and their effect on species-specific modulations of the rumen microbiome. The macroalgae were characterized using GC-MS. Twelve Rambouillet lambs were randomly assigned to one of four experimental diets (n = 3 per treatment): (a) control diet (CD); (b) CD + 5 g of Red algae; (c) CD + 5 g of Brown algae; and (d) CD + 5 g of Lettuce algae. After the lambs ended their fattening phase, they donated ruminal fluid for DNA extraction and 16S rRNA gene V3 amplicon sequencing. Results: The tagged 16S rRNA amplicon sequencing and statistical analysis revealed that the dominant ruminal bacteria shared by all four sample groups belonged to phyla Firmicutes and Bacteroidota. However, the relative abundance of these bacterial groups was markedly affected by diet composition. In animals fed with macroalgae, the fibrinolytic and cellulolytic bacteria Selenomonas was found in the highest abundance. The diversity in chemical composition among macroalgae species introduces a range of bioactive compounds, particularly VOCs like anethole, beta-himachalene, and 4-ethylphenol, which demonstrate antimicrobial and fermentation-modulating properties.
Collapse
Affiliation(s)
- Adriana Guadalupe De la Cruz Gómez
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico
| | - Huitzimengari Campos-García
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco 75460, Mexico
| | - German D Mendoza
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City 04960, Mexico
| | - Juan Carlos García-López
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico
| | - Gregorio Álvarez-Fuentes
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico
| | - Pedro A Hernández-García
- Centro Universitario Amecameca, Universidad Autónoma del Estado de México, Amecameca 56900, Mexico
| | - José Alejandro Roque Jiménez
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Ejido Nuevo León, Mexicali 21705, Mexico
| | - Oswaldo Cifuentes-Lopez
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico
| | - Alejandro E Relling
- Department of Animal Sciences, The Ohio State University, College of Food, Agricultural, and Environmental Sciences, Wooster, OH 44691, USA
| | - Héctor A Lee-Rangel
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico
| |
Collapse
|
2
|
Liu E, Liu L, Zhang Z, Qu M, Xue F. An Automated Sprinkler Cooling System Effectively Alleviates Heat Stress in Dairy Cows. Animals (Basel) 2024; 14:2586. [PMID: 39272371 PMCID: PMC11394125 DOI: 10.3390/ani14172586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
(1) Background: Heat stress detrimentally restricted economic growth in dairy production. In particular, the cooling mechanism of the spraying system effectively reduced both environmental and shell temperatures. This study was designed to investigate the underlying modulatory mechanism of an automatic cooling system in alleviating heat-stressed dairy cows. (2) Methods: A total of 1208 multiparous dairy cows was randomly allocated into six barns, three of which were equipped with automatic sprinklers (SPs), while the other three were considered the controls (CONs). Each barn was considered a replicate. (3) Results: Body temperatures and milk somatic cell counts significantly decreased, while DMI, milk yield, and milk fat content significantly increased under SP treatment. Rumen fermentability was enhanced, embodied by the increased levels of total VFA, acetate, propionate, and butyrate after SP treatment. The rumen microbiota results showed the relative abundances of fiber-degrading bacteria, including the Fibrobacters, Saccharofermentans, Lachnospira, Pseudobutyrivibrio, Selenomonas, and Succinivibrio, which significantly increased after receiving the SP treatment. (4) Conclusions: This study demonstrated that SP effectively alleviated heat stress and improved production performances and milk quality through modulating the rumen microbiota composition and fermentation function of dairy cows.
