1
|
Hisirová S, Koščová J, Király J, Hajdučková V, Hudecová P, Lauko S, Gregová G, Dančová N, Koreneková J, Lovayová V. Resistance Genes and Virulence Factor Genes in Coagulase-Negative and Positive Staphylococci of the Staphylococcus intermedius Group (SIG) Isolated from the Dog Skin. Microorganisms 2025; 13:735. [PMID: 40284572 PMCID: PMC12029769 DOI: 10.3390/microorganisms13040735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025] Open
Abstract
Staphylococci are common pathogens in dogs, causing a variety of dermatological problems. This study aimed to characterize the prevalence, antibiotic resistance, and biofilm-forming potential of Staphylococcus species isolated from the skin of shelter dogs. Overall, 108 samples were collected from the hairless skin areas of dogs in a shelter over one year. Isolates were cultured using standard microbiological methods and identified through biochemical testing, MALDI-TOF MS, and multiplex PCR. A total of 67 Staphylococcus isolates were identified, with S. pseudintermedius being the most prevalent. Antibiotic susceptibility was assessed using disk diffusion and MIC methods, revealing high resistance to ampicillin, erythromycin, and tetracycline. Notably, 12 multidrug-resistant SIG (S. intermedius group; S. pseudintermedius) and 4 CoNS strains (coagulase-negative staphylococci; S. equorum) were identified. Biofilm production was evaluated using a crystal violet assay, showing variable biofilm-forming capabilities among isolates and PCR, to confirm genes associated with biofilm formation. These findings highlight the presence of multidrug-resistant Staphylococcus species in shelter dogs, emphasizing the need for careful monitoring and antibiotic stewardship to manage potential risks to both animal and human health.
Collapse
Affiliation(s)
- Simona Hisirová
- Department of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia; (S.H.); (J.K.); (J.K.); (V.H.); (P.H.); (S.L.)
| | - Jana Koščová
- Department of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia; (S.H.); (J.K.); (J.K.); (V.H.); (P.H.); (S.L.)
| | - Ján Király
- Department of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia; (S.H.); (J.K.); (J.K.); (V.H.); (P.H.); (S.L.)
| | - Vanda Hajdučková
- Department of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia; (S.H.); (J.K.); (J.K.); (V.H.); (P.H.); (S.L.)
| | - Patrícia Hudecová
- Department of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia; (S.H.); (J.K.); (J.K.); (V.H.); (P.H.); (S.L.)
| | - Stanislav Lauko
- Department of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia; (S.H.); (J.K.); (J.K.); (V.H.); (P.H.); (S.L.)
| | - Gabriela Gregová
- Department of Public Veterinary Medicine and Animal Welfare, The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia; (G.G.); (N.D.)
| | - Nikola Dančová
- Department of Public Veterinary Medicine and Animal Welfare, The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia; (G.G.); (N.D.)
| | - Júlia Koreneková
- Department of Nutrition and Food Quality Assessment, Institute of Food Science and Nutrition, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Viera Lovayová
- Department of Medical and Clinical Microbiology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Kosice, Slovakia
| |
Collapse
|
2
|
Caddey B, Fisher S, Barkema HW, Nobrega DB. Companions in antimicrobial resistance: examining transmission of common antimicrobial-resistant organisms between people and their dogs, cats, and horses. Clin Microbiol Rev 2025; 38:e0014622. [PMID: 39853095 PMCID: PMC11905369 DOI: 10.1128/cmr.00146-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
SUMMARYNumerous questions persist regarding the role of companion animals as potential reservoirs of antimicrobial-resistant organisms that can infect humans. While relative antimicrobial usage in companion animals is lower than that in humans, certain antimicrobial-resistant pathogens have comparable colonization rates in companion animals and their human counterparts, which inevitably raises questions regarding potential antimicrobial resistance (AMR) transmission. Furthermore, the close contact between pets and their owners, as well as pets, veterinary professionals, and the veterinary clinic environment, provides ample opportunity for zoonotic transmission of antimicrobial-resistant pathogens. Here we summarize what is known about the transmission of AMR and select antimicrobial-resistant organisms between companion animals (primarily dogs, cats, and horses) and humans. We also describe the global distribution of selected antimicrobial-resistant organisms in companion animals. The impact of interspecies AMR transmission within households and veterinary care settings is critically reviewed and discussed in the context of methicillin-resistant staphylococci, extended-spectrum β-lactamase and carbapenemase-producing bacteria. Key research areas are emphasized within established global action plans on AMR, offering valuable insights for shaping future research and surveillance initiatives.
