1
|
Chen L, Lucas AT, Mansfield AS, Lheureux S, O'Connor C, Zamboni BA, Patel K, McKee T, Moscow J, Zamboni WC. Evaluation of Innate Immune System, Body Habitus, and Sex on the Pharmacokinetics and Pharmacodynamics of Anetumab Ravtansine in Patients With Cancer. Clin Transl Sci 2025; 18:e70178. [PMID: 40051118 PMCID: PMC11885412 DOI: 10.1111/cts.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/10/2025] [Indexed: 03/10/2025] Open
Abstract
Anetumab ravtansine, like other ADC drugs, has high inter-patient variability in its pharmacokinetic (PK) and pharmacodynamic (PD) outcomes, which raises concerns about whether current dosing regimens are optimal for patients. The objective of this study was to evaluate covariates, especially body habitus and the innate immune system (IIS), which may affect anetumab ravtansine PK and PD as part of two clinical trials in patients with ovarian cancer and mesothelioma. Biomarkers of Fcγ receptors(FcγR) CD64 on IIS cells, total body weight (TBW), body surface area (BSA), and other covariates, such as sex and age, were analyzed for an association with anetumab ravtansine PK. Higher FcγR CD64, TBW, and BSA were associated with higher clearance (CL) of anetumab ravtansine (p < 0.05). However, there was no relationship between TBW or BSA and FcγR CD64. Female patients had a lower anetumab ravtansine CL (0.030 ± 0.007 L/h) compared to male patients (0.042 ± 0.006 L/h) (p < 0.05). In both studies, patients with stable disease (SD) and partial response (PR) had higher anetumab ravtansine AUC0-inf compared to patients with progressive disease (PD). Individualizing the dose of anetumab ravtansine and potentially other ADCs based only on TBW is not optimal, whereas precision dosing of an ADC based on the inclusion of novel metrics of IIS biomarkers, body habitus, and sex may be more appropriate to reduce variability in PK exposure, reduce toxicity, and improve response.
Collapse
Affiliation(s)
- Li Chen
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, and UNC Advanced Translational Pharmacology and Analytical Chemistry Lab at University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Andrew T. Lucas
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, and UNC Advanced Translational Pharmacology and Analytical Chemistry Lab at University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | | | | - Claire O'Connor
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, and UNC Advanced Translational Pharmacology and Analytical Chemistry Lab at University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Beth A. Zamboni
- Department of Computational and Chemical SciencesCarlow UniversityPittsburghPennsylvaniaUSA
| | - Kashish Patel
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, and UNC Advanced Translational Pharmacology and Analytical Chemistry Lab at University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | | | | - William C. Zamboni
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, and UNC Advanced Translational Pharmacology and Analytical Chemistry Lab at University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
2
|
Yamazaki S, Matsuda Y. Antibody Modification via Lipoic Acid Ligase A-Mediated Site-Specific Labeling. Chem Biodivers 2025; 22:e202402113. [PMID: 39435640 DOI: 10.1002/cbdv.202402113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Enzymatic modification, particularly utilizing lipoic acid ligase (LplA), has emerged as a transformative approach in biopharmaceuticals, enabling precise and site-specific protein modifications. This review delves into the innovative applications of LplA in antibody modifications, including the creation of antibody-drug conjugates (ADCs) and the advancement of tag-free conjugation techniques. LplA's ability to facilitate the incorporation of bioorthogonal groups and its adaptability to various substrates underscores its versatility. Key developments include the successful generation of dual-labeled antibodies and the application of LplA in modifying antibody fragments. Additionally, the review explores the potential for LplA to enhance the therapeutic efficacy of ADCs through improved drug-to-antibody ratios and site-specific payload attachment. The implications of these advancements are significant, suggesting that LplA-mediated modifications could lead to more effective and targeted antibody-based therapies. This review aims to provide a comprehensive overview of LplA's role in expanding the possibilities of enzymatic conjugation, setting the stage for future research and clinical applications.
Collapse
Affiliation(s)
- Shunsuke Yamazaki
- Ajinomoto, Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa, 210-8681, Japan
| | - Yutaka Matsuda
- Ajinomoto, Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa, 210-8681, Japan
| |
Collapse
|
3
|
Yamanaka T, Nishikawa T, Yoshida H. Development of Antibody-Drug Conjugates for Malignancies of the Uterine Corpus: A Review. Cells 2025; 14:333. [PMID: 40072062 PMCID: PMC11898814 DOI: 10.3390/cells14050333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
Despite recent advances in cancer treatment, the prognosis for uterine malignancies (carcinoma and sarcoma) requires further improvement. Antibody-drug conjugates (ADCs) have emerged as a novel class of anti-cancer therapeutic agents, and multiple ADCs have been approved for other types of cancer. In 2024, trastuzumab deruxtecan received approval from the US Food and Drug Administration for cancer types and became the first ADC approved for the treatment of uterine malignancies. Many ADCs are currently being investigated in uterine malignancies, and therefore, there is a need to gain a deeper understanding of ADCs. In this article, we aim to provide a comprehensive overview of the advancements in ADCs. The contents of this article include the structure and mechanism of action, an analysis of recent clinical trials, and expected future clinical questions. This article also focuses on uterine sarcoma, which is not often highlighted as a target for ADC treatment.
Collapse
Affiliation(s)
- Taro Yamanaka
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan;
| | - Tadaaki Nishikawa
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| |
Collapse
|
4
|
Kapare H, Bhosale M, Bhole R. Navigating the future: Advancements in monoclonal antibody nanoparticle therapy for cancer. J Drug Deliv Sci Technol 2025; 104:106495. [DOI: 10.1016/j.jddst.2024.106495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Kim MH, Park MK, Park HN, Ham SM, Lee H, Lee ST. Anti-PTK7 Monoclonal Antibodies Suppresses Oncogenic Phenotypes in Cellular and Xenograft Models of Triple-Negative Breast Cancer. Cells 2025; 14:181. [PMID: 39936972 PMCID: PMC11817174 DOI: 10.3390/cells14030181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Protein tyrosine kinase 7 (PTK7), a catalytically defective receptor protein tyrosine kinase, is frequently upregulated in various cancers, including triple-negative breast cancer (TNBC), and is associated with poor clinical outcomes. Analysis of The Cancer Genome Atlas (TCGA) data confirmed that PTK7 mRNA expression is significantly higher in TNBC tumor tissues compared with adjacent normal tissues and non-TNBC breast cancer subtypes. Kaplan-Meier survival analysis demonstrated a strong correlation between high PTK7 expression and worse relapse-free survival in TNBC patients (HR = 1.46, p = 0.015). In vitro, anti-PTK7 monoclonal antibodies (mAbs) significantly reduced proliferation, wound healing, migration, and invasion in TNBC MDA-MB-231 cells. Ki-67 immunofluorescence assays revealed substantial decreases in cell proliferation following treatment with PTK7 mAbs (32-m, 43-m, 50-m, and 52-m). Moreover, actin polymerization, a critical process in cell migration and invasion, was markedly impaired upon PTK7 mAb treatment. In vivo, PTK7 mAbs significantly reduced tumor volume and weight in a TNBC xenograft mouse model compared with controls. Treated tumors exhibited decreased expression of Ki-67 and vimentin, indicating reduced proliferation and epithelial-to-mesenchymal transition. These findings highlight PTK7 as a promising therapeutic target in TNBC and demonstrate the potent anti-cancer effects of PTK7-neutralizing mAbs both in vitro and in vivo. Further exploration of PTK7-targeted therapies, including humanized mAbs and antibody-drug conjugates, is warranted to advance treatment strategies for PTK7-positive TNBC.
Collapse
Affiliation(s)
- Min Ho Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (M.H.K.); (H.N.P.); (S.M.H.)
| | - Mi Kyung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea;
- Department of Biomedical Science, Hwasung Medi-Science University, Hwaseong 18274, Republic of Korea
| | - Han Na Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (M.H.K.); (H.N.P.); (S.M.H.)
| | - Seung Min Ham
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (M.H.K.); (H.N.P.); (S.M.H.)
| | - Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea;
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (M.H.K.); (H.N.P.); (S.M.H.)
| |
Collapse
|
6
|
Chen D. Targeted Therapy Evolution from Defining a Sub-population to Crossing Multi-indications. Adv Pharm Bull 2024; 14:737-744. [PMID: 40190666 PMCID: PMC11970494 DOI: 10.34172/apb.43306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose It tends not only to shed lights on an emerging classification framework of disease according to the shared molecular pathogenesis across various organs/tissues, but also to inspire more efficient paradigms of pharmaceutic innovation in a broader medical perspective. Methods Literature review and re-thinking. Results This article has sorted out an updated profile of the outstanding targeted medications with an extending list of clinical indications in oncology and beyond. Conclusion Pharmaceutic development can be processed in a less risky and more affordable manner through drug repurpose or tissue agnostic approval.
Collapse
Affiliation(s)
- Daohong Chen
- Research Institute, Changshan Biochemical Pharmaceutical, North Head of Yinchuan Street, Zhengding New District, Shijiazhuang, Hebei, China, 050800
| |
Collapse
|
7
|
Fucà G, Sabatucci I, Paderno M, Lorusso D. The clinical landscape of antibody-drug conjugates in endometrial cancer. Int J Gynecol Cancer 2024; 34:1795-1804. [PMID: 39074933 DOI: 10.1136/ijgc-2024-005607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
Clinical outcomes remain challenging in advanced or recurrent endometrial cancer due to tumor heterogeneity and therapy resistance. Antibody-drug conjugates are a novel class of cancer therapeutics, representing a promising treatment option for endometrial cancer. Antibody-drug conjugates consist of a high-affinity antibody linked to a cytotoxic payload through a stable linker. After binding to specific antigens on tumor cells, the drug is internalized, and the payload is released. In addition, the free intracellular drug may be released outside the target cell through a 'bystander effect' and kill neighboring cells, which is crucial in treating malignancies characterized by heterogeneous biomarker expression like endometrial cancer.This article aims to provide a comprehensive overview of the current clinical landscape of antibody-drug conjugates in the treatment of endometrial cancer. We conducted a thorough analysis of recent clinical trials focusing on efficacy, safety profiles, and the mechanisms by which antibody-drug conjugates target endometrial cancer. We focused particularly on the most promising antibody-drug conjugate targets in endometrial cancer under clinical investigation, such as human epidermal growth factor receptor 2 (HER2), folate receptor alpha (FRα), trophoblast cell-surface antigen-2 (TROP2), and B7-H4. We also briefly comment on the challenges, including the emergence of resistance mechanisms, and future development directions (especially agents targeting multiple antigens, combinatorial strategies, and sequential use of agents targeting the same antigen but using different payloads) in antibody-drug conjugate therapy for endometrial cancer.
Collapse
Affiliation(s)
- Giovanni Fucà
- Department of Gynecologic Oncology, Humanitas San Pio X, Milan, Italy
| | - Ilaria Sabatucci
- Department of Gynecologic Oncology, Humanitas San Pio X, Milan, Italy
| | | | - Domenica Lorusso
- Department of Gynecologic Oncology, Humanitas San Pio X, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
8
|
Colombo R, Tarantino P, Rich JR, LoRusso PM, de Vries EGE. The Journey of Antibody-Drug Conjugates: Lessons Learned from 40 Years of Development. Cancer Discov 2024; 14:2089-2108. [PMID: 39439290 DOI: 10.1158/2159-8290.cd-24-0708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
Antibody-drug conjugates (ADC) represent one of the most rapidly expanding treatment modalities in oncology, with 11 ADCs approved by the FDA and more than 210 currently being tested in clinical trials. Spanning over 40 years, ADC clinical development has enhanced our understanding of the multifaceted mechanisms of action for this class of therapeutics. In this article, we discuss key insights into the toxicity, efficacy, stability, distribution, and fate of ADCs. Furthermore, we highlight ongoing challenges related to their clinical optimization, the development of rational sequencing strategies, and the identification of predictive biomarkers. Significance: The development and utilization of ADCs have allowed for relevant improvements in the prognosis of multiple cancer types. Concomitantly, the rise of ADCs in oncology has produced several challenges, including the prediction of their activity, their utilization in sequence, and minimization of their side effects, that still too often resemble those of the cytotoxic molecule that they carry. In this review, we retrace 40 years of development in the field of ADCs and delve deep into the mechanisms of action of these complex therapeutics and reasons behind the many achievements and failures observed in the field to date.
Collapse
Affiliation(s)
| | - Paolo Tarantino
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Jamie R Rich
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, Canada
| | - Patricia M LoRusso
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
9
|
McCoy KM, Ackerman ME, Grigoryan G. A comparison of antibody-antigen complex sequence-to-structure prediction methods and their systematic biases. Protein Sci 2024; 33:e5127. [PMID: 39167052 PMCID: PMC11337930 DOI: 10.1002/pro.5127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/24/2024] [Accepted: 07/14/2024] [Indexed: 08/23/2024]
Abstract
The ability to accurately predict antibody-antigen complex structures from their sequences could greatly advance our understanding of the immune system and would aid in the development of novel antibody therapeutics. There have been considerable recent advancements in predicting protein-protein interactions (PPIs) fueled by progress in machine learning (ML). To understand the current state of the field, we compare six representative methods for predicting antibody-antigen complexes from sequence, including two deep learning approaches trained to predict PPIs in general (AlphaFold-Multimer and RoseTTAFold), two composite methods that initially predict antibody and antigen structures separately and dock them (using antibody-mode ClusPro), local refinement in Rosetta (SnugDock) of globally docked poses from ClusPro, and a pipeline combining homology modeling with rigid-body docking informed by ML-based epitope and paratope prediction (AbAdapt). We find that AlphaFold-Multimer outperformed other methods, although the absolute performance leaves considerable room for improvement. AlphaFold-Multimer models of lower quality display significant structural biases at the level of tertiary motifs (TERMs) toward having fewer structural matches in non-antibody-containing structures from the Protein Data Bank (PDB). Specifically, better models exhibit more common PDB-like TERMs at the antibody-antigen interface than worse ones. Importantly, the clear relationship between performance and the commonness of interfacial TERMs suggests that the scarcity of interfacial geometry data in the structural database may currently limit the application of ML to the prediction of antibody-antigen interactions.
Collapse
Affiliation(s)
- Katherine Maia McCoy
- Molecular and Cell Biology Graduate ProgramDartmouth CollegeHanoverNew HampshireUSA
| | - Margaret E. Ackerman
- Molecular and Cell Biology Graduate ProgramDartmouth CollegeHanoverNew HampshireUSA
- Thayer School of EngineeringDartmouth CollegeHanoverNew HampshireUSA
| | - Gevorg Grigoryan
- Molecular and Cell Biology Graduate ProgramDartmouth CollegeHanoverNew HampshireUSA
- Department of Computer ScienceDartmouth CollegeHanoverNew HampshireUSA
| |
Collapse
|
10
|
Ma Q, Durga P, Wang FXC, Yao HP, Wang MH. Pharmaceutical innovation and advanced biotechnology in the biotech-pharmaceutical industry for antibody-drug conjugate development. Drug Discov Today 2024; 29:104057. [PMID: 38844064 DOI: 10.1016/j.drudis.2024.104057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Antibody-drug conjugates (ADCs), from prototypes in the 1980s to first- and second-generation products in the 2000s, and now in their multiformats, have progressed tremendously to meet oncological challenges. Currently, 13 ADCs have been approved for medical practice, with over 200 candidates in clinical trials. Moreover, ADCs have evolved into different formats, including bispecific ADCs, probody-drug conjugates, pH-responsive ADCs, target-degrading ADCs, and immunostimulating ADCs. Technologies from biopharmaceutical industries have a crucial role in the clinical transition of these novel biotherapeutics. In this review, we highlight several features contributing to the prosperity of bioindustrial ADC development. Various proprietary technologies from biopharmaceutical companies are discussed. Such advances in biopharmaceutical industries are the backbone for the success of ADCs in development and clinical application.
Collapse
Affiliation(s)
- Qi Ma
- Translational Research Laboratory for Urological Diseases, First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, PR China; Comprehensive Genitourinary Cancer Center, First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, PR China.
| | - Puro Durga
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | | | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Center for Infectious Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| | - Ming-Hai Wang
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA.
| |
Collapse
|
11
|
Quintana J, Kang M, Hu H, Ng TSC, Wojtkiewicz GR, Scott E, Parangi S, Schuemann J, Weissleder R, Miller MA. Extended Pharmacokinetics Improve Site-Specific Prodrug Activation Using Radiation. ACS CENTRAL SCIENCE 2024; 10:1371-1382. [PMID: 39071065 PMCID: PMC11273447 DOI: 10.1021/acscentsci.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024]
Abstract
Radiotherapy is commonly used to treat cancer, and localized energy deposited by radiotherapy has the potential to chemically uncage prodrugs; however, it has been challenging to demonstrate prodrug activation that is both sustained in vivo and truly localized to tumors without affecting off-target tissues. To address this, we developed a series of novel phenyl-azide-caged, radiation-activated chemotherapy drug-conjugates alongside a computational framework for understanding corresponding pharmacokinetic and pharmacodynamic (PK/PD) behaviors. We especially focused on an albumin-bound prodrug of monomethyl auristatin E (MMAE) and found it blocked tumor growth in mice, delivered a 130-fold greater amount of activated drug to irradiated tumor versus unirradiated tissue, was 7.5-fold more efficient than a non albumin-bound prodrug, and showed no appreciable toxicity compared to free or cathepsin-activatable drugs. These data guided computational modeling of drug action, which indicated that extended pharmacokinetics can improve localized and cumulative drug activation, especially for payloads with low vascular permeability and diffusivity and particularly in patients receiving daily treatments of conventional radiotherapy for weeks. This work thus offers a quantitative PK/PD framework and proof-of-principle experimental demonstration of how extending prodrug circulation can improve its localized activity in vivo.
Collapse
Affiliation(s)
- Jeremy
M. Quintana
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Mikyung Kang
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Huiyu Hu
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Surgery, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Thomas S. C. Ng
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Gregory R. Wojtkiewicz
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Ella Scott
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Sareh Parangi
- Department
of Surgery, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jan Schuemann
- Department
of Radiation Oncology, Massachusetts General
Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ralph Weissleder
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Miles A. Miller
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
12
|
Li N, Wang T, Zhang H, Li X, Bai H, Lu N, Lu K. Exploring the causal relationship between glutamine metabolism and leukemia risk: a Mendelian randomization and LC-MS/MS analysis. Front Immunol 2024; 15:1418738. [PMID: 39050845 PMCID: PMC11265999 DOI: 10.3389/fimmu.2024.1418738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Objective This investigation sought to delineate the causal nexus between plasma glutamine concentrations and leukemia susceptibility utilizing bidirectional Mendelian Randomization (MR) analysis and to elucidate the metabolic ramifications of asparaginase therapy on glutamine dynamics in leukemia patients. Methods A bidirectional two-sample MR framework was implemented, leveraging genetic variants as instrumental variables from extensive genome-wide association studies (GWAS) tailored to populations of European descent. Glutamine quantification was executed through a rigorously validated Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS) protocol. Comparative analyses of glutamine levels were conducted across leukemia patients versus healthy controls, pre- and post-asparaginase administration. Statistical evaluations employed inverse variance weighted (IVW) models, MR-Egger regression, and sensitivity tests addressing pleiotropy and heterogeneity. Results The MR findings underscored a significant inverse association between glutamine levels and leukemia risk (IVW p = 0.03558833), positing lower glutamine levels as a contributory factor to heightened leukemia susceptibility. Conversely, the analysis disclosed no substantive causal impact of leukemia on glutamine modulation (IVW p = 0.9694758). Notably, post-asparaginase treatment, a marked decrement in plasma glutamine concentrations was observed in patients (p = 0.0068), underlining the profound metabolic influence of the therapeutic regimen. Conclusion This study corroborates the hypothesized inverse relationship between plasma glutamine levels and leukemia risk, enhancing our understanding of glutamine's role in leukemia pathophysiology. The pronounced reduction in glutamine levels following asparaginase intervention highlights the critical need for meticulous metabolic monitoring to refine therapeutic efficacy and optimize patient management in clinical oncology. These insights pave the way for more tailored and efficacious treatment modalities in the realm of personalized medicine.
Collapse
Affiliation(s)
- Na Li
- Mass Spectrometry Research Institute, Beijing Gobroad Hospital, Beijing, China
- Mass Spectrometry Research Institute, Beijing Gobroad Healthcare Group, Beijing, China
| | - Tianyi Wang
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huiying Zhang
- Mass Spectrometry Research Institute, Beijing Gobroad Hospital, Beijing, China
- Mass Spectrometry Research Institute, Beijing Gobroad Healthcare Group, Beijing, China
- Department of Laboratory Medicine, Beijing Gobroad Hospital, Beijing, China
| | - Xiao Li
- Department of Laboratory Medicine, Beijing Gobroad Hospital, Beijing, China
| | - Haochen Bai
- Mass Spectrometry Research Institute, Shanghai Liquan Hospital, Shanghai, China
| | - Ning Lu
- Department of Laboratory Medicine, Beijing Gobroad Hospital, Beijing, China
| | - Kaizhi Lu
- Mass Spectrometry Research Institute, Beijing Gobroad Hospital, Beijing, China
- Mass Spectrometry Research Institute, Beijing Gobroad Healthcare Group, Beijing, China
| |
Collapse
|
13
|
McCoy KM, Ackerman ME, Grigoryan G. A Comparison of Antibody-Antigen Complex Sequence-to-Structure Prediction Methods and their Systematic Biases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585121. [PMID: 38979267 PMCID: PMC11230293 DOI: 10.1101/2024.03.15.585121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The ability to accurately predict antibody-antigen complex structures from their sequences could greatly advance our understanding of the immune system and would aid in the development of novel antibody therapeutics. There have been considerable recent advancements in predicting protein-protein interactions (PPIs) fueled by progress in machine learning (ML). To understand the current state of the field, we compare six representative methods for predicting antibody-antigen complexes from sequence, including two deep learning approaches trained to predict PPIs in general (AlphaFold-Multimer, RoseTTAFold), two composite methods that initially predict antibody and antigen structures separately and dock them (using antibody-mode ClusPro), local refinement in Rosetta (SnugDock) of globally docked poses from ClusPro, and a pipeline combining homology modeling with rigid-body docking informed by ML-based epitope and paratope prediction (AbAdapt). We find that AlphaFold-Multimer outperformed other methods, although the absolute performance leaves considerable room for improvement. AlphaFold-Multimer models of lower-quality display significant structural biases at the level of tertiary motifs (TERMs) towards having fewer structural matches in non-antibody containing structures from the Protein Data Bank (PDB). Specifically, better models exhibit more common PDB-like TERMs at the antibody-antigen interface than worse ones. Importantly, the clear relationship between performance and the commonness of interfacial TERMs suggests that scarcity of interfacial geometry data in the structural database may currently limit application of machine learning to the prediction of antibody-antigen interactions.
Collapse
Affiliation(s)
- Katherine Maia McCoy
- Molecular and Cell Biology Graduate Program, Dartmouth College, Hanover, New Hampshire, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Molecular and Cell Biology Graduate Program, Dartmouth College, Hanover, New Hampshire, USA
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, USA
- Molecular and Cell Biology Graduate Program, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
14
|
Zamboni WC, Charlab R, Burckart GJ, Stewart CF. Effect of Obesity on the Pharmacokinetics and Pharmacodynamics of Anticancer Agents. J Clin Pharmacol 2023; 63 Suppl 2:S85-S102. [PMID: 37942904 DOI: 10.1002/jcph.2326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/12/2023] [Indexed: 11/10/2023]
Abstract
An objective of the Precision Medicine Initiative, launched in 2015 by the US Food and Drug Administration and National Institutes of Health, is to optimize and individualize dosing of drugs, especially anticancer agents, with high pharmacokinetic and pharmacodynamic variability. The American Society of Clinical Oncology recently reported that 40% of obese patients receive insufficient chemotherapy doses and exposures, which may lead to reduced efficacy, and recommended pharmacokinetic studies to guide appropriate dosing in these patients. These issues will only increase in importance as the incidence of obesity in the population increases. This publication reviews the effects of obesity on (1) tumor biology, development of cancer, and antitumor response; (2) pharmacokinetics and pharmacodynamics of small-molecule anticancer drugs; and (3) pharmacokinetics and pharmacodynamics of complex anticancer drugs, such as carrier-mediated agents and biologics. These topics are not only important from a scientific research perspective but also from a drug development and regulator perspective. Thus, it is important to evaluate the effects of obesity on the pharmacokinetics and pharmacodynamics of anticancer agents in all categories of body habitus and especially in patients who are obese and morbidly obese. As the effects of obesity on the pharmacokinetics and pharmacodynamics of anticancer agents may be highly variable across drug types, the optimal dosing metric and algorithm for difference classes of drugs may be widely different. Thus, studies are needed to evaluate current and novel metrics and methods for measuring body habitus as related to optimizing the dose and reducing pharmacokinetic and pharmacodynamic variability of anticancer agents in patients who are obese and morbidly obese.
Collapse
Affiliation(s)
- William C Zamboni
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Caroline Institute of Nanomedicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rosane Charlab
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Gilbert J Burckart
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | | |
Collapse
|
15
|
Hurwitz J, Haggstrom LR, Lim E. Antibody-Drug Conjugates: Ushering in a New Era of Cancer Therapy. Pharmaceutics 2023; 15:2017. [PMID: 37631232 PMCID: PMC10458257 DOI: 10.3390/pharmaceutics15082017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Antibody-drug conjugates (ADCs) have provided new therapeutic options and significant promise for patients with cancer, particularly where existing treatments are limited. Substantial effort in ADC development is underway globally, with 13 ADCs currently approved and many more in development. The therapeutic benefits of ADCs leverage the ability to selectively target cancer cells through antibody binding, resultant relative sparing of non-malignant tissues, and the targeted delivery of a cytotoxic payload. Consequently, this drug class has demonstrated activity in multiple malignancies refractory to standard therapeutic options. Despite this, limitations exist, including narrow therapeutic windows, unique toxicity profiles, development of therapeutic resistance, and appropriate biomarker selection. This review will describe the development of ADCs, their mechanisms of action, pivotal trials, and approved indications and identify common themes. Current challenges and opportunities will be discussed for this drug class in cancer therapeutics at a time when significant developments in antibody therapies, immunotherapy, and targeted agents are occurring.
Collapse
Affiliation(s)
- Joshua Hurwitz
- St. Vincent’s Clinical School, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2053, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | | | - Elgene Lim
- St. Vincent’s Clinical School, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2053, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
16
|
Fujii T, Matsuda Y. Novel formats of antibody conjugates: recent advances in payload diversity, conjugation, and linker chemistry. Expert Opin Biol Ther 2023; 23:1053-1065. [PMID: 37953519 DOI: 10.1080/14712598.2023.2276873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION In the field of bioconjugates, the focus on antibody - drug conjugates (ADCs) with novel payloads beyond the traditional categories of potent cytotoxic agents is increasing. These innovative ADCs exhibit various molecular formats, ranging from small-molecule payloads, such as immune agonists and proteolytic agents, to macromolecular payloads, such as oligonucleotides and proteins. AREAS COVERED This review offers an in-depth exploration of unconventional strategies for designing conjugates with novel mechanisms of action and notable examples of approaches that show promising prospects. Representative examples of novel format payloads and their classification, attributes, and appropriate conjugation techniques are discussed in detail. EXPERT OPINION The existing basic technologies used to manufacture ADCs can be directly applied to synthesize novel formatted conjugates. However, a wide variety of new payloads require the creation of customized technologies adapted to the unique characteristics of these payloads. Consequently, fundamental technologies, such as conjugation methods aimed at achieving high drug - antibody ratios and developing stable crosslinkers, are likely to become increasingly important research areas in the future.
Collapse
|
17
|
Hong Y, Nam SM, Moon A. Antibody-drug conjugates and bispecific antibodies targeting cancers: applications of click chemistry. Arch Pharm Res 2023; 46:131-148. [PMID: 36877356 DOI: 10.1007/s12272-023-01433-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/30/2023] [Indexed: 03/07/2023]
Abstract
Engineering approaches using antibody drug conjugates (ADCs) and bispecific antibodies (bsAbs) are designed to overcome the limitations of conventional chemotherapies and therapeutic antibodies such as drug resistance and non-specific toxicity. Cancer immunotherapies have been shown to be clinically successful with checkpoint blockade and chimeric antigen receptor T cell therapy; however, overactive immune systems still represent a major problem. Given the complexity of a tumor environment, it would be advantageous to have a strategy targeting two or more molecules. We highlight the necessity and importance of a multi-target platform strategy against cancer. Approximately 400 ADCs and over 200 bsAbs are currently being clinically developed for several indications, with promising signs of therapeutic activity. ADCs include antibodies that recognize tumor antigens, linkers that stably connect drugs, and powerful cytotoxic drugs, also known as payloads. ADCs have direct therapeutic effects by targeting cancers with a strong payload. Another type of drug that uses antibodies are bsAbs, targeting two antigens by linking to antigen recognition sites or bridging cytotoxic immune cells to tumor cells, resulting in cancer immunotherapy. Three bsAbs and one ADC have been approved for use by the FDA and the EMA in 2022. Among these, two of the bsAbs and the one ADC are used for cancers. We introduced that bsADC, a combination of ADC and bsAbs, has yet to be approved and several candidates are in the early stages of clinical development in this review. bsADCs technology helps increase the specificity of ADCs or the internalization and killing ability of bsAbs. We also briefly discuss the application of click chemistry in the efficient development of ADCs and bsAbs as a conjugation strategy. The present review summarizes the ADCs, bsAbs, and bsADCs that have been approved for anti-cancer or currently in development. These strategies selectively deliver drugs to malignant tumor cells and can be used as therapeutic approaches for various types of cancer.
Collapse
Affiliation(s)
- Yeji Hong
- College of Pharmacy, Duksung Innovative Drug Center, Duksung Women's University, Seoul, 01369, Korea
| | - Su-Min Nam
- College of Pharmacy, Duksung Innovative Drug Center, Duksung Women's University, Seoul, 01369, Korea
| | - Aree Moon
- College of Pharmacy, Duksung Innovative Drug Center, Duksung Women's University, Seoul, 01369, Korea.
| |
Collapse
|
18
|
Site-Specific Antibody Conjugation with Payloads beyond Cytotoxins. Molecules 2023; 28:molecules28030917. [PMID: 36770585 PMCID: PMC9921355 DOI: 10.3390/molecules28030917] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
As antibody-drug conjugates have become a very important modality for cancer therapy, many site-specific conjugation approaches have been developed for generating homogenous molecules. The selective antibody coupling is achieved through antibody engineering by introducing specific amino acid or unnatural amino acid residues, peptides, and glycans. In addition to the use of synthetic cytotoxins, these novel methods have been applied for the conjugation of other payloads, including non-cytotoxic compounds, proteins/peptides, glycans, lipids, and nucleic acids. The non-cytotoxic compounds include polyethylene glycol, antibiotics, protein degraders (PROTAC and LYTAC), immunomodulating agents, enzyme inhibitors and protein ligands. Different small proteins or peptides have been selectively conjugated through unnatural amino acid using click chemistry, engineered C-terminal formylglycine for oxime or click chemistry, or specific ligation or transpeptidation with or without enzymes. Although the antibody protamine peptide fusions have been extensively used for siRNA coupling during early studies, direct conjugations through engineered cysteine or lysine residues have been demonstrated later. These site-specific antibody conjugates containing these payloads other than cytotoxic compounds can be used in proof-of-concept studies and in developing new therapeutics for unmet medical needs.
Collapse
|
19
|
Cheng Y, Yuan X, Tian Q, Huang X, Chen Y, Pu Y, Long H, Xu M, Ji Y, Xie J, Tan Y, Zhao X, Song H. Preclinical profiles of SKB264, a novel anti-TROP2 antibody conjugated to topoisomerase inhibitor, demonstrated promising antitumor efficacy compared to IMMU-132. Front Oncol 2022; 12:951589. [PMID: 36620535 PMCID: PMC9817100 DOI: 10.3389/fonc.2022.951589] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/29/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose The aim of this study was to improve the intratumoral accumulation of an antibody-drug conjugate (ADC) and minimize its off-target toxicity, SKB264, a novel anti-trophoblast antigen 2 (TROP2) ADC that was developed using 2-methylsulfonyl pyrimidine as the linker to conjugate its payload (KL610023), a belotecan-derivative topoisomerase I inhibitor. The preclinical pharmacologic profiles of SKB264 were assessed in this study. Methods The in vitro and in vivo pharmacologic profiles of SKB264, including efficacy, pharmacokinetics-pharmacodynamics (PK-PD), safety, and tissue distribution, were investigated using TROP2-positive cell lines, cell-derived xenograft (CDX), patient-derived xenograft (PDX) models, and cynomolgus monkeys. Moreover, some profiles were compared with IMMU-132. Results In vitro, SKB264 and SKB264 monoclonal antibody (mAb) had similar internalization abilities and binding affinities to TROP2. After cellular internalization, KL610023 was released and inhibited tumor cell survival. In vivo, SKB264 significantly inhibited tumor growth in a dose-dependent manner in both CDX and PDX models. After SKB264 administration, the serum or plasma concentration/exposure of SKB264 (conjugated ADC, number of payload units ≥1), total antibody (Tab, unconjugated and conjugated mAb regardless of the number of the payload units), and KL610023 in cynomolgus monkeys increased proportionally with increasing dosage from 1 to 10 mg/kg. The linker stability of SKB264 was significantly enhanced as shown by prolonged payload half-life in vivo (SKB264 vs. IMMU-132, 56.3 h vs. 15.5 h). At the same dose, SKB264's exposure in tumor tissue was 4.6-fold higher than that of IMMU-132. Conclusions Compared with IMMU-132, the longer half-life of SKB264 had a stronger targeting effect and better antitumor activity, suggesting the better therapeutic potential of SKB264 for treating TROP2-positive tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xi Zhao
- Center of Translational Medicine, Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd., Chengdu, China
| | - Hongmei Song
- Center of Translational Medicine, Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd., Chengdu, China
| |
Collapse
|
20
|
Chavda VP, Solanki HK, Davidson M, Apostolopoulos V, Bojarska J. Peptide-Drug Conjugates: A New Hope for Cancer Management. Molecules 2022; 27:7232. [PMID: 36364057 PMCID: PMC9658517 DOI: 10.3390/molecules27217232] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 08/07/2023] Open
Abstract
Cancer remains the leading cause of death worldwide despite advances in treatment options for patients. As such, safe and effective therapeutics are required. Short peptides provide advantages to be used in cancer management due to their unique properties, amazing versatility, and progress in biotechnology to overcome peptide limitations. Several appealing peptide-based therapeutic strategies have been developed. Here, we provide an overview of peptide conjugates, the better equivalents of antibody-drug conjugates, as the next generation of drugs for required precise targeting, enhanced cellular permeability, improved drug selectivity, and reduced toxicity for the efficient treatment of cancers. We discuss the basic components of drug conjugates and their release action, including the release of cytotoxins from the linker. We also present peptide-drug conjugates under different stages of clinical development as well as regulatory and other challenges.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Hetvi K. Solanki
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90-924 Lodz, Poland
| |
Collapse
|
21
|
Anti-PTK7 Monoclonal Antibodies Exhibit Anti-Tumor Activity at the Cellular Level and in Mouse Xenograft Models of Esophageal Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms232012195. [PMID: 36293051 PMCID: PMC9603586 DOI: 10.3390/ijms232012195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
PTK7 is a catalytically defective receptor protein tyrosine kinase upregulated in various cancers, including esophageal squamous cell carcinoma (ESCC). In previous studies, we observed a positive correlation between PTK7 expression levels and tumorigenicity in various ESCC cell lines and xenograft mice with ESCC KYSE-30 cells. In this study, we analyzed the effects of anti-PTK7 monoclonal antibodies (mAbs) on the tumorigenic activity in KYSE-30 cells and in mouse xenograft models. PTK7 mAb-32 and mAb-43 bind with a high affinity to the extracellular domain of PTK7. PTK7 mAbs significantly reduced three-dimensional cell proliferation, adhesion, wound healing, and migration. PTK7 mAbs also reduce chemotactic invasiveness by decreasing MMP-9 secretion. PTK7 mAbs decreased actin cytoskeleton levels in the cortical region of KYSE-30 cells. PTK7 mAbs reduced the phosphorylation of ERK, SRC, and FAK. In a mouse xenograft model of ESCC using KYSE-30 cells, PTK7 mAbs reduced tumor growth in terms of volume, weight, and the number of Ki-67-positive cells. These results demonstrated that PTK7 mAbs can inhibit the tumorigenicity of ESCC at the cellular level and in vivo by blocking the function of PTK7. Considering the anticancer activities of PTK7 mAbs, we propose that PTK7 mAbs can be used in an effective treatment strategy for PTK7-positive malignancies, such as ESCC.
Collapse
|
22
|
Mukherjee AG, Wanjari UR, Namachivayam A, Murali R, Prabakaran DS, Ganesan R, Renu K, Dey A, Vellingiri B, Ramanathan G, Doss C. GP, Gopalakrishnan AV. Role of Immune Cells and Receptors in Cancer Treatment: An Immunotherapeutic Approach. Vaccines (Basel) 2022; 10:1493. [PMID: 36146572 PMCID: PMC9502517 DOI: 10.3390/vaccines10091493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/07/2022] Open
Abstract
Cancer immunotherapy moderates the immune system's ability to fight cancer. Due to its extreme complexity, scientists are working to put together all the puzzle pieces to get a clearer picture of the immune system. Shreds of available evidence show the connection between cancer and the immune system. Immune responses to tumors and lymphoid malignancies are influenced by B cells, γδT cells, NK cells, and dendritic cells (DCs). Cancer immunotherapy, which encompasses adoptive cancer therapy, monoclonal antibodies (mAbs), immune checkpoint therapy, and CART cells, has revolutionized contemporary cancer treatment. This article reviews recent developments in immune cell regulation and cancer immunotherapy. Various options are available to treat many diseases, particularly cancer, due to the progress in various immunotherapies, such as monoclonal antibodies, recombinant proteins, vaccinations (both preventative and curative), cellular immunotherapies, and cytokines.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - George Priya Doss C.
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
23
|
Mishra AK, Ali A, Dutta S, Banday S, Malonia SK. Emerging Trends in Immunotherapy for Cancer. Diseases 2022; 10:60. [PMID: 36135216 PMCID: PMC9498256 DOI: 10.3390/diseases10030060] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Recent advances in cancer immunology have enabled the discovery of promising immunotherapies for various malignancies that have shifted the cancer treatment paradigm. The innovative research and clinical advancements of immunotherapy approaches have prolonged the survival of patients with relapsed or refractory metastatic cancers. Since the U.S. FDA approved the first immune checkpoint inhibitor in 2011, the field of cancer immunotherapy has grown exponentially. Multiple therapeutic approaches or agents to manipulate different aspects of the immune system are currently in development. These include cancer vaccines, adoptive cell therapies (such as CAR-T or NK cell therapy), monoclonal antibodies, cytokine therapies, oncolytic viruses, and inhibitors targeting immune checkpoints that have demonstrated promising clinical efficacy. Multiple immunotherapeutic approaches have been approved for specific cancer treatments, while others are currently in preclinical and clinical trial stages. Given the success of immunotherapy, there has been a tremendous thrust to improve the clinical efficacy of various agents and strategies implemented so far. Here, we present a comprehensive overview of the development and clinical implementation of various immunotherapy approaches currently being used to treat cancer. We also highlight the latest developments, emerging trends, limitations, and future promises of cancer immunotherapy.
Collapse
Affiliation(s)
- Alok K. Mishra
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Amjad Ali
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Shubham Dutta
- MassBiologics, UMass Chan Medical School, Boston, MA 02126, USA
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Sunil K. Malonia
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
24
|
Evans R, Thurber GM. Design of high avidity and low affinity antibodies for in situ control of antibody drug conjugate targeting. Sci Rep 2022; 12:7677. [PMID: 35538109 PMCID: PMC9090802 DOI: 10.1038/s41598-022-11648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Antibody-Drug Conjugates (ADCs) have rapidly expanded in the clinic, with 7 new approvals in 3 years. For solid tumors, high doses of ADCs improve tissue penetration and efficacy. These doses are enabled by lower drug-to-antibody ratios and/or co-administration of unconjugated antibody carrier doses to avoid payload toxicity. While effective for highly expressed targets, these strategies may not maintain efficacy with lower target expression. To address this issue, a carrier dose that adjusts binding in situ according to cellular expression was designed using computational modeling. Previous studies demonstrated that coadministration of unconjugated antibody with the corresponding ADC at an 8:1 ratio improves ADCs efficacy in high HER2 expressing tumors. By designing a High Avidity, Low Affinity (HALA) carrier antibody, ADC binding is partially blocked in high expression cells, improving tissue penetration. In contrast, the HALA antibody cannot compete with the ADC in low expressing cells, allowing ADC binding to the majority of receptors. Thus, the amount of competition from the carrier dose automatically adjusts to expression levels, allowing tailored competition between different patients/metastases. The computational model highlights two dimensionless numbers, the Thiele modulus and a newly defined competition number, to design an optimal HALA antibody carrier dose for any target.
Collapse
Affiliation(s)
- Reginald Evans
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. .,Rogel Cancer Center, University of Michigan Medicine, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
25
|
Crescioli S, White AL, Karagiannis SN. Special Issue "Antibody Engineering for Cancer Immunotherapy". Antibodies (Basel) 2022; 11:antib11020029. [PMID: 35466282 PMCID: PMC9036255 DOI: 10.3390/antib11020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/10/2022] Open
Abstract
Since the approval of Rituximab in the late 1990s, the first chimeric monoclonal antibody for the treatment of non-Hodgkin lymphoma, antibody engineering for cancer immunotherapy has become a rapidly growing field, with almost 50 antibody therapeutics approved in the USA and EU and hundreds undergoing testing in clinical trials [...].
Collapse
Affiliation(s)
- Silvia Crescioli
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
- Correspondence:
| | | | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
- Guy’s Cancer Centre, Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
| |
Collapse
|