Collapse
Affiliation(s)
- En Liu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330029, China
| | - Liping Liu
- School of Food Engineering, Anhui College of Science and Technology, Chuzhou 233100, China
| | - Zhili Zhang
- Modern Farming (Wuhe) Co., Ltd., Bengbu 233311, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330029, China
| | - Fuguang Xue
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330029, China
| |
Collapse
|
3
|
Wang B, Ormston S, Płatosz N, Parker JK, Qin N, Humphries DJ, Pétursdóttir ÁH, Halmemies-Beauchet-Filleau A, Juniper DT, Stergiadis S. Effect of dietary protein source and Saccharina latissima on nutritional and safety characteristics of milk. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7355-7366. [PMID: 38661233 DOI: 10.1002/jsfa.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Wheat distillers' grains (WDG) and seaweeds are recommended as alternative protein sources and enteric methane mitigators in dairy cow diets, respectively, but little is known about their impact on milk quality and safety. In the present study, 16 cows in four 4 × 4 Latin squares were fed isonitrogenous diets (50:50 forage:concentrate ratio), with rapeseed meal (RSM)-based or WDG-based concentrate (230 and 205 g kg-1 dry matter) and supplemented with or without Saccharina latissima. RESULTS Replacement of RSM with WDG enhanced milk nutritional profile by decreasing milk atherogenicity (P = 0.002) and thrombogenicity (P = 0.019) indices and the concentrations of the nutritionally undesirable saturated fatty acids - specifically, lauric (P = 0.045), myristic (P = 0.022) and palmitic (P = 0.007) acids. It also increased milk concentrations of the nutritionally beneficial vaccenic (P < 0.001), oleic (P = 0.030), linoleic (P < 0.001), rumenic (P < 0.001) and α-linolenic (P = 0.012) acids, and total monounsaturated (P = 0.044), polyunsaturated (P < 0.001) and n-6 (P < 0.001) fatty acids. Feeding Saccharina latissima at 35.7 g per cow per day did not affect the nutritionally relevant milk fatty acids or pose any risk on milk safety, as bromoform concentrations in milk were negligible and unaffected by the dietary treatments. However, it slightly reduced milk concentrations of pantothenate. CONCLUSION Feeding WDG to dairy cows improved milk fatty acid profiles, by increasing the concentrations of nutritionally beneficial fatty acids and reducing the concentration of nutritionally undesirable saturated fatty acids, while feeding seaweed slightly reduced pantothenate concentrations. However, when considering the current average milk intakes in the population, the milk compositional differences between treatments in this study appear relatively small to have an effect on human health. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Bing Wang
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, PR China
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Reading, UK
| | - Sabrina Ormston
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Reading, UK
| | - Natalia Płatosz
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Reading, UK
- Polish Academy of Sciences, Institute of Animal Reproduction and Food Research, Olsztyn, Poland
| | - Jane K Parker
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Nanbing Qin
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Reading, UK
| | - David J Humphries
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Reading, UK
| | | | | | - Darren T Juniper
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Reading, UK
| | - Sokratis Stergiadis
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Reading, UK
| |
Collapse
|
4
|
Bošnjaković D, Nedić S, Arsić S, Prodanović R, Vujanac I, Jovanović L, Stojković M, Jovanović IB, Djuricic I, Kirovski D. Effects of Brown Seaweed ( Ascophyllum nodosum) Supplementation on Enteric Methane Emissions, Metabolic Status and Milk Composition in Peak-Lactating Holstein Cows. Animals (Basel) 2024; 14:1520. [PMID: 38891568 PMCID: PMC11171174 DOI: 10.3390/ani14111520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
The dairy industry contributes significantly to anthropogenic methane emissions, which have an impact on global warming. This study aimed to investigate the effects of a dietary inclusion of brown seaweed Ascophyllum nodosum on enteric methane emissions (EMEs), hematological and blood biochemical profiles, and milk composition in dairy cows. Eighteen Holstein cows were divided into three groups: CON (non-supplemented cows), BS50 (50 mL of 10% A. nodosum), and BS100 (100 mL of 10% A. nodosum). In each cow, measurements of EME, dry matter intake (DMI), and milk yield (MY), as well as blood and milk sampling with respective analyzes, were performed before supplementation (P1), after 15 (P2) days, and after 30 (P3) days of supplementation. A. nodosum reduced (p < 0.05) methane production, methane yield, and methane intensity in both BS50 and BS100, and raised DMI (p < 0.05) only in BS50. Total bilirubin (p < 0.05) was higher in BS50 compared to CON cows in P2, and triacylglycerols were lower (p < 0.05) in BS50 than in CON cows in P3. Higher milk fat content was found in BS50 than in CON cows in P3. C16:0 proportions were higher (p < 0.05) in BS50 and BS100 than in CON cows, while C18:3n-3 was higher (p < 0.05) in BS100 than in BS50 and CON cows in P3. Dietary treatment with A. nodosum reduced EMEs and showed the potential to increase DMI and to improve energy status as well as milk composition in peak-lactating dairy cows.
Collapse
Affiliation(s)
- Dušan Bošnjaković
- Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia; (D.B.); (L.J.); (M.S.); (I.B.J.)
| | - Sreten Nedić
- Department of Ruminant and Swine Diseases, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia; (S.N.); (S.A.); (R.P.); (I.V.)
| | - Sveta Arsić
- Department of Ruminant and Swine Diseases, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia; (S.N.); (S.A.); (R.P.); (I.V.)
| | - Radiša Prodanović
- Department of Ruminant and Swine Diseases, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia; (S.N.); (S.A.); (R.P.); (I.V.)
| | - Ivan Vujanac
- Department of Ruminant and Swine Diseases, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia; (S.N.); (S.A.); (R.P.); (I.V.)
| | - Ljubomir Jovanović
- Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia; (D.B.); (L.J.); (M.S.); (I.B.J.)
| | - Milica Stojković
- Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia; (D.B.); (L.J.); (M.S.); (I.B.J.)
