1
|
Olu-Taiwo MA, Egyir B, Owusu-Nyantakyi C, Forson AO, Opintan JA. Molecular characterization of multidrug-resistant Escherichia coli in the Greater Accra Region, Ghana: a 'One Health' approach. ONE HEALTH OUTLOOK 2025; 7:31. [PMID: 40420217 DOI: 10.1186/s42522-025-00154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
BACKGROUND "One Health," a concept that highlights the need to bring on board multiple players and actors together to address major health problems, has been proposed to be effective in data gathering to mitigate the menace of antimicrobial drug resistance (AMR). Genomic data on extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) across humans, animals, and the environment are limited in low- and middle-income countries (LMICs), including Ghana. OBJECTIVE This study determined the prevalence and patterns of AMR in E. coli from diverse sources, and characterized AMR genes, sequence types (STs), and plasmid replicon types in ESBL-EC. METHODOLOGY In a cross-sectional study, we randomly collected 1500 specimens from healthy humans, cattle, pigs, lettuce, spring onions, pork, beef, and soil samples, between January 2022 - April 2023. E. coli was isolated by routine culture and confirmed by MALDI-TOF MS. E. coli isolates were screened for their susceptibility against 13 antimicrobial agents and ESBL-production. ESBL-EC isolates were whole-genome sequenced (WGS), and in silico analysis was used to determine AMR genes, sequence types (STs), and plasmid replicon types. RESULT Of the 1500 specimens from diverse sources cultured, 140 (9.3%) were positive for E. coli. No E. coli was isolated from lettuce, spring onions, and pork. Fifty (35.7%) E. coli isolates were resistant to three or more of the antimicrobials tested, and 30 (21.4%) were ESBL-EC. The proportion of ESBL-EC identified in healthy humans were 14 (20%), cattle 9 (22.5%), pigs 3 (15%), beef 1 (50%) and soil 3 (37.5%). ESBL-EC isolates were highly resistant to ampicillin (100%), cefuroxime (100%), ciprofloxacin (53.6%), and tetracycline (58.2%). However, all ESBL-EC were susceptible to meropenem. Commonly detected AMR genes were blaTEM-1B (32%), tetA (48%) and sul2 (32%), with majority recovered from healthy human and soil samples. The dominant sequence types found were 12% (3) for ST10, ST 9312, ST 206, and ST 4151. The prevalent plasmid replicon types detected were IncFIB (Apoo1918) (40%) and IncFII (pCoo) (36%). CONCLUSION Within the metropolis surveyed, we identified MDR ESBL-EC harbouring various AMR genes and plasmid replicon types with diverse E. coli sequence types in healthy humans, animals, and the environment. The detection of blaCTX-M-15 in agricultural soil isolate is worrisome, emphasizing the need for a "One Health" approach in combating AMR.
Collapse
Affiliation(s)
- Michael A Olu-Taiwo
- Department of Medical Laboratory Science, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Legon Accra, Ghana.
| | - Beverly Egyir
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | | | - Akua Obeng Forson
- Department of Medical Laboratory Science, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Legon Accra, Ghana
| | - Japheth A Opintan
- Department of Medical Microbiology, Ghana Medical School, College of Health Sciences, University of Ghana, Legon Accra, Ghana
| |
Collapse
|
2
|
Mim ZT, Nath C, Sattar AA, Rashid R, Abir MH, Khan SA, Kalam MA, Shano S, Cobbold R, Alawneh JI, Hassan MM. Epidemiology and Molecular Characterisation of Multidrug-Resistant Escherichia coli Isolated from Cow Milk. Vet Sci 2024; 11:609. [PMID: 39728949 DOI: 10.3390/vetsci11120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing global concern and poses a significant threat to public health. The emergence of multidrug-resistant organisms, including Escherichia coli, also presents a risk of transmission to humans through the food chain, including milk. This study aimed to investigate the prevalence of E. coli in raw milk in the Chattogram metropolitan area (CMA) of Bangladesh and their phenotypic and genotypic antimicrobial resistance patterns. A total of 450 raw cow milk samples were collected from 18 farms within the CMA. The isolation and identification of E. coli were performed following standard bacteriological methods. Antimicrobial susceptibility testing (AST) was conducted using the Kirby-Bauer disc diffusion method. Molecular detection of E. coli and antimicrobial resistance genes was performed using the Polymerase Chain Reaction (PCR). This study found 134 (29.77%) milk samples that tested positive for E. coli. Antimicrobial susceptibility testing (AST) revealed the highest resistance rates (69.40%) to be for ampicillin, amoxicillin-clavulanic acid, cephalothin, and cephalexin, with the lowest resistance (21.64%) being for norfloxacin. A significant correlation (r = 1) was observed between ciprofloxacin and ceftazidime resistance among the antimicrobials tested. All E. coli isolates were classified as multidrug-resistant (MDR), being resistant to three or more antimicrobial classes, with a multiple resistance index >0.2. PCR amplification showed that the blaTEM gene had the highest prevalence (74.19%) among the ESBL and antimicrobial resistance genes tested. In contrast, the blaCMY-1 gene had a lower prevalence (6.45%) among the ESBL genes, while the tetD gene had the lowest prevalence (2.9%) among the resistance genes tested. Positive correlations were observed between antimicrobial resistance and the presence of these resistance genes. This study emphasises the high prevalence of MDR E. coli in raw cow milk and its significant potential impact on public health. It underscores the urgent need for strategic interventions to effectively manage and mitigate AMR in the Bangladeshi dairy sector, focusing on the prudent use of antimicrobials and implementing enhanced AMR surveillance.
