1
|
Dias SDC, Costa LRM, Buiatte ABG, Cossi MVC, Nero LA, Yamatogi RS, Bersot LDS, Pereira JG. Escherichia coli as a sentinel in the assessment of antimicrobial resistance in the tilapia production chain: from production environment to the final product. FRONTIERS IN ANTIBIOTICS 2024; 3:1461662. [PMID: 39816247 PMCID: PMC11731651 DOI: 10.3389/frabi.2024.1461662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 01/18/2025]
Abstract
Introduction The intensification of tilapia production has increased animal density in tanks, leading to more frequent exposure to pathogenic agents and compromising the quality of fish products. Antimicrobial resistance is a global concern that affects human treatment, and sentinel microorganisms like Escherichia coli are crucial for monitoring production chains, especially in aquaculture, where research is still limited. The aim of this study was to identify the presence of E. coli and investigate its antimicrobial resistance profiles throughout the entire tilapia production chain. Methods A total of 240 samples were collected from various points in the production process: carcasses before scaling (Ca), scaling wastewater (Sw), filleting wastewater (Fw), fillet washing wastewater (Tw), fillet handling surfaces (Su), and pre-packaged fillets (Pf). The samples were collected during 10 visits, each corresponding to animals from different farms. E. coli isolates were identified using MacConkey agar and biochemical tests. Phenotypic resistance profiles were determined using nine classes of antimicrobials. Extended- spectrum b-lactamase (ESBL) production was identified with ceftazidime and cefotaxime and confirmed by a double-disc synergy test. Isolates were classified as sensitive or resistant based on the inhibition zone. Multidrug-resistant (MDR) was defined as resistance to at least one agent in three or more antimicrobial categories, while extensively drug-resistant (XDR) was defined as resistance to at least one agent in all but two or fewer categories. Results Overall, 50.8% of the samples (122/240) tested positive for E. coli, with 403 isolates identified. Of these, 33% (133/403) were resistant to at least two antimicrobials, and 20% (48/240) of the samples had MDR isolates, with the highest frequency found at the filleting point (Fw), which also had the only XDR profile. Resistance was most commonly observed against amoxicillin (35.73%), tetracycline (30.77%), and ciprofloxacin (26.30%). Discussion These findings emphasize the importance of E. coli as an indicator of antimicrobial resistance throughout tilapia processing and highlight the need for good production practices and qualified technical support to mitigate risks to public health, animal health, and the environment.
Collapse
Affiliation(s)
- Sthéfany Da Cunha Dias
- Department of Animal Production and Preventive Veterinary Medicine, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Botucatu, São Paulo, Brazil
| | | | - Ana Beatriz Garcez Buiatte
- Faculty of Veterinary Medicine, Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | | | - Luís Augusto Nero
- Department of Veterinary Medicine, Federal University of Viçosa (UFV), Viçosa, Brazil
| | | | | | - Juliano Gonçalves Pereira
- Department of Animal Production and Preventive Veterinary Medicine, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
2
|
Wang ZK, Gong JS, Su C, Li H, Rao ZM, Lu ZM, Shi JS, Xu ZH. Multilevel Systematic Optimization To Achieve Efficient Integrated Expression of Escherichia coli. ACS Synth Biol 2024; 13:2887-2898. [PMID: 39262282 DOI: 10.1021/acssynbio.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Genomic integration of heterologous genes is the preferred approach in industrial fermentation-related strains due to the drawbacks associated with plasmid-mediated microbial fermentation, including additional growth burden, genetic instability, and antibiotic contamination. Synthetic biology and genome editing advancements have made gene integration convenient. Integrated expression is extensively used in the field of biomanufacturing and is anticipated to become the prevailing method for expressing recombinant proteins. Therefore, it is pivotal to strengthen the expression of exogenous genes at the genome level. Here, we systematically optimized the integrated expression system of Escherichia coli from 3 aspects. First, the integration site slmA with the highest expression activity was screened out of 18 sites in the ORI region of the E. coli BL21 (DE3) genome. Second, we characterized 16 endogenous promoters in E. coli and combined them with the T7 promoter. A constitutive promoter, Plpp-T7, exhibited significantly higher expression strength than the T7 promoter, achieving a 3.3-fold increase in expression levels. Finally, to further enhance the T7 expression system, we proceeded with overexpression of T7 RNA polymerase at the chassis cell level. The resulting constitutive efficient integrated expression system (CEIES_Ecoli) showed a 2-fold increase in GFP expression compared to the pET3b recombinant plasmid. Therefore, CEIES_Ecoli was applied to the integrated expression of nitrilase and hyaluronidase, achieving stable and efficient enzyme expression, with enzyme activities of 22.87 and 12,195 U·mL-1, respectively, comparable to plasmid levels. Overall, CEIES_Ecoli provides a stable and efficient method of gene expression without the need for antibiotics or inducers, making it a robust tool for synthetic biology, enzyme engineering, and related applications.