| | - Ivan B. Jovanović
- Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia; (D.B.); (L.J.); (M.S.); (I.B.J.)
| | - Ivana Djuricic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Danijela Kirovski
- Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia; (D.B.); (L.J.); (M.S.); (I.B.J.)
| |
Collapse
|
5
|
Bo T, Liu H, Liu M, Liu Q, Li Q, Cong Y, Luo Y, Wang Y, Yu B, Pu T, Wang L, Wang Z, Wang D. Mechanism of inulin in colic and gut microbiota of captive Asian elephant. MICROBIOME 2023; 11:148. [PMID: 37408039 DOI: 10.1186/s40168-023-01581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/23/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Gut microbiota have a complex role on the survivability, digestive physiology, production, and growth performance in animals. Recent studies have emphasized the effects of prebiotics therapy on the gut disease, but the relationship between elephant gut-related diseases and prebiotics remains elusive. Here, a case study was undertaken to evaluate the mechanism of inulin treatment in colic in Asian elephant (Elephas maximus Linnaeus). METHODS Fecal samples were collected from a sick elephant and four healthy elephants. Analysis of microbial profile was carried out by 16S rRNA sequencing, and the short chain fatty acids were tested by gas chromatography. The physiological function of "inulin-microbiota" of elephant was verified in mice by fecal microbial transplantation (FMT). The expression of related proteins was determined by Western blotting and qPCR. RESULTS (1) Eating inulin can cure gut colic of the sick elephant and changed gut microbiota. (2) It was found that "inulin microbiota" from the post-treatment elephants can promote the proliferation of intestinal cells, increase the utilization of short chain fatty acids (SCFAs), maintain intestinal barrier, and reduce the inflammation in mice. (3) The mechanism was inulin-gut microbiota-SCFAs-immune barrier. CONCLUSIONS Inulin contributed to rehabilitate the gut microbiota and gut immune barrier of the elephant with colic. This provides reasonable verification for using prebiotics to treat the colic in captive elephants. Prebiotics will foresure play an increasingly important role in disease prevention and treatment of captive animals in the future. Video Abstract.
Collapse
Affiliation(s)
- Tingbei Bo
- School of Grassland Science, Beijing Forestry University, Beijing, 100091, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - He Liu
- Beijing key laboratory of captive wildlife technology, Beijing Zoo, Beijing, 100044, China.
| | - Min Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Vector Control, School of Public Health, Shandong University, Jinan, 250012, China
| | - Qingduo Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yipeng Cong
- Beijing key laboratory of captive wildlife technology, Beijing Zoo, Beijing, 100044, China
| | - Yi Luo
- Beijing key laboratory of captive wildlife technology, Beijing Zoo, Beijing, 100044, China
| | - Yuqi Wang
- Beijing key laboratory of captive wildlife technology, Beijing Zoo, Beijing, 100044, China
| | - Bo Yu
- Beijing key laboratory of captive wildlife technology, Beijing Zoo, Beijing, 100044, China
| | - Tianchun Pu
- Beijing key laboratory of captive wildlife technology, Beijing Zoo, Beijing, 100044, China
| | - Lu Wang
- Beijing key laboratory of captive wildlife technology, Beijing Zoo, Beijing, 100044, China
| | - Zheng Wang
- Beijing key laboratory of captive wildlife technology, Beijing Zoo, Beijing, 100044, China
| | - Dehua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- School of Life Science, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
6
|
Ma P, Hong Y, Liu C, Sun Y, Liu M, Yang Z, Ma P, Wu H, Xue F. Rumen microbiota responses to the enzymatic hydrolyzed cottonseed peptide supplement under high-concentrate diet feeding process. Front Vet Sci 2022; 9:984634. [PMID: 36439362 PMCID: PMC9698919 DOI: 10.3389/fvets.2022.984634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/03/2022] [Indexed: 04/09/2024] Open
Abstract
In current dairy production, dietary energy is always excessively provided with a high-concentrate diet feeding to improve milk production. However, this feeding practice disturbed the rumen microbial ecosystem and the balance between ruminal energy and nitrogen, resulting in decreased nutrient fermentability, which in turn declined the milk yield of dairy cows. Therefore, supplementation of dietary degradable nitrogen may be helpful for high dairy production. In this study, we evaluated the regulatory effects of easily utilized enzymatic hydrolyzed cottonseed peptide (EHP) supplements on rumen microbiota communities and rumen nutrient fermentability under high-concentrate feeding. For this purpose, a gradient concentrate of EHP (from 0.2 to 1.0%) was added to the high-concentrate basal substrates for an in vitro experiment. Each treatment contained three replicates, with three bottles in each replicate. Rumen fermentable parameters included microbial protein content, volatile fatty acids, and ammonia-N; the rumen nutrient degradability of dry matter, crude protein, neutral detergent fiber, acid detergent fiber, ether extracts, calcium, and phosphorus were further investigated after in vitro fermentation for 72 h. Then, rumen microbiota communities and their correlation with ruminal fermentation parameters and rumen nutritional degradability were analyzed to understand the regulatory mechanism of the EHP supplements on rumen fermentability. Results indicate that treatment with 0.6% of EHP supplements had the highest content of acetate, butyrate, and neutral detergent fiber degradability among all treatments. Furthermore, EHP supplements significantly increased the relative abundance of rumen cellulose and starch-degrading bacteria such as Ruminococcus, Bifidobacterium, and Acetitomaculum, and the high nitrogen utilizing bacteria Butyrivibrio and Pseudobutyrivibrio, which may further promote the rumen carbohydrate and nitrogen metabolism. In summary, supplementation of easily degraded small peptides helps reestablish rumen energy and nitrogen balance to promote the rumen fermentable functions and nutritional degradability under high-concentrate diet feeding circumstances. These findings may further promote dairy production.
