1
|
Sakalauskienė GV, Malcienė L, Stankevičius E, Radzevičienė A. Unseen Enemy: Mechanisms of Multidrug Antimicrobial Resistance in Gram-Negative ESKAPE Pathogens. Antibiotics (Basel) 2025; 14:63. [PMID: 39858349 PMCID: PMC11762671 DOI: 10.3390/antibiotics14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Multidrug antimicrobial resistance (AMR) represents a formidable challenge in the therapy of infectious diseases, triggered by the particularly concerning gram-negative Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) pathogens. Designated as a "priority" in 2017, these bacteria continue to pose a significant threat in 2024, particularly during the worldwide SARS-CoV-2 pandemic, where coinfections with ESKAPE members contributed to worsened patient outcomes. The declining effectiveness of current treatments against these pathogens has led to an increased disease burden and an increase in mortality rates globally. This review explores the sophisticated mechanisms driving AMR in gram-negative ESKAPE bacteria, focusing on Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterobacter spp. Key bacterial mechanisms contributing to resistance include limitations in drug uptake, production of antibiotic-degrading enzymes, alterations in drug target sites, and enhanced drug efflux systems. Comprehending these pathways is vital for formulating innovative therapeutic strategies and tackling the ongoing threat posed by these resistant pathogens.
Collapse
Affiliation(s)
- Giedrė Valdonė Sakalauskienė
- Institute of Physiology and Pharmacology, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.M.); (E.S.); (A.R.)
| | | | | | | |
Collapse
|
2
|
Silva A, Silva V, Dapkevicius MDLE, Azevedo M, Cordeiro R, Pereira JE, Valentão P, Falco V, Igrejas G, Caniça M, Poeta P. Unveiling Antibiotic Resistance, Clonal Diversity, and Biofilm Formation in E. coli Isolated from Healthy Swine in Portugal. Pathogens 2024; 13:305. [PMID: 38668260 PMCID: PMC11054063 DOI: 10.3390/pathogens13040305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Escherichia coli, a commensal microorganism found in the gastrointestinal tract of human and animal hosts, plays a central role in agriculture and public health. Global demand for animal products has promoted increased pig farming, leading to growing concerns about the prevalence of antibiotic-resistant E. coli strains in swine populations. It should be noted that a significant portion of antibiotics deployed in swine management belong to the critically important antibiotics (CIA) class, which should be reserved for human therapeutic applications. This study aimed to characterize the prevalence of antibiotic resistance, genetic diversity, virulence characteristics, and biofilm formation of E. coli strains in healthy pigs from various farms across central Portugal. Our study revealed high levels of antibiotic resistance, with resistance to tetracycline, ampicillin, tobramycin, and trimethoprim-sulfamethoxazole. Multidrug resistance is widespread, with some strains resistant to seven different antibiotics. The ampC gene, responsible for broad-spectrum resistance to cephalosporins and ampicillin, was widespread, as were genes associated with resistance to sulfonamide and beta-lactam antibiotics. The presence of high-risk clones, such as ST10, ST101, and ST48, are a concern due to their increased virulence and multidrug resistance profiles. Regarding biofilm formation, it was observed that biofilm-forming capacity varied significantly across different compartments within pig farming environments. In conclusion, our study highlights the urgent need for surveillance and implementation of antibiotic management measures in the swine sector. These measures are essential to protect public health, ensure animal welfare, and support the swine industry in the face of the growing global demand for animal products.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Maria de Lurdes Enes Dapkevicius
- IITAA—Institute of Agricultural and Environmental Research and Technology, University of the Azores (UAc), 9700-042 Angra do Heroísmo, Portugal
| | - Mónica Azevedo
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4049-021 Porto, Portugal; (M.A.)
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
| | - Rui Cordeiro
- Intergados, SA, Av. de Olivença, S/N, 2870-108 Montijo, Portugal;
| | - José Eduardo Pereira
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Patrícia Valentão
- Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Universidade do Porto, 2829-516 Caparica, Portugal; (P.V.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Virgílio Falco
- Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Universidade do Porto, 2829-516 Caparica, Portugal; (P.V.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Universidade of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Manuela Caniça
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4049-021 Porto, Portugal; (M.A.)
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
de Lagarde M, Fairbrother JM, Archambault M, Dufour S, Francoz D, Massé J, Lardé H, Aenishaenslin C, Paradis ME, Terrat Y, Roy JP. Clonal and plasmidic dissemination of critical antimicrobial resistance genes through clinically relevant ExPEC and APEC-like lineages (ST) in the dairy cattle population of Québec, Canada. Front Microbiol 2024; 14:1304678. [PMID: 38304859 PMCID: PMC10830774 DOI: 10.3389/fmicb.2023.1304678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024] Open
Abstract
Antimicrobial resistance can be effectively limited by improving the judicious use of antimicrobials in food production. However, its effect on the spread of AMR genes in animal populations is not well described. In the province of Québec, Canada, a new legislation implemented in 2019 has led to an unprecedented reduction in the use of critical antimicrobials in dairy production. We aimed to investigate the potential link between ESBL/AmpC E. coli isolated before and after legislation and to determine the presence of plasmids carrying genes responsible for critical AMR. We collected fecal samples from calves, cows, and manure pit from 87 Québec dairy farms approximately 2 years before and 2 years after the legislation came into effect. The whole genomes of 183 presumptive ESBL/AmpC E. coli isolated after cefotaxime enrichment were sequenced. Their phylogenetic characteristics (MLST, serogroup, cgMLST) and the presence of virulence and resistance genes and replicons were examined. A maximum likelihood phylogenetic tree was constructed based on single nucleotide polymorphism (SNPs). We identified 10 clonal lineages (same cgMLST) and 7 clones (SNPs ≤ 52). Isolates belonging to these clones could be found on different farms before and after the legislation, strongly suggesting a clonal spread of AMR genes in the population during this 4-year period. All isolates were multidrug resistant (MDR), with clone 2 being notable for the presence of macrolide, fluoroquinolone, and third-generation cephalosporin resistance genes. We also identified clinically relevant ExPEC (ST10) and APEC-like lineages (ST117, ST58, ST88) associated with the presence of ExPEC and APEC virulence genes, respectively. Our data also suggests the presence of one epidemic plasmid belonging to the IncY incompatibility group and carrying qnrs1 and blaCTX-M-15. We demonstrated that AMR genes spread through farms and can persist over a 4-year period in the dairy cattle population through both plasmids and E. coli clones, despite the restriction of critical antimicrobial use. MDR ExPEC and APEC-like STs are present in the normal microbiota of cattle (more frequently in calves). These data increase our knowledge on gene dissemination dynamics and highlight the fact that biosecurity measures should be enhanced in this industry to limit such dissemination.
Collapse
Affiliation(s)
- Maud de Lagarde
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
| | - John Morris Fairbrother
- World Organization of Animal Health Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FQRNT), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Marie Archambault
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FQRNT), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Simon Dufour
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - David Francoz
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
| | - Jonathan Massé
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Hélène Lardé
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, St. Kitts, St. Kitts and Nevis
| | - Cécile Aenishaenslin
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de recherche en santé publique de l’Université de Montréal et du Centre Intégré Universitaire de Santé et de Service Sociaux (CIUSSS) du Centre-Sud-de-l’Île-de-Montréal, Montréal, QC, Canada
| | - Marie-Eve Paradis
- Association des médecins vétérinaires praticiens du Québec, Saint-Hyacinthe, QC, Canada
| | - Yves Terrat
- Consortium Santé Numérique de l’Université de Montréal, Montréal, QC, Canada
| | - Jean-Philippe Roy
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
4
|
Alvarez L, Carhuaricra D, Palomino-Farfan J, Calle S, Maturrano L, Siuce J. Genomic Profiling of Multidrug-Resistant Swine Escherichia coli and Clonal Relationship to Human Isolates in Peru. Antibiotics (Basel) 2023; 12:1748. [PMID: 38136782 PMCID: PMC10740509 DOI: 10.3390/antibiotics12121748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The misuse of antibiotics is accelerating antimicrobial resistance (AMR) in Escherichia coli isolated from farm animals. The genomes of ten multidrug-resistant (MDR) E. coli isolates from pigs were analyzed to determine their sequence types, serotypes, virulence, and AMR genes (ARGs). Additionally, the relationship was evaluated adding all the available genomes of Peruvian E. coli from humans using the cgMLST + HierCC scheme. Two aEPEC O186:H11-ST29 were identified, of which H11 and ST29 are reported in aEPEC isolates from different sources. An isolate ETEC-O149:H10-ST100 was identified, considered a high-risk clone that is frequently reported in different countries as a cause of diarrhea in piglets. One ExPEC O101:H11-ST167 was identified, for which ST167 is an international high-risk clone related to urinary infections in humans. We identified many ARGs, including extended-spectrum β-lactamase genes, and one ETEC harboring the mcr-1 gene. CgMLST + HierCC analysis differentiated three clusters, and in two, the human isolates were grouped with those of swine in the same cluster. We observed that Peruvian swine MDR E. coli cluster with Peruvian E. coli isolates from healthy humans and from clinical cases, which is of great public health concern and evidence that AMR surveillance should be strengthened based on the One Health approach.
Collapse
Affiliation(s)
- Luis Alvarez
- Laboratory of Veterinary Bacteriology and Mycology, Faculty of Veterinary Medicine, National University of San Marcos, Lima 15021, Peru; (L.A.); (J.P.-F.); (S.C.)
| | - Dennis Carhuaricra
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, National University of San Marcos, Lima 15021, Peru; (D.C.); (L.M.)
| | - Joel Palomino-Farfan
- Laboratory of Veterinary Bacteriology and Mycology, Faculty of Veterinary Medicine, National University of San Marcos, Lima 15021, Peru; (L.A.); (J.P.-F.); (S.C.)
| | - Sonia Calle
- Laboratory of Veterinary Bacteriology and Mycology, Faculty of Veterinary Medicine, National University of San Marcos, Lima 15021, Peru; (L.A.); (J.P.-F.); (S.C.)
| | - Lenin Maturrano
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, National University of San Marcos, Lima 15021, Peru; (D.C.); (L.M.)
| | - Juan Siuce
- Laboratory of Veterinary Bacteriology and Mycology, Faculty of Veterinary Medicine, National University of San Marcos, Lima 15021, Peru; (L.A.); (J.P.-F.); (S.C.)
| |
Collapse
|
5
|
Furlan JPR, Ramos MS, Dos Santos LDR, da Silva Rosa R, Stehling EG. Multidrug-resistant Shiga toxin-producing Escherichia coli and hybrid pathogenic strains of bovine origin. Vet Res Commun 2023; 47:1907-1913. [PMID: 37199834 DOI: 10.1007/s11259-023-10141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Antimicrobial-resistant Escherichia coli strains have been circulating in various sectors and can be cross-transferred between them. Among pathogenic E. coli strains, Shiga toxin-producing E. coli (STEC) and hybrid pathogenic E. coli (HyPEC) emerged as responsible for outbreaks worldwide. As bovine are reservoir of STEC strains, these pathogens primarily spread to food products, exposing humans to risk. Therefore, this study aimed to characterize antimicrobial-resistant and potentially pathogenic E. coli strains from fecal samples of dairy cattle. In this regard, most E. coli strains (phylogenetic groups A, B1, B2, and E) were resistant to β-lactams and non-β-lactams and were classified as multidrug-resistant (MDR). Antimicrobial resistance genes (ARGs) related to multidrug resistance profiles were detected. Furthermore, mutations in fluoroquinolone and colistin resistance determinants were also identified, highlighting the deleterious mutation His152Gln in PmrB that may have contributed to the high level (> 64 mg/L) of colistin resistance. Virulence genes of diarrheagenic and extraintestinal pathogenic E. coli (ExPEC) pathotypes were shared among strains and even within the same strain, evidencing the presence of HyPEC (i.e., ExPEC/STEC), which were assigned as unusual B2-ST126-H3 and B1-ST3695-H31. These findings provide phenotypic and molecular data of MDR, ARGs-producing, and potentially pathogenic E. coli strains in dairy cattle, contributing to the monitoring of antimicrobial resistance and pathogens in healthy animals and alerting to potential bovine-associated zoonotic infections.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | - Micaela Santana Ramos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | - Lucas David Rodrigues Dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | - Rafael da Silva Rosa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil.
| |
Collapse
|
6
|
Byarugaba DK, Wokorach G, Alafi S, Erima B, Najjuka F, Mworozi EA, Kibuuka H, Wabwire-Mangen F. Whole Genome Sequencing Reveals High Genetic Diversity, Diverse Repertoire of Virulence-Associated Genes and Limited Antibiotic Resistance Genes among Commensal Escherichia coli from Food Animals in Uganda. Microorganisms 2023; 11:1868. [PMID: 37630428 PMCID: PMC10457813 DOI: 10.3390/microorganisms11081868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 08/27/2023] Open
Abstract
Commensal Escherichia coli with broad repertoire of virulence and antimicrobial resistance (AMR) genes pose serious public health risks as reservoirs of AMR and virulence. This study undertook whole genome characterization of commensal E. coli from food-producing animals in Uganda to investigate their genome variability (resistome and virulome). We established that the E. coli had high genomic diversity with 38 sequence types, 24 FimH types, and 33 O-antigen serotypes randomly distributed within three phylogroups (A, B1, and E). A greater proportion (≥93.65%) of the E. coli were resistant to amoxicillin/clavulanate and ampicillin antibiotics. The isolates were AmpC beta-lactamase producers dominated by blaEC-15 (71.88%) and tet(A) (20.31%) antimicrobial resistant genes besides a diverse armory of virulence-associated genes in the class of exotoxin, adhesins, iron uptake, and serine protease autotransporters which varied by host species. Cattle were found to be the major source of E. coli carrying Shiga toxin genes, whereas swine was the main source of E. coli carrying colicin-like Usp toxin gene. The study underscores the importance of livestock as the carrier of E. coli with antimicrobial resistance and a large repertoire of virulence traits with a potential of causing disease in animals and humans by acquiring more genetic traits.
Collapse
Affiliation(s)
- Denis K. Byarugaba
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
- College of Veterinary Medicine, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Godfrey Wokorach
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
- Gulu University Multifunctional Research Laboratories, Gulu P.O. Box 166, Uganda
| | - Stephen Alafi
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
| | - Bernard Erima
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
| | - Florence Najjuka
- College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Edison A. Mworozi
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
- College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
| | - Fred Wabwire-Mangen
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
- College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| |
Collapse
|
7
|
Álvarez VE, Quiroga MP, Centrón D. Identification of a Specific Biomarker of Acinetobacter baumannii Global Clone 1 by Machine Learning and PCR Related to Metabolic Fitness of ESKAPE Pathogens. mSystems 2023:e0073422. [PMID: 37184409 DOI: 10.1128/msystems.00734-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Since the emergence of high-risk clones worldwide, constant investigations have been undertaken to comprehend the molecular basis that led to their prevalent dissemination in nosocomial settings over time. So far, the complex and multifactorial genetic traits of this type of epidemic clones have allowed only the identification of biomarkers with low specificity. A machine learning algorithm was able to recognize unequivocally a biomarker for early and accurate detection of Acinetobacter baumannii global clone 1 (GC1), one of the most disseminated high-risk clones. A support vector machine model identified the U1 sequence with a length of 367 nucleotides that matched a fragment of the moaCB gene, which encodes the molybdenum cofactor biosynthesis C and B proteins. U1 differentiates specifically between A. baumannii GC1 and non-GC1 strains, becoming a suitable biomarker capable of being translated into clinical settings as a molecular typing method for early diagnosis based on PCR as shown here. Since the metabolic pathways of Mo enzymes have been recognized as putative therapeutic targets for ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens, our findings highlight that machine learning can also be useful in knowledge gaps of high-risk clones and provides noteworthy support to the literature to identify relevant nosocomial biomarkers for other multidrug-resistant high-risk clones. IMPORTANCE A. baumannii GC1 is an important high-risk clone that rapidly develops extreme drug resistance in the nosocomial niche. Furthermore, several strains have been identified worldwide in environmental samples, exacerbating the risk of human interactions. Early diagnosis is mandatory to limit its dissemination and to outline appropriate antibiotic stewardship schedules. A region with a length of 367 bp (U1) within the moaCB gene that is not subjected to lateral genetic transfer or to antibiotic pressures was successfully found by a support vector machine model that predicts A. baumannii GC1 strains. At the same time, research on the group of Mo enzymes proposed this metabolic pathway related to the superbug's metabolism as a potential future drug target site for ESKAPE pathogens due to its central role in bacterial fitness during infection. These findings confirm that machine learning used for the identification of biomarkers of high-risk lineages can also serve to identify putative novel therapeutic target sites.
Collapse
Affiliation(s)
- Verónica Elizabeth Álvarez
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos (LIMRA), Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Paula Quiroga
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos (LIMRA), Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Nodo de Bioinformática. Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Centrón
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos (LIMRA), Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
8
|
Massé J, Vanier G, Fairbrother JM, de Lagarde M, Arsenault J, Francoz D, Dufour S, Archambault M. Description of Antimicrobial-Resistant Escherichia coli and Their Dissemination Mechanisms on Dairy Farms. Vet Sci 2023; 10:vetsci10040242. [PMID: 37104397 PMCID: PMC10144642 DOI: 10.3390/vetsci10040242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
Despite its importance in veterinary medicine, there is little information about antimicrobial resistance (AMR) and its transmission in dairy cattle. The aim of this work is to compare AMR phenotypes and genotypes in resistant Escherichia coli and to determine how the resistance genes spread among the E. coli population on dairy farms in Québec, Canada. From an existing culture collection of E. coli isolated from dairy manure, a convenient selection of the most resistant isolates (a high level of multidrug resistance or resistance to broad-spectrum β-lactams or fluoroquinolones) was analyzed (n = 118). An AMR phenotype profile was obtained for each isolate. Whole genome sequencing was used to determine the presence of resistance genes, point mutations, and mobile genetic elements. In addition, a subset of isolates from 86 farms was taken to investigate the phylogenetic relationship and geographic distribution of the isolates. The average agreement between AMR phenotypes and genotypes was 95%. A third-generation cephalosporin resistance gene (blaCTX-M-15), a resistance gene conferring reduced susceptibility to fluoroquinolones (qnrS1), and an insertion sequence (ISKpn19) were detected in the vicinity of each other on the genome. These genes were harbored in one triplet of clonal isolates from three farms located >100 km apart. Our study reveals the dissemination of resistant E. coli clones between dairy farms. Furthermore, these clones are resistant to broad-spectrum β-lactam and fluoroquinolone antimicrobials.
Collapse
Affiliation(s)
- Jonathan Massé
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Ghyslaine Vanier
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- WOAH Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - John M Fairbrother
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- WOAH Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Maud de Lagarde
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Julie Arsenault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - David Francoz
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Simon Dufour
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie Archambault
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
9
|
Baillo A, Villena J, Albarracín L, Tomokiyo M, Elean M, Fukuyama K, Quilodrán-Vega S, Fadda S, Kitazawa H. Lactiplantibacillus plantarum Strains Modulate Intestinal Innate Immune Response and Increase Resistance to Enterotoxigenic Escherichia coli Infection. Microorganisms 2022; 11:microorganisms11010063. [PMID: 36677354 PMCID: PMC9863675 DOI: 10.3390/microorganisms11010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Currently, probiotic bacteria with not transferable antibiotic resistance represent a sustainable strategy for the treatment and prevention of enterotoxigenic Escherichia coli (ETEC) in farm animals. Lactiplantibacillus plantarum is among the most versatile species used in the food industry, either as starter cultures or probiotics. In the present work, the immunobiotic potential of L. plantarum CRL681 and CRL1506 was studied to evaluate their capability to improve the resistance to ETEC infection. In vitro studies using porcine intestinal epithelial (PIE) cells and in vivo experiments in mice were undertaken. Expression analysis indicated that both strains were able to trigger IL-6 and IL-8 expression in PIE cells in steady-state conditions. Furthermore, mice orally treated with these strains had significantly improved levels of IFN-γ and TNF-α in the intestine as well as enhanced activity of peritoneal macrophages. The ability of CRL681 and CRL1506 to beneficially modulate intestinal immunity was further evidenced in ETEC-challenge experiments. In vitro, the CRL1506 and CRL681 strains modulated the expression of inflammatory cytokines (IL-6) and chemokines (IL-8, CCL2, CXCL5 and CXCL9) in ETEC-stimulated PIE cells. In vivo experiments demonstrated the ability of both strains to beneficially regulate the immune response against this pathogen. Moreover, the oral treatment of mice with lactic acid bacteria (LAB) strains significantly reduced ETEC counts in jejunum and ileum and prevented the spread of the pathogen to the spleen and liver. Additionally, LAB treated-mice had improved levels of intestinal IL-10 both at steady state and after the challenge with ETEC. The protective effect against ETEC infection was not observed for the non-immunomodulatory TL2677 strain. Furthermore, the study showed that L. plantarum CRL1506 was more efficient than the CRL681 strain to modulate mucosal immunity highlighting the strain specific character of this probiotic activity. Our results suggest that the improved intestinal epithelial defenses and innate immunity induced by L. plantarum CRL1506 and CRL681 would increase the clearance of ETEC and at the same time, protect the host against detrimental inflammation. These constitute valuable features for future probiotic products able to improve the resistance to ETEC infection.
Collapse
Affiliation(s)
- Ayelen Baillo
- Laboratory of Technology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman CP4000, Argentina
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman CP4000, Argentina
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Correspondence: (J.V.); (S.F.); (H.K.)
| | - Leonardo Albarracín
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman CP4000, Argentina
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman CP4000, Argentina
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Sandra Quilodrán-Vega
- Laboratory of Food Microbiology, Faculty of Veterinary Sciences, University of Concepción, Chillán 3820572, Chile
| | - Silvina Fadda
- Laboratory of Technology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman CP4000, Argentina
- Correspondence: (J.V.); (S.F.); (H.K.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Correspondence: (J.V.); (S.F.); (H.K.)
| |
Collapse
|
10
|
Muraya A, Kyany’a C, Kiyaga S, Smith HJ, Kibet C, Martin MJ, Kimani J, Musila L. Antimicrobial Resistance and Virulence Characteristics of Klebsiella pneumoniae Isolates in Kenya by Whole-Genome Sequencing. Pathogens 2022; 11:545. [PMID: 35631066 PMCID: PMC9144577 DOI: 10.3390/pathogens11050545] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Klebsiella pneumoniae is a globally significant opportunistic pathogen causing healthcare-associated and community-acquired infections. This study examined the epidemiology and the distribution of resistance and virulence genes in clinical K. pneumoniae strains in Kenya. A total of 89 K. pneumoniae isolates were collected over six years from five counties in Kenya and were analyzed using whole-genome sequencing and bioinformatics. These isolates were obtained from community-acquired (62/89) and healthcare-associated infections (21/89), and from the hospital environment (6/89). Genetic analysis revealed the presence of blaNDM-1 and blaOXA-181 carbapenemase genes and the armA and rmtF genes known to confer pan-aminoglycoside resistance. The most abundant extended-spectrum beta-lactamase genes identified were blaCTX-M-15 (36/89), blaTEM (35/89), and blaOXA (18/89). In addition, one isolate had a mobile colistin resistance gene (mcr-8). Fluoroquinolone resistance-conferring mutations in gyrA and parC genes were also observed. The most notable virulence factors were those associated with hyper-virulence (rmpA/A2 and magA), yersiniabactin (ybt), salmochelin (iro), and aerobactin (iuc and iutA). A total of 38 distinct sequence types were identified, including known global lineages ST14, ST15, ST147, and ST307, and a regional clone ST17 implicated in regional outbreaks. In addition, this study genetically characterized two potential hypervirulent isolates and two community-acquired ST147 high-risk clones that contained carbapenemase genes, yersiniabactin, and other multidrug resistance genes. These results demonstrate that the resistome and virulome of Kenyan clinical and hospital environmental K. pneumoniae isolates are diverse. The reservoir of high-risk clones capable of spreading resistance, and virulence factors have the potential to cause unmanageable infection outbreaks with high morbidity and mortality.
Collapse
Affiliation(s)
- Angela Muraya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya; (A.M.); (C.K.); (J.K.)
| | - Cecilia Kyany’a
- United States Army Medical Research Directorate-Africa, Village Market, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (H.J.S.)
- Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Shahiid Kiyaga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda;
| | - Hunter J. Smith
- United States Army Medical Research Directorate-Africa, Village Market, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (H.J.S.)
| | - Caleb Kibet
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya; (A.M.); (C.K.); (J.K.)
- International Center for Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya
| | - Melissa J. Martin
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Josephine Kimani
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya; (A.M.); (C.K.); (J.K.)
| | - Lillian Musila
- United States Army Medical Research Directorate-Africa, Village Market, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (H.J.S.)
- Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| |
Collapse
|
11
|
de Lagarde M, Fairbrother JM, Archambault M, Dufour S, Francoz D, Massé J, Lardé H, Aenishaenslin C, Paradis MÈ, Roy JP. Impact of a Regulation Restricting Critical Antimicrobial Usage on Prevalence of Antimicrobial Resistance in Escherichia coli Isolates From Fecal and Manure Pit Samples on Dairy Farms in Québec, Canada. Front Vet Sci 2022; 9:838498. [PMID: 35252426 PMCID: PMC8893019 DOI: 10.3389/fvets.2022.838498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
To tackle antimicrobial resistance (AMR), one of the major health threats of this century, the World Health Organization (WHO) endorsed a global action plan in 2015. This plan calls countries to develop national actions to address AMR. The province of Québec, Canada, adopted a new regulation on the 25th of February 2019, to limit the use in food animals of antimicrobials of very high importance in human medicine. We aimed to establish the impact of this regulation by comparing the AMR situation in dairy cattle in Québec ~2 years before and 2 years after its introduction. We sampled calves, cows, and the manure pit in 87 farms. Generic and putative ESBL/AmpC E. coli were tested for susceptibility to 20 antimicrobials. Logistic regression was used to investigate whether the probability of antimicrobial resistance differed between isolates obtained from the pre and post regulation periods by sample type (calves, cows, manure pit) and in general. To identify AMR genes dissemination mechanisms, we sequenced the whole genome of 15 generic isolates. In the generic collection, at the herd level, the proportion of multidrug resistant (MDR) isolates, decreased significantly from 83 to 71% (p = 0.05). Folate inhibitor and aminoglycoside resistances demonstrated a significant decrease. However, when analyzed by sample type (calves, cows, manure pit), we did not observe a significant AMR decrease in any of these categories. In the ESBL/AmpC collection, we did not detect any significant difference between the two periods. Also, the general resistance gene profile was similar pre and post regulation. We identified both clonal and plasmidic dissemination of resistance genes. In conclusion, as early as 2 years post regulation implementation, we observed a significant decrease in MDR in the dairy industry in Quebec in the generic E. coli collection with folate inhibitor and aminoglycoside resistances showing the most significant decrease. No other significant decreases were yet observed.
Collapse
Affiliation(s)
- Maud de Lagarde
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC, Canada
| | - John M. Fairbrother
- OIE Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Swine and Poultry Infectious Research Center (CRIPA-FQRNT), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Marie Archambault
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC, Canada
- Swine and Poultry Infectious Research Center (CRIPA-FQRNT), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Simon Dufour
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - David Francoz
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC, Canada
| | - Jonathan Massé
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Hélène Lardé
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC, Canada
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, Federation of Saint Christopher and Nevis
| | - Cécile Aenishaenslin
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Marie-Ève Paradis
- Association des Médecins Vétérinaires Praticiens du Québec, Saint-Hyacinthe, QC, Canada
| | - Jean-Philippe Roy
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC, Canada
- *Correspondence: Jean-Philippe Roy
| |
Collapse
|
12
|
Laird TJ, Abraham S, Jordan D, Pluske JR, Hampson DJ, Trott DJ, O'Dea M. Porcine enterotoxigenic Escherichia coli: Antimicrobial resistance and development of microbial-based alternative control strategies. Vet Microbiol 2021; 258:109117. [PMID: 34049073 DOI: 10.1016/j.vetmic.2021.109117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022]
Abstract
Strains of enterotoxigenic Escherichia coli (ETEC) causing post-weaning diarrhoea (PWD) in piglets have a widespread and detrimental impact on animal health and the economics of pork production. Traditional approaches to control and prevention have placed a strong emphasis on antimicrobial use (AMU) to the extent that current prevalent porcine ETEC strains have developed moderate to severe resistance. This complicates treatment of ETEC infection by limiting therapeutic options, increasing diagnostic costs and increasing mortality rates. Management factors, the use of supra-physiological levels of zinc oxide and selected feed additives have all been documented to lower the incidence of ETEC infection in pigs; however, each intervention has its own limitations and cannot solely be relied upon as an alternative to AMU. Consequently, treatment options for porcine ETEC are moving towards the use of newer antimicrobials of higher public health significance. This review focuses on microorganisms and microbial-derived products that could provide a naturally evolved solution to ETEC infection and disease. This category holds a plethora of yet to be explored possibilities, however studies based around bacteriophage therapy, probiotics and the use of probiotic fermentation products as postbiotics have demonstrated promise. Ultimately, pig producers and veterinarians need these solutions to reduce the reliance on critically important antimicrobials (CIAs), to improve economic and animal welfare outcomes, and to lessen the One Health threat potentiated by the dissemination of AMR through the food chain.
Collapse
Affiliation(s)
- Tanya J Laird
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.
| | - David Jordan
- NSW Department of Primary Industries, Wollongbar, New South Wales, Australia
| | - John R Pluske
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - David J Hampson
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Mark O'Dea
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|