Collapse
Affiliation(s)
- Benjamin Caddey
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sibina Fisher
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Diego B. Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Pineda MEB, Sánchez DFV, Caycedo PAC, -Rozo JC. Nanocomposites: silver nanoparticles and bacteriocins obtained from lactic acid bacteria against multidrug-resistant Escherichia coli and Staphylococcus aureus. World J Microbiol Biotechnol 2024; 40:341. [PMID: 39358621 DOI: 10.1007/s11274-024-04151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Drug-resistant bacteria such as Escherichia coli and Staphylococcus aureus represent a global health problem that requires priority attention. Due to the current situation, there is an urgent need to develop new, more effective and safe antimicrobial agents. Biotechnological approaches can provide a possible alternative control through the production of new generation antimicrobial agents, such as silver nanoparticles (AgNPs) and bacteriocins. AgNPs stand out for their antimicrobial potential by employing several mechanisms of action that can act simultaneously on the target cell such as the production of reactive oxygen species and cell wall rupture. On the other hand, bacteriocins are natural peptides synthesized ribosomally that have antimicrobial activity and are produced, among others, by lactic acid bacteria (LAB), whose main mechanism of action is to produce pores at the level of the cell membrane of bacterial cells. However, these agents have disadvantages. Nanoparticles also have limitations such as the tendency to form aggregates, which decreases their antibacterial activity and possible cytotoxic effects, and bacteriocins have a narrow spectrum of action, require high doses to be effective, and can be degraded by proteases. Given these limitations, nanoconjugates of these two agents have been developed that can act synergistically in the control of pathogenic bacteria resistant to antibiotics. This review focuses on knowing relevant aspects of the antibiotic resistance of E. coli and S. aureus, the characteristics of these new generation antibacterial agents, and their effect alone or forming nanoconjugates that are more effective against the multiresistant mentioned bacteria.
Collapse
Affiliation(s)
- Mayra Eleonora Beltrán Pineda
- Grupo de Investigación Gestión Ambiental-Universidad de Boyacá, Grupo de Investigación Biología Ambiental, Universidad Pedagógica y Tecnológica de Colombia, Grupo de Investigación en Macromoléculas. Universidad Nacional de Colombia, Tunja, Colombia
| | | | | | | |
Collapse
|
4
|
Ventero MP, Marin C, Migura-Garcia L, Tort-Miro C, Giler N, Gomez I, Escribano I, Marco-Fuertes A, Montoro-Dasi L, Lorenzo-Rebenaque L, Vega S, Pérez-Gracia MT, Rodríguez JC. Identification of Antimicrobial-Resistant Zoonotic Bacteria in Swine Production: Implications from the One Health Perspective. Antibiotics (Basel) 2024; 13:883. [PMID: 39335056 PMCID: PMC11428682 DOI: 10.3390/antibiotics13090883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance poses a major threat to global health and food security and is primarily driven by antimicrobial use in human and veterinary medicine. Understanding its epidemiology at farm level is crucial for effective control measures. Despite the significant reduction in antibiotic use in conventional livestock production, the swine sector traditionally has a higher level of antibiotic use in veterinary medicine. Consequently, multidrug resistance (MDR) among microbial isolates of swine origin has been relatively frequent. The aim of this study was to assess the presence of multidrug-resistant (MDR) bacteria, enteric pathogens and resistance genes to the main antibiotics used in clinical practice, both within the environment and in animals across pig farms characterized by varying degrees of sanitary status. A total of 274 samples were collected. Of these, 34 samples were collected from the environment (wall swabs, slat swabs and slurry pit), and 240 samples were collected from animals (sows' and piglets' rectal faeces). All samples were analysed for MDR bacteria and enteric pathogens. The study revealed a high frequency of extended-spectrum beta-lactamases (ESBL)-producing Enterobacterales and Campylobacter spp., with ESBL-producing Enterobacterales predominating in high health status farms (environment and animals) and Campylobacter spp. in both high health status and low health status environments. Additionally, a high percentage of methicillin-resistant Staphylococcus aureus (MRSA) was found, mainly in environmental samples from high health status farms, and Clostridioides difficile was distributed ubiquitously among farms and samples. Furthermore, though less frequently, vancomycin-resistant Enterococcus faecium (VRE) was isolated only in high health status farms, and Gram-negative bacilli resistant to carbapenems were isolated only in environmental samples of high health status and low health status farms. This study underscores the importance of surveillance for MDR bacteria in farm animals and their environment, including their waste. Such ecosystems serve as crucial reservoirs of bacteria, requiring national-level surveillance to promote responsible antibiotic use and pandemic control.