Collapse
Affiliation(s)
- Peng Ma
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
- Anyou Biotechnology Group Co. Ltd., Taicang, China
| | - Yifen Hong
- Anyou Biotechnology Group Co. Ltd., Taicang, China
| | - Chunxue Liu
- Anyou Biotechnology Group Co. Ltd., Taicang, China
| | - Yuqin Sun
- Yangxin Yiliyuan Halal Meat Co. Ltd., Yangxin, China
| | - Minze Liu
- Yangxin Yiliyuan Halal Meat Co. Ltd., Yangxin, China
| | - Zhengang Yang
- Yangxin Yiliyuan Halal Meat Co. Ltd., Yangxin, China
| | - Pengyun Ma
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Hongxiang Wu
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Fuguang Xue
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
7
|
Ma P, Sun C, Liu M, You H, Shen Y, Kang Y, Sun Y, Yang Z, Ma P, Yang L, Xue F. Metagenomic insights into the rumen epithelial integrity responses to the vitamin B1 supplement under high-concentrate diets treatments. Front Microbiol 2022; 13:1008373. [PMID: 36386689 PMCID: PMC9642323 DOI: 10.3389/fmicb.2022.1008373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Subacute ruminal acidosis (SARA) becomes the most common nutritional metabolic disease in high-yielding dairy cows and later fatting beef cattle because of the increasing consumption of high-concentrate diets in modern feeding patterns. Our previous research found a certain piece of evidence that adding 180 mg thiamine/kg DMI could increase the rumen pH and regulate the structure of the rumen microbial community in vivo. However, there is still limited experimental data on the effects of SARA on thiamine status, the damage to the structure of rumen epithelial cells, and the underlying mechanism of the epithelium alterations. For this purpose, a total of 18 Angus bulls (average 22.0-months-old) with an average live weight of 567.6 ± 27.4 kg were randomly allocated into a control treatment (CON), a high-concentrate diet treatment (HC), and a high-concentrate diet with the vitamin B1 supplement treatment (HCB). All bulls were conducted with a 7-day adjustment period followed by a 60-day-long main feeding procedure. Results indicated that ADFI and ADG significantly decreased in the HC treatment compared with CON (P < 0.05), while significantly increased after the VB1 supplement (P < 0.05). Besides, ruminal acetate content was significantly downregulated while propionate was significantly upregulated under the HC treatment compared with CON (P < 0.05); however, these alterations showed a completely inverse regulatory effect on the VB1 supplement compared with HC (P < 0.05). These changes causatively induced a significant decrease in the A/P ratio in the HC treatment compared with CON and HCB treatments (P < 0.05). Bacterial communities in the HC treatment could be separated from those in CON through PCoA axes 1 and 2. Meanwhile, the VB1 supplement significantly altered the bacterial communities compared with the HC treatment, except for HCB-3. Furthermore, the HC treatment significantly upregulated the expression of JNK, Bax, Caspase-8, Caspase-3, Caspase-9, and Cyt-C compared with CON, while significantly downregulated the expression of Bcl-2. The VB1 supplement showed a complete converse gene expression compared with HC. In conclusion, the VB1 supplement could effectively attenuate the alterations that occurred when exposed to high-concentrate diets, and help promote production performance through increased fermentability.