Collapse
Affiliation(s)
- Zi-Kai Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P.R. China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P.R. China
- JITRI, Institute of Future Food Technology, Yixing 214200, P.R. China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P.R. China
- JITRI, Institute of Future Food Technology, Yixing 214200, P.R. China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Zhi-Ming Rao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China
- JITRI, Institute of Future Food Technology, Yixing 214200, P.R. China
| | - Zhen-Ming Lu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P.R. China
- JITRI, Institute of Future Food Technology, Yixing 214200, P.R. China
| | - Zheng-Hong Xu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China
- JITRI, Institute of Future Food Technology, Yixing 214200, P.R. China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
3
|
Ammar AM, Abd El-Aziz NK, Aggour MG, Ahmad AAM, Abdelkhalek A, Muselin F, Smuleac L, Pascalau R, Attia FA. A Newly Incompatibility F Replicon Allele (FIB81) in Extensively Drug-Resistant Escherichia coli Isolated from Diseased Broilers. Int J Mol Sci 2024; 25:8347. [PMID: 39125914 PMCID: PMC11312129 DOI: 10.3390/ijms25158347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Multiple drug resistance (MDR) has gained pronounced attention among Enterobacterales. The transfer of multiple antimicrobial resistance genes, frequently carried on conjugative incompatibility F (IncF) plasmids and facilitating interspecies resistance transmission, has been linked to Salmonella spp. and E. coli in broilers. In Egypt, the growing resistance is exacerbated by the limited clinical efficacy of many antimicrobials. In this study, IncF groups were screened and characterized in drug-resistant Salmonella spp. and E. coli isolated from broilers. The antimicrobial resistance profile, PCR-based replicon typing of bacterial isolates pre- and post-plasmid curing, and IncF replicon allele sequence typing were investigated. Five isolates of E. coli (5/31; 16.13%) and Salmonella spp. (5/36; 13.89%) were pan-susceptible to the examined antimicrobial agents, and 85.07% of tested isolates were MDR and extensively drug-resistant (XDR). Twelve MDR and XDR E. coli and Salmonella spp. isolates were examined for the existence of IncF replicons (FII, FIA, and FIB). They shared resistance to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanate, doxycycline, cefotaxime, and colistin. All isolates carried from one to two IncF replicons. The FII-FIA-FIB+ and FII-FIA+FIB- were the predominant replicon patterns. FIB was the most frequently detected replicon after plasmid curing. Three XDR E. coli isolates that were resistant to 12-14 antimicrobials carried a newly FIB replicon allele with four nucleotide substitutions: C99→A, G112→T, C113→T, and G114→A. These findings suggest that broilers are a significant reservoir of IncF replicons with highly divergent IncF-FIB plasmid incompatibility groups circulating among XDR Enterobacterales. Supporting these data with additional comprehensive epidemiological studies involving replicons other than the IncF can provide insights for implementing efficient policies to prevent the spreading of new replicons to humans.
Collapse
Affiliation(s)
- Ahmed M. Ammar
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; (A.M.A.); (A.A.M.A.)
| | - Norhan K. Abd El-Aziz
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; (A.M.A.); (A.A.M.A.)
| | | | - Adel A. M. Ahmad
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; (A.M.A.); (A.A.M.A.)