Collapse
Affiliation(s)
- Zarin Tasnim Mim
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
- Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95447 Bayreuth, Germany
| | - Chandan Nath
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Abdullah Al Sattar
- School of Psychology, University of New England, Armidale, NSW 2350, Australia
| | - Rijwana Rashid
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
- Nutritional Sciences Graduate Program, Margaret Ritchie School of Family and Consumer Sciences, College of Agricultural & Life Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Shahneaz Ali Khan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Md Abul Kalam
- Global Health and Development Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Shahanaj Shano
- Global Health and Development Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Rowland Cobbold
- Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW 2480, Australia
| | - John I Alawneh
- Plant Biosecurity and Product Integrity, Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, QLD 4000, Australia
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
3
|
Lemlem M, Aklilu E, Mohamed M, Kamaruzzaman NF, Devan SS, Lawal H, Kanamma AA. Prevalence and molecular characterization of ESBL-producing Escherichia coli isolated from broiler chicken and their respective farms environment in Malaysia. BMC Microbiol 2024; 24:499. [PMID: 39592959 PMCID: PMC11590571 DOI: 10.1186/s12866-024-03653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Extended spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) is an increasing public health threat. This study aimed to determine the prevalence and characterization of ESBL-producing Escherichia coli (E. coli) isolated from broiler chicken and their farm environment, in Kelantan Malaysia. METHODS Escherichia coli was isolated from 453 collected samples, including 210 cloacal swabs and 243 environmental samples. The antimicrobial susceptibility profile of the E. coli isolates was assessed for sixteen antibiotics using the disc diffusion method. The E. coli isolates were evaluated for phenotypic ESBL production using modified double disc synergy. After extraction of genomic DNA, ESBL resistance genes, phylogenetic group, and virulence genes were detected by PCR using appropriate primers. ESBL genes were further confirmed by sequencing. The molecular typing of E. coli strains was determined by Multilocus Sequence Typing (MLST). RESULTS A total of 93.8% (425/453) E. coli were isolated from the collected samples. Out of 334 E. coli isolates screened, 14.7% (49/334) were phenotypically ESBL producers. All the ESBL-EC were resistant to tetracycline, ciprofloxacin, and ampicillin. Thus, 100% of the ESBL-EC were multidrug resistant. Of the ESBL-EC 81.6% were positive for at least one ESBL encoding gene. The most prevalent ESBL gene detected was blaTEM (77.6%; 38/49) followed by blaCTX-M (32.7%; 16/49) and blaSHV (18.4%; 9/49). The majority of ESBL-EC belonged to phylogenic groups A followed by B1 accounting for 44.9% and 12.2%, respectively. The most frequently identified sequence types were ST10 (n = 3) and ST206 (n = 3). The most detected virulence genes in the E. coli isolates were astA (33.3%; 22/66) followed by iss (15.2%; 10/66). CONCLUSIONS Our results show both broiler chicken and their respective farms environment were reservoirs of multi-drug resistant ESBL-producing E. coli and ESBL resistance genes.
Collapse
Affiliation(s)
- Mulu Lemlem
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia.