Collapse
Affiliation(s)
- Peng Ma
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Anyou Biotechnology Group Co., Ltd., Taicang, Jiangsu, China
| | - Chaoqun Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Minze Liu
- Yangxin Yiliyuan Halal Meat Co., Ltd., Yangxin, Shandong, China
| | - Hongnan You
- School of Foreign Language, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yao Shen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yajie Kang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqin Sun
- Yangxin Yiliyuan Halal Meat Co., Ltd., Yangxin, Shandong, China
| | - Zhengang Yang
- Yangxin Yiliyuan Halal Meat Co., Ltd., Yangxin, Shandong, China
| | - Pengyun Ma
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuguang Xue
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Yangxin Yiliyuan Halal Meat Co., Ltd., Yangxin, Shandong, China
- *Correspondence: Fuguang Xue,
| |
Collapse
|
8
|
Liu E, Xiao W, Pu Q, Xu L, Wang L, Mao K, Hong W, Qu M, Xue F. Microbial and metabolomic insights into the bovine lipometabolic responses of rumen and mammary gland to zymolytic small peptide supplementation. Front Vet Sci 2022; 9:875741. [PMID: 36187834 PMCID: PMC9515958 DOI: 10.3389/fvets.2022.875741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Small peptides provide the easily utilized nitrogen for rumen microbial and promote acetate generation for milk fat synthesis. However, the impacts of peptide supplements on lipometabolic processes were still unclear. Therefore, a total of 800 multiparous dairy herds (with an average live weight of 667.6 ± 39.4 kg, an average lactation of 89.3 ± 18.8 days, and an average calving parity of 2.76 ± 0.47) were randomly allocated to the control (CON) and the small peptide (SP) supplement (100 g/day for each cow) treatments, respectively. A 35-day-long feeding procedure that includes a 7-day-long pretreatment test and a 28-day-long treatment test was followed for all cows. Dry matter intake (DMI) was recorded every day and calculated by the deviation between the supply and residue, while the daily milk production was automatically recorded through the rotary milking facilities. Milk samples were collected from each replicate on the last day, followed by the milk quality and milk lipid composition measurement. Rumen fluid samples were collected on the last day through esophageal tubing 3 h after morning feeding for the determination of the underlying mechanism of the small peptide on lipid metabolism through the measurement of rumen lipometabolic-related metabolites and rumen bacterial communities. Results indicated that dry matter intake showed an increasing trend, while milk production and the milk fat content remarkably increased after SP supplement (P < 0.05). Further detailed detection showed the mainly increased milk composition focused on monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA). Acetate-producing microbes, such as Acetitomaculum, Bifidobacterium, Succiniclasticum, and Succinivibrio, and butyrate-producing microbes, such as Shuttleworthia and Saccharofermentans, significantly proliferated, which causatively brought the increased ruminal content of acetate, isobutyrate, and butyrate after SP supplement (P < 0.05) compared with CON. Lipometabolic metabolites such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), triacylglycerol (TG), and Acetyl-CoA also significantly increased after SP supplement. In summary, SP supplements help to increase milk fat content through the proliferation of rumen bacterial communities, which provided more acetate and butyrate for milk fat synthesis combined with the promotion of ruminal lipometabolism.
Collapse
Affiliation(s)
- En Liu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Weiwei Xiao
- Chengdu Mytech Biotech Co., Ltd., Chengdu, China
| | - Qijian Pu
- Chengdu Mytech Biotech Co., Ltd., Chengdu, China
| | - Lanjiao Xu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Long Wang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Kang Mao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Wei Hong
- Shanghai Menon Animal Nutrition Technology Co., Ltd., Shanghai, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Mingren Qu
| | - Fuguang Xue
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
- Fuguang Xue
| |
Collapse
|
9
|
Durham SD, Lemay DG, Wei Z, Kalscheur KF, Finley JW, Fukagawa NK, Barile D. Dietary Fiber to Starch Ratio Affects Bovine Milk Oligosaccharide Profiles. Curr Dev Nutr 2022; 6:nzac033. [PMID: 35711571 PMCID: PMC9197575 DOI: 10.1093/cdn/nzac033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Bovine milk oligosaccharides (BMOs) have several demonstrated and hypothesized benefits including roles in cognitive development and antipathogenic activities, making them promising ingredients for infant formulas and nutraceutical applications. BMO extraction from bovine milk is challenged by low concentrations relative to nonbioactive simple sugars like lactose. BMO abundances are known to vary with a cow's lactation stage, breed, and parity, but these characteristics are difficult to modify in existing dairy herds. In contrast, diet modification is an accessible target, and is already known to influence milk yield, lipid content, protein levels, and monosaccharide compositions. Objectives To determine the impact of a low starch high fiber versus a high starch low fiber diet on overall BMO profiles and individual BMO abundances in Holstein dairy cattle. Methods Milk samples were collected from 59 midlactation Holsteins in a crossover study featuring dietary modification with either a low starch high fiber or high starch low fiber feed. BMO profiles were evaluated by nano-LC quadrupole time-of-flight tandem MS, and differences in BMO abundances between diets were evaluated using linear mixed effects modeling. Results A total of 19 BMOs were identified across the sample set, including 4 large fucosylated compounds. Seven BMOs were found to have significantly more positive percent changes in yield-adjusted abundance from the pre-experiment baseline period for milk samples collected during feeding with the low starch high fiber diet compared with the high starch low fiber diet. Conclusions Consuming the low starch high fiber diet promoted greater overall BMO production than the high starch low fiber diet in a population of midlactation Holsteins. Additionally, this study afforded the opportunity to investigate the impact of other factors potentially influencing BMO abundances, furthering understanding of how dairy herd management practices can positively impact milk composition and support the potential use of BMOs as functional ingredients.