Collapse
Affiliation(s)
- Maria Paz Ventero
- Servicio de Microbiología, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (I.G.); (I.E.); (J.C.R.)
| | - Clara Marin
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera—CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-F.); (L.M.-D.); (S.V.)
| | - Lourdes Migura-Garcia
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.T.-M.); (N.G.)
- IRTA. Programa de Sanitat Animal, CReSA, Collaborating Centre of the World Organisation for Animal Health for Research and Control of Emerging and Re-Emerging Pig Diseases, Europe Campus de la UAB, 08193 Bellaterra, Spain
| | - Carla Tort-Miro
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.T.-M.); (N.G.)
- IRTA. Programa de Sanitat Animal, CReSA, Collaborating Centre of the World Organisation for Animal Health for Research and Control of Emerging and Re-Emerging Pig Diseases, Europe Campus de la UAB, 08193 Bellaterra, Spain
| | - Noemi Giler
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.T.-M.); (N.G.)
- IRTA. Programa de Sanitat Animal, CReSA, Collaborating Centre of the World Organisation for Animal Health for Research and Control of Emerging and Re-Emerging Pig Diseases, Europe Campus de la UAB, 08193 Bellaterra, Spain
| | - Inmaculada Gomez
- Servicio de Microbiología, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (I.G.); (I.E.); (J.C.R.)
| | - Isabel Escribano
- Servicio de Microbiología, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (I.G.); (I.E.); (J.C.R.)
| | - Ana Marco-Fuertes
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera—CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-F.); (L.M.-D.); (S.V.)
| | - Laura Montoro-Dasi
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera—CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-F.); (L.M.-D.); (S.V.)
| | - Laura Lorenzo-Rebenaque
- Institute of Science and Animal Technology, Universitat Politècnica de Valencia, 46022 Valencia, Spain;
| | - Santiago Vega
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera—CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-F.); (L.M.-D.); (S.V.)
| | - Maria Teresa Pérez-Gracia
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera–CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain;
| | - Juan Carlos Rodríguez
- Servicio de Microbiología, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (I.G.); (I.E.); (J.C.R.)
- Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández de Elche, 03010 Alicante, Spain
| |
Collapse
|
5
|
Khairullah AR, Widodo A, Riwu KHP, Yanestria SM, Moses IB, Effendi MH, Fauzia KA, Fauziah I, Hasib A, Kusala MKJ, Raissa R, Silaen OSM, Ramandinianto SC, Afnani DA. Spread of livestock-associated methicillin-resistant Staphylococcus aureus in poultry and its risks to public health: A comprehensive review. Open Vet J 2024; 14:2116-2128. [PMID: 39553759 PMCID: PMC11563600 DOI: 10.5455/ovj.2024.v14.i9.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/09/2024] [Indexed: 11/19/2024] Open
Abstract
The livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) strains are prevalent in the poultry farming environment and are a common component of the bacterial microbiota on the skin and mucous membranes of healthy animals. The origin and spread of LA-MRSA are attributed to the use of antibiotics in animals, and close contact between people and different animal species increases the risk of animal exposure to humans. The epidemiology of LA-MRSA in poultry significantly changed when ST398 and ST9 were found in food-producing animals. The significance of LA-MRSA and zoonotic risk associated with handling and processing foods of avian origin is highlighted by the LA-MRSA strain's ability to infect chickens. People who work with poultry are more prone to contract LA-MRSA than the general population. There is scientific consensus that individuals who have close contact with chickens can become colonized and subsequently infected with LA-MRSA; these individuals could include breeders, medical professionals, or personnel at chicken slaughterhouses. The prevention of LA-MRSA infections and diseases of poultry origin requires taking precautions against contamination across the entire chicken production chain.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Agus Widodo
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| | | | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Australia
| | | | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Daniah Ashri Afnani
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| |
Collapse
|
6
|
Turchi B, Campobasso C, Nardinocchi A, Wagemans J, Torracca B, Lood C, Di Giuseppe G, Nieri P, Bertelloni F, Turini L, Ruffo V, Lavigne R, Di Luca M. Isolation and characterization of novel Staphylococcus aureus bacteriophage Hesat from dairy origin. Appl Microbiol Biotechnol 2024; 108:299. [PMID: 38619619 PMCID: PMC11018700 DOI: 10.1007/s00253-024-13129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
A novel temperate phage, named Hesat, was isolated by the incubation of a dairy strain of Staphylococcus aureus belonging to spa-type t127 with either bovine or ovine milk. Hesat represents a new species of temperate phage within the Phietavirus genus of the Azeredovirinae subfamily. Its genome has a length of 43,129 bp and a GC content of 35.11% and contains 75 predicted ORFs, some of which linked to virulence. This includes (i) a pathogenicity island (SaPln2), homologous to the type II toxin-antitoxin system PemK/MazF family toxin; (ii) a DUF3113 protein (gp30) that is putatively involved in the derepression of the global repressor Stl; and (iii) a cluster coding for a PVL. Genomic analysis of the host strain indicates Hesat is a resident prophage. Interestingly, its induction was obtained by exposing the bacterium to milk, while the conventional mitomycin C-based approach failed. The host range of phage Hesat appears to be broad, as it was able to lyse 24 out of 30 tested S. aureus isolates. Furthermore, when tested at high titer (108 PFU/ml), Hesat phage was also able to lyse a Staphylococcus muscae isolate, a coagulase-negative staphylococcal strain. KEY POINTS: • A new phage species was isolated from a Staphylococcus aureus bovine strain. • Pathogenicity island and PVL genes are encoded within phage genome. • The phage is active against most of S. aureus strains from both animal and human origins.
Collapse
Affiliation(s)
- Barbara Turchi
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Claudia Campobasso
- Department of Biology, University of Pisa, Via San Zeno 37, 56127, Pisa, Italy
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Louvain, Belgium
| | - Arianna Nardinocchi
- Department of Biology, University of Pisa, Via San Zeno 37, 56127, Pisa, Italy
| | - Jeroen Wagemans
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Louvain, Belgium
| | - Beatrice Torracca
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Cédric Lood
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Louvain, Belgium
- Department of Microbial and Molecular Systems, Centre for Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Fabrizio Bertelloni
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Luca Turini
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Valeria Ruffo
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Louvain, Belgium
| | - Mariagrazia Di Luca
- Department of Biology, University of Pisa, Via San Zeno 37, 56127, Pisa, Italy.
| |
Collapse
|
7
|
Pyzik E, Urban-Chmiel R, Kurek Ł, Herman K, Stachura R, Marek A. Bacteriophages for Controlling Staphylococcus spp. Pathogens on Dairy Cattle Farms: In Vitro Assessment. Animals (Basel) 2024; 14:683. [PMID: 38473068 DOI: 10.3390/ani14050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Pathogenic Staphylococcus spp. strains are significant agents involved in mastitis and in skin and limb infections in dairy cattle. The aim of this study was to assess the antibacterial effectiveness of bacteriophages isolated from dairy cattle housing as potential tools for maintaining environmental homeostasis. The research will contribute to the use of phages as alternatives to antibiotics. The material was 56 samples obtained from dairy cows with signs of limb and hoof injuries. Staphylococcus species were identified by phenotypic, MALDI-TOF MS and PCR methods. Antibiotic resistance was determined by the disc diffusion method. Phages were isolated from cattle housing systems. Phage activity (plaque forming units, PFU/mL) was determined on double-layer agar plates. Morphology was examined using TEM microscopy, and molecular characteristics were determined with PCR. Among 52 strains of Staphylococcus spp., 16 were used as hosts for bacteriophages. Nearly all isolates (94%, 15/16) showed resistance to neomycin, and 87% were resistant to spectinomycin. Cefuroxime and vancomycin were the most effective antibiotics. On the basis of their morphology, bacteriophages were identified as class Caudoviricetes, formerly Caudovirales, families Myoviridae-like (6), and Siphoviridae-like (9). Three bacteriophages of the family Myoviridae-like, with the broadest spectrum of activity, were used for further analysis. This study showed a wide spectrum of activity against the Staphylococcus spp. strains tested. The positive results indicate that bacteriophages can be used to improve the welfare of cattle.
Collapse
Affiliation(s)
- Ewelina Pyzik
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Łukasz Kurek
- Department and Clinic of Animal Internal Diseases, Sub-Department of Internal Diseases of Farm Animals and Horses, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Klaudia Herman
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Rafał Stachura
- Agromarina Company, Kulczyn-Kolonia 48, 22-235 Hańsk Pierwszy, Poland
| | - Agnieszka Marek
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| |
Collapse
|
8
|
Pogány Simonová M, Chrastinová Ľ, Ščerbová J, Focková V, Plachá I, Tokarčíková K, Žitňan R, Lauková A. The effect of enterocin A/P dipeptide on growth performance, glutathione-peroxidase activity, IgA secretion and jejunal morphology in rabbits after experimental methicillin-resistant Staphylococcus epidermidis P3Tr2a Infection. Vet Res Commun 2024; 48:507-517. [PMID: 38051451 PMCID: PMC10810977 DOI: 10.1007/s11259-023-10277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/02/2023] [Indexed: 12/07/2023]
Abstract
The increasing frequency of methicillin-resistant (MR) staphylococci in humans and animals need special attention for their difficult treatment and zoonotic character, therefore novel antimicrobial compounds on a natural base against antibiotic-resistant bacteria are requested. Currently, bacteriocins/enterocins present a new promising way to overcome this problem, both in prevention and treatment. Therefore, the preventive and medicinal effect of dipeptide enterocin EntA/P was evaluated against MR Staphylococcus epidermidis SEP3/Tr2a strain in a rabbit model, testing their influence on growth performance, glutathione-peroxidase (GPx) enzyme activity, phagocytic activity (PA), secretory (s)IgA, and jejunal morphometry (JM). Eighty-eight rabbits (aged 35 days, meat line M91, both sexes) were divided into experimental groups S (SEP3/Tr2a strain; 1.0 × 105 CFU/mL; dose 500µL/animal/day for 7 days, between days 14 and 21 to simulate the pathogen attack), E (EntA/P; 50 µL/animal/day, 25,600 AU/mL in two intervals, for preventive effect between days 0 and 14; for medicinal effect between days 28 and 42), E + S (EntA/P + SEP3/Tr2a; preventive effect; SEP3/Tr2a + EntA/P; medicinal effect) and control group (C; without additives). Higher body weight was recorded in all experimental groups (p < 0.001) compared to control data. The negative influence/attack of the SEP3Tra2 strain on the intestinal immunity and environment was reflected as decreased GPx activity, worse JM parameters and higher sIgA concentration in infected rabbits. These results suggest the promising preventive use of EntA/P to improve the immunity and growth of rabbits, as well as its therapeutic potential and protective role against staphylococcal infections in rabbit breeding.
Collapse
Affiliation(s)
- Monika Pogány Simonová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia.
| | - Ľubica Chrastinová
- Department of Animal Nutrition, National Agricultural and Food Centre, Hlohovecká 2, Nitra-Lužianky, 95141, Slovakia
| | - Jana Ščerbová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia
| | - Valentína Focková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia
| | - Iveta Plachá
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia
| | - Katarína Tokarčíková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia
| | - Rudolf Žitňan
- Department of Animal Nutrition, National Agricultural and Food Centre, Hlohovecká 2, Nitra-Lužianky, 95141, Slovakia
| | - Andrea Lauková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia
| |
Collapse
|
9
|
Elbehiry A, Marzouk E, Moussa I, Anagreyyah S, AlGhamdi A, Alqarni A