- Department of Medical Microbiology and Immunology, College of Health Science, Mekelle University, Tigray, Ethiopia.
| | - Erkihun Aklilu
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia.
| | - Maizan Mohamed
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia
| | - Nor Fadhilah Kamaruzzaman
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia
| | - Susmita Seenu Devan
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia
| | - Habiba Lawal
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia
- Department of Public Health, Ministry of Animal Health, Husbandry and Fisheries, Birnin Kebbi, Kebbi State, 860101, Nigeria
| | - Abubakar Abdulkarim Kanamma
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia
| |
Collapse
|
4
|
Akkari H, Heleili N, Ozgumus OB, Merradi M, Reis A, Ayachi A, Akarsu N, Tufekci EF, Kiliç AO. Prevalence and molecular characterization of ESBL/pAmpC producing faecal Escherichia coli strains with widespread detection of CTX-M-15 isolated from healthy poultry flocks in Eastern Algeria. Microb Pathog 2024; 196:106973. [PMID: 39313136 DOI: 10.1016/j.micpath.2024.106973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
The intensification of livestock farming has led to the widespread use of massive amounts of antibiotics worldwide. Poultry production, including white meat, eggs and the use of their manure as fertiliser, has been identified as one of the most crucial reservoirs for the emergence and spread of resistant bacteria, including E. coli in poultry as an important opportunistic pathogen representing the greatest biological hazard to human and wildlife health. Thus, this study aimed to analyse E. coli in the faecal carriage of healthy poultry flocks and to investigate the phenotypic and genotypic characteristics of antimicrobial resistance, including integrons genes and phylogenetic groups. A total of 431 cloacal swabs from apparently healthy poultry from four regions in Eastern Algeria from December 2021 to October 2022. 360 E. coli were isolated; from broilers (n = 151), broiler breeders (n = 91), laying hens (n = 72), and breeding hens (n = 46). Among this, 281 isolates exhibited multidrug resistance (MDR) phenotype, 17 of the 360 E. coli isolates exhibited ESBL, and one isolate exhibited both ESBL/pAmpC. A representative collection of 183 among 281 MDR E. coli was selected for further analysis by PCR to detect genes encoding resistance to different antibiotics, and sequencing was performed on all positive PCR products of blaCTX-M and blaCMY-2 genes. Phylogenetic groups were determined in 80 E. coli isolates (20 from each of the four kinds of poultry). The blaCTX-M gene was found in 16 (94.11 %) ESBL-producing E. coli isolates within 11 strains co-expressing the blaSHV gene and 8 strains co-expressing the blaTEM gene. Sequence analysis showed frequent diversity in CTX-M-group-1, with blaCTX-M-15 being the most predominant (n = 11), followed by blaCTX-M-1 (n = 5). The blaCMY-2 gene was detected only in one ESBL/pAmpC isolate. Among the 183 tested isolates, various antimicrobial resistance genes were found (number of strains) blaTEM (n = 121), blaSHV (n = 12), tetA (n = 100), tetB (n = 29), sul1(n = 67), sul2 (n = 32), qnrS (n = 45), qnrB (n = 10), qnrA (n = 1), catA1(n = 13), aac-(6')-Ib (n = 3). Furthermore, class 1 and class 2 integrons were found in 113 and 2 E. coli, respectively. The isolates were classified into multiple phylogroups, including A (35 %), B1 (27.5 %), B2 and D each (18.75 %). The detection of integrons and different classes of resistance genes in the faecal carriage of healthy poultry production indicates that commensal E. coli could potentially act as a reservoir for antimicrobial resistance, posing a significant One Health challenge encompassing the interconnected domains of human, animal health and the environment. Here, we present the first investigation to describe the diversity of blaCTX-M producing E. coli isolates with widespread detection of CTX-M-15 and CTX-M-1 in healthy breeders (Broiler and breeding hens) in Eastern Algeria.
Collapse
Affiliation(s)
- Hafsa Akkari
- ESPA Laboratory, Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, 05000, Batna, Algeria
| | - Nouzha Heleili
- ESPA Laboratory, Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, 05000, Batna, Algeria.
| | - Osman Birol Ozgumus
- Department of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Manel Merradi
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078, Batna, Algeria
| | - Ahu Reis
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ammar Ayachi
- ESPA Laboratory, Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, 05000, Batna, Algeria
| | - Neslihan Akarsu
- Department of Biotechnology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Enis Fuat Tufekci
- Department of Medical Microbiology, Faculty of Medicine, Kastamonu University, 37200, Kastamonu, Turkey
| | - Ali Osman Kiliç
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
5
|
Mandujano-Hernández A, Martínez-Vázquez AV, Paz-González AD, Herrera-Mayorga V, Sánchez-Sánchez M, Lara-Ramírez EE, Vázquez K, de Jesús de Luna-Santillana E, Bocanegra-García V, Rivera G. The Global Rise of ESBL-Producing Escherichia coli in the Livestock Sector: A Five-Year Overview. Animals (Basel) 2024; 14:2490. [PMID: 39272275 PMCID: PMC11394230 DOI: 10.3390/ani14172490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
β-lactam antibiotics are a key element in the treatment of bacterial infections. However, the excessive use of these antibiotics has contributed to the emergence of β-lactam-resistant enterobacteria, including Escherichia coli. One of the main challenges facing the public health sector is antibacterial resistance (ABR), mainly due to limited options in its pharmacological treatment. Currently, extended-spectrum β-lactamases (ESBLs) present an alarming situation, as there is an increase in morbidity and mortality rates, prolonged hospital stays, and increased costs for sanitary supplies, which involve not only humans but also the environment and animals, especially animals destined for food production. This review presents an analysis of the prevalence of ESBL-producing E. coli and its distribution in different animal sources throughout the world, providing an understanding of the association with resistance and virulence genes, as well as perceiving the population structure of E. coli.
Collapse
Affiliation(s)
| | | | - Alma D Paz-González
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Verónica Herrera-Mayorga
- Unidad Académica Multidisciplinaria Mante, Universidad Autónoma de Tamaulipas, Mante 89840, Mexico
| | - Mario Sánchez-Sánchez
- Laboratorio de Fisiología Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Mexico
| | - Edgar E Lara-Ramírez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Karina Vázquez
- Facultad de Medicina y Veterinaria Zootecnia, Universidad Autónoma de Nuevo León, General Escobedo 66050, Mexico
| | | | | | - Gildardo Rivera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
6
|
Ramatla T, Tutubala M, Motlhaping T, de Wet L, Mokgokong P, Thekisoe O, Lekota K. Molecular detection of Shiga toxin and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates from sheep and goats. Mol Biol Rep 2024; 51:57. [PMID: 38165462 PMCID: PMC10761393 DOI: 10.1007/s11033-023-08987-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The Shiga toxin (Stx)-producing Escherichia coli (STEC) have become important global public health concerns. This study investigated the prevalence, antimicrobial resistance profile, and extended-spectrum beta-lactamase-producing E. coli in sheep and goat faeces. METHODS AND RESULTS A total of 53 E. coli isolates were confirmed by PCR targeting the uidA [β-D glucuronidase] gene. The Shiga toxin genes stx1 and stx2, as well as bfpA, vir, eaeA, lt and aafII virulence genes, were detected in this study. Of the 53 isolates confirmed to be STEC, 100% were positive for stx2 and 47.2% for stx1. Three isolates possessed a combination of stx1 + stx2 + eaeA, while four isolates harboured stx1 + stx2 + vir virulence genes. The isolates displayed phenotypic antimicrobial resistance against erythromycin (66.04%), colistin sulphate (43.4%), chloramphenicol (9.4%) and ciprofloxacin (1.9%). A total of 28.8% of the strains were phenotypically considered ESBL producers and contained the beta-lactamase blaCTX-M-9 and blaCTX-M-25 gene groups. A larger proportion of the E. coli strains (86.8%) contained the antibiotic sulphonamide resistant (sulII) gene, while 62.3%, 62.3%, 52.8%, 43.4%, 41.5%, 20.8%, 18.9%, 11.3%, 11.3%, 9.4%, 9.4% and 5.7% possessed mcr-4, floR, mcr-1, tet(A), sulI, tet(O), tet(W), parC, mcr-2, ampC 5, qnrS and ermB genes, respectively. Thirteen isolates of the ESBL-producing E. coli were considered multi-drug resistant (MDR). One Shiga toxin (stx2) and two beta-lactamase genes (blaCTX-M-9 and blaCTX-M-25 groups) were present in 16 isolates. In conclusion, the E. coli isolates from the small stock in this study contained a large array of high antibiotic resistance and virulence profiles. CONCLUSIONS Our findings highlight the importance of sheep and goats as sources of virulence genes and MDR E. coli. From a public health and veterinary medicine perspective, the characterization of ESBL producers originating from small livestock (sheep and goats) is crucial due to their close contact with humans.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Unit for Environmental Sciences and Management, North West University, Potchefstroom, 2531, South Africa.
| | - Mpho Tutubala
- Unit for Environmental Sciences and Management, North West University, Potchefstroom, 2531, South Africa
| | - Tshepang Motlhaping
- Unit for Environmental Sciences and Management, North West University, Potchefstroom, 2531, South Africa
| | - Lara de Wet
- Unit for Environmental Sciences and Management, North West University, Potchefstroom, 2531, South Africa
| | - Prudent Mokgokong
- Unit for Environmental Sciences and Management, North West University, Potchefstroom, 2531, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North West University, Potchefstroom, 2531, South Africa
| | - Kgaugelo Lekota
- Unit for Environmental Sciences and Management, North West University, Potchefstroom, 2531, South Africa
| |
Collapse
|