Collapse
Affiliation(s)
- Sierra D Durham
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Danielle G Lemay
- Agricultural Research Service, USDA, Western Human Nutrition Research Center, Davis, CA, USA
| | - Zhe Wei
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Kenneth F Kalscheur
- Agricultural Research Service, USDA, US Dairy Forage Research Center, Madison, WI, USA
| | - John W Finley
- Agricultural Research Service, USDA, Office of National Programs, Beltsville, MD, USA
| | - Naomi K Fukagawa
- Agricultural Research Service, USDA, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, CA, USA
| |
Collapse
|
10
|
Liu E, Sun M, He C, Mao K, Li Q, Zhang J, Wu D, Wang S, Zheng C, Li W, Gong S, Xue F, Wu H. Rumen Microbial Metabolic Responses of Dairy Cows to the Honeycomb Flavonoids Supplement Under Heat-Stress Conditions. Front Vet Sci 2022; 9:845911. [PMID: 35372554 PMCID: PMC8964602 DOI: 10.3389/fvets.2022.845911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 12/03/2022] Open
Abstract
Flavonoids played critical roles in stabilizing microbial homoeostasis when animals suffered exoteric stresses. However, whether flavonoids attenuated heat stress of dairy cows is still not clear. Therefore, in the present article, flavonoids extracted from honeycomb were supplemented to investigate the production, digestibility, and rumen microbial metabolism responses of cows under heat stress conditions. A total of 600 multiparous dairy herds were randomly allotted into the control treatment (CON), the heat stress (HS) treatment, and the honeycomb flavonoids supplement under heat stress conditions (HF) treatment for a 30-day-long trial. Each treatment contains 4 replicates, with 50 cows in each replicate. Production performances including dry matter intake (DMI), milk production, and milk quality were measured on the basis of replicate. Furthermore, two cows of each replicate were selected for the measurement of the nutrient digestibility, the ruminal fermentable parameters including ruminal pH, volatile fatty acids, and ammonia-N, and the rumen microbial communities and metabolism. Results showed that HF effectively increased DMI, milk yield, milk fat, and ruminal acetate content (p < 0.05) compared with HS. Likewise, digestibility of NDF was promoted after HF supplement compared with HS. Furthermore, relative abundances of rumen microbial diversities especially Succiniclasticum, Pseudobutyrivibrio, Acetitomaculum, Streptococcus, and Succinivibrio, which mainly participated in energy metabolism, significantly improved after HF supplement. Metabolomic investigation showed that HF supplement significantly upregulated relative content of lipometabolic-related metabolites such as phosphatidylglycerol, phosphatidylinositol, phosphatidylserine, and phosphatidylethanolamine, while it downregulated biogenic amines. In summary, HF supplement helps proliferate microbial abundances, which further promoted fiber digestibility and energy provision, and ultimately enhances the production performances of dairy cows under heat stress conditions.
Collapse
Affiliation(s)
- En Liu
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Mengxue Sun
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Chenxin He
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Kang Mao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Qin Li
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Jianhong Zhang
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Deyong Wu
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Shuzhen Wang
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Chuanxia Zheng
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Wenbin Li
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Shimin Gong
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Fuguang Xue
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Fuguang Xue
| | - Huadong Wu
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
- Huadong Wu
| |
Collapse
|
11
|
Xue F, Wan G, Xiao Y, Chen C, Qu M, Xu L. Growth performances, gastrointestinal epithelium and bacteria responses of Yellow-feathered chickens to kudzu-leaf flavonoids supplement. AMB Express 2021; 11:125. [PMID: 34480270 PMCID: PMC8417201 DOI: 10.1186/s13568-021-01288-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
The objective of this study was to investigate the effects of replacing antibiotics with Kudzu-leaf flavonoids (KLF) on the growth performances, gut epithelial development, and gastrointestinal bacteria diversities of Yellow-feathered broilers. For this purpose, total of 216 1-day-old male Yellow-feathered chickens with the similar birth weight (31.0 ± 1.0 g) were randomly divided into 3 treatments: the control treatment (CON), the kudzu-leaf flavonoids supplement treatment (KLF), and the antibiotics supplement treatment (AGP). All birds were provided with a 56 d-feeding procedure, followed by the measurement of production performances, immune organs, blood anti-oxidant parameters, intestine epithelium development, and cecal microbiota. Results showed the feed conversion ratio significantly decreased after KLF supplement compared with CON (P < 0.05). KLF supplement partly promoted the anti-oxidant capacity on account of the increased activity of Superoxide dismutase (SOD) and the decrease content of malondialdehyde (MDA). Further, as referred to the gastrointestinal development and bacteria, ratio of villus/crypt significantly increased of ileum in KLF treatment (P < 0.05) while a significant promition of bacterial diversity and partial representative probiotic bacteria (P < 0.05) after KLF supplementation. Moreover, correlation analysis indicated that probitics including Bifidobacterium, Butyricimonas, Lactobacillus and Streptococcus positively correlated with production performances. In conclusion, KLF supplement may promote feed efficiency and benefit the gastrointestinal health through improving gut bacterial diversity and probiotic bacteria. The KLF might be applied as a proper antibiotic alternative.
Collapse
|
12
|
Effect of Dietary Seaweed Supplementation in Cows on Milk Macrominerals, Trace Elements and Heavy Metal Concentrations. Foods 2021; 10:foods10071526. [PMID: 34359396 PMCID: PMC8307245 DOI: 10.3390/foods10071526] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 01/17/2023] Open
Abstract
This study investigated the effect of seaweed supplementation in dairy cow diets on milk yield, basic composition, and mineral concentrations. Thirty-seven Icelandic cows were split into three diet treatments: control (CON, no seaweed), low seaweed (LSW, 0.75% concentrate dry matter (DM), 13–40 g/cow/day), and high seaweed (HSW, 1.5% concentrate DM, 26–158 g/cow/day). Cows were fed the same basal diet of grass silage and concentrate for a week, and then were introduced to the assigned experimental diets for 6 weeks. The seaweed mix of 91% Ascophyllum nodosum: 9% Laminaria digitata (DM basis), feed, and milk samples were collected weekly. Data were analyzed using a linear mixed effects model, with diet, week, and their interaction as fixed factors, cow ID as random factor, and the pre-treatment week data as a covariate. When compared with CON milk, LSW and HSW milk had, respectively, less Se (−1.4 and −3.1 μg/kg milk) and more I (+744 and +1649 μg/kg milk), while HSW milk also had less Cu (−11.6 μg/kg milk) and more As (+0.17 μg/kg milk) than CON milk. The minimal changes or concentrations in milk for Se, Cu, and As cannot be associated with any effects on consumer nutrition, but care should be taken when I-rich seaweed is fed to cows to avoid excessive animal I supply and milk I concentrations.
Collapse
|
13
|
Vijn S, Compart DP, Dutta N, Foukis A, Hess M, Hristov AN, Kalscheur KF, Kebreab E, Nuzhdin SV, Price NN, Sun Y, Tricarico JM, Turzillo A, Weisbjerg MR, Yarish C, Kurt TD. Key Considerations for the Use of Seaweed to Reduce Enteric Methane Emissions From Cattle. Front Vet Sci 2020; 7:597430. [PMID: 33426018 PMCID: PMC7785520 DOI: 10.3389/fvets.2020.597430] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022] Open
Abstract
Enteric methane emissions are the single largest source of direct greenhouse gas emissions (GHG) in beef and dairy value chains and a substantial contributor to anthropogenic methane emissions globally. In late 2019, the World Wildlife Fund (WWF), the Advanced Research Projects Agency-Energy (ARPA-E) and the Foundation for Food and Agriculture Research (FFAR) convened approximately 50 stakeholders representing research and production of seaweeds, animal feeds, dairy cattle, and beef and dairy foods to discuss challenges and opportunities associated with the use of seaweed-based ingredients to reduce enteric methane emissions. This Perspective article describes the considerations identified by the workshop participants and suggests next steps for the further development and evaluation of seaweed-based feed ingredients as enteric methane mitigants. Although numerous compounds derived from sources other than seaweed have been identified as having enteric methane mitigation potential, these mitigants are outside the scope of this article.
Collapse
Affiliation(s)
- Sandra Vijn
- World Wildlife Fund, Washington, DC, United States
| | | | - Nikki Dutta
- Foundation for Food and Agriculture Research, Washington, DC, United States
| | - Athanasios Foukis
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Matthias Hess
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Alexander N. Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
| | - Kenneth F. Kalscheur
- US Dairy Forage Research Center, USDA-Agricultural Research Service, Madison, WI, United States
| | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Sergey V. Nuzhdin
- Section of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, United States
| | - Nichole N. Price
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Yan Sun
- Cargill Animal Nutrition and Health, Elk River, MN, United States
| | | | | | | | - Charles Yarish
- Department of Ecology & Evolutionary Biology, The University of Connecticut, Stamford, CT, United States
| | - Timothy D. Kurt
- Foundation for Food and Agriculture Research, Washington, DC, United States
| |
Collapse
|
14
|
Xu L, Wen L, Ge Y, Wan G, Qu M, Xue F. Metagenomic Insights Into the Effects of Rare-Earth Elements Supplementation on Rumen Digestibility and Meat Quality of Beef Cattle. Front Microbiol 2020; 11:1933. [PMID: 33117297 PMCID: PMC7550762 DOI: 10.3389/fmicb.2020.01933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Rare-earth elements (REE), supplemented as feed additives, effectively improved feed conversion and production performances of monogastrics. However, very little information exists on how REE supplementation affects ruminants. In the present study, twenty-four 18-month-old Jinjiang bull cattle, with initial body weight (BW) of 374.75 ± 14.02 kg, were randomly allotted into four dietary treatments with a 15-day-long preliminary trial: a control treatment (basal diet), a 400 mg/kg REE treatment (basal diet supplemented with 400 mg REE/kg DMI), an 800 mg/kg REE treatment (basal diet supplemented with 800 mg REE/kg DMI), and a 1,200 mg/kg REE treatment (basal diet supplemented with 1,200 mg REE/kg DMI). Based on the results, the optimum supplementation scale was chosen for a 60-day-long follow-up feeding procedure. At the end of the feeding period, all bull cattle were slaughtered. Feed intake, average daily weight gain, carcass performances, meat quality, and rumen microbiota were measured. Results indicate a positive response in terms of growth performance and gastrointestinal digestibility to REE supplementation, and 400 mg/kg DMI treatment presented the most average daily feed intake (ADFI), the best average daily weight gain (ADG), and the least F/G. REE also significantly decreased the ruminal propionate content compared with control treatment. As to microbiota, despite no increases in bacterial community abundance, there was a proliferation of Bacteroidetes and Tenericutes and suppression of Actinobacteria under REE treatment. Furthermore, REE treatment significantly increased the meat protein content and decreased meat fat content. There was also an increase in the activities of the enzymes related to lipid syntheses. Fatty acid synthetase (FAS) and malate dehydrogenase (MDH) were significantly suppressed, while the activity of the lipolysis-related enzyme, lipoproteinesterase (LPL), was enhanced. In summary, REE supplementation provided an effective regulation on ruminal microbiota, facilitation of ruminal fiber digestibility, promotion of feed conversion, suppression of lipid deposition, and finally, improved the production and meat quality of beef cattle.
Collapse
Affiliation(s)
- Lanjiao Xu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Luhua Wen
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Yu Ge
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Gen Wan
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Fuguang Xue
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
15
|
Xue F, Shi L, Li Y, Ni A, Ma H, Sun Y, Chen J. Effects of replacing dietary Aureomycin with a combination of plant essential oils on production performance and gastrointestinal health of broilers. Poult Sci 2020; 99:4521-4529. [PMID: 32867996 PMCID: PMC7598001 DOI: 10.1016/j.psj.2020.05.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/06/2020] [Accepted: 05/22/2020] [Indexed: 01/31/2023] Open
Abstract
The objective of this study was to investigate the effects of replacing antibiotics with a combination of plant essential oils on the growth performances and gastrointestinal health of broilers. A total of 720 1-day-old male AA broilers were randomly divided into 3 treatments: the control treatment (CON), the Aureomycin supplementation treatment (AGP), and the combined plant oils supplementation treatment (POC), with a 42-D period feeding procedure. Growth performances, carcass performances, intestinal sections, and cecal microbiota were investigated. Results indicated that POC supplementation decreased the feed conversion ratio compared with CON and AGP treatments, though not significantly. No significant differences were found for feed intake, BW gain, and culling rate among the 3 treatments (P > 0.05). In addition, no significant differences were seen on carcass performance. For the aspects of intestinal section, POC supplementation did not make significant effects on intestinal wall thickness, villus heights, crypt depths, and the ratio of villus heights/crypt depths compared with CON and AGP treatments. Cecal microbiota results demonstrated that bacterial diversity and some representative probiotic bacteria were significantly increased in numbers (P < 0.05) after POC supplementation. In conclusion, the combination of essential oils promoted intestinal health through improving gut bacterial diversity and probiotic bacteria, as well as improving feed conversion ratio of broilers. These results indicated that the combination of essential oils may benefit the gastrointestinal health and be applied as an antibiotic alternative.
Collapse
Affiliation(s)
- Fuguang Xue
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Lei Shi
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunlei Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Aixin Ni
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Sun
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|