| | - Adel Abdelkhalek
- Food Safety, Hygiene and Technology Department, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr 11829, Egypt;
| | - Florin Muselin
- Department of Toxicology, Faculty of Veterinary Medicine, University of Life Sciences “King Michael I” from Timisoara, 300645 Timisoara, Romania;
| | - Laura Smuleac
- Department of Sustainable Development and Environmental Engineering, Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania;
| | - Raul Pascalau
- Department of Agricultural Technologies, Faculty of Agriculture, University of Life Sciences “ King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | | |
Collapse
|
4
|
Kong M, Zhang Y, Ma Y, Fang H, Wang W, Shi G, Yan Y, Zhang S. Antibiotics and antibiotic resistance change bacterial community compositions in marine sediments. ENVIRONMENTAL RESEARCH 2024; 244:118005. [PMID: 38135101 DOI: 10.1016/j.envres.2023.118005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Emerging contaminants, including antibiotics, antibiotic-resistant bacteria (ARB), and extracellular antibiotic resistance genes (eARGs), have been detected in large numbers in the aquatic environment. The effects of emerging contaminants on bacterial communities in marine sediments are not well studied. In this study, the effects of emerging contaminants (antibiotics, ARB, and eARGs) on the variations of bacterial populations in marine sediments of the Bohai Sea, Yellow Sea, East China Sea, and South China Sea were investigated. The results showed that the abundance of the host bacterial phylum Probacteria in the marine sediments of the Bohai Sea was the lowest among the four seas after exposure to different antibiotics, ARB, and eARGs. The inputs of exogenous antibiotics and resistance genes significantly affected the community function, resulting in significant differences in community abundance at the genus level. The abundance of Halomonas, Sulfitobacter, and Alcanivorax in the four sea areas displayed noteworthy differences in response to the addition of exogenous antibiotics and eARGs. These findings contribute to a more comprehensive understanding of the intricate interplay between emerging contaminants and the dynamics of bacterial communities in natural ecosystems.
Collapse
Affiliation(s)
- Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Yu Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yan Ma
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Wanzhong Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Gaoling Shi
- Key Laboratory of Agro-Environment in Downstream of Yangtze River Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Yan Yan
- Centre for Ecology Environment Monitoring and Scientific research, SongLiao River Basin Ecology and Environment Adiministration, Ministry of Ecology and Environment, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
5
|
Liao CY, Balasubramanian B, Peng JJ, Tao SR, Liu WC, Ma Y. Antimicrobial Resistance of Escherichia coli From Aquaculture Farms and Their Environment in Zhanjiang, China. Front Vet Sci 2022; 8:806653. [PMID: 35004933 PMCID: PMC8740034 DOI: 10.3389/fvets.2021.806653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a major concern worldwide. To evaluate the AMR of Escherichia coli in aquaculture farms of Zhanjiang, China, a total of 90 samples from the water, soil, and sediment of three aquaculture farms (farms I, II, and III) in Zhanjiang were collected, and 90 strains of E. coli were isolated for drug resistance analysis and AMR gene detection. The results indicated that the isolated 90 strains of E. coli have high resistance rates to penicillin, amoxicillin, ampicillin, tetracycline, compound sulfamethoxazole, sulfisoxazole, chloramphenicol, florfenicol, and rifampin (≥70%). Among these antimicrobial drugs, the resistance rate to rifampicin is as high as 100%. Among the isolated 90 strains of E. coli, all of them were resistant to more than two kinds of antimicrobial drugs, the number of strains resistant to nine kinds of drugs was the largest (19 strains), and the most resistant strain showed resistance to 16 kinds of antibacterial drugs. Regarding the AMR genes, among the three aquaculture farms, the most resistance genes were detected in farm II (28 species). The detection rate of blaTEM, blaCIT, blaNDM, floR, OptrA, cmlA, aphA1, Sul2, oqxA, and qnrS in 90 isolates of E. coli was high (≥50%). The detection rate of carbapenem-resistant genes, such as blaKPC, blaIMP, and cfr, was relatively lower ( ≤ 30%), and the detection rate of mcr2 was the lowest (0). At least four AMR genes were detected for each strain, and 15 AMR genes were detected at most. Among them, the number of strains that carried 10 AMR genes was the largest (15 strains). Finally, a correlation analysis found that the AMR genes including blaTEM, blaCIT, floR, OptrA, cmlA, aac(3)-II, Sul2, ereA, ermB, oqxB, qnrA, mcr1, and mcr2 had a high correlation rate with drug resistance (≥50%). To summarize, the 90 strains of E. coli isolated from water, surrounding soil, and sediment samples showed resistance to multi-antimicrobial drugs and carried various antimicrobial resistance genes. Thus, it is essential to strengthen the rational use of antimicrobial drugs, especially the amide alcohol drugs, and control the AMR in the aquaculture industry of Zhanjiang, China.
Collapse
Affiliation(s)
- Cui-Yi Liao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | | | - Jin-Ju Peng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Song-Ruo Tao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Wen-Chao Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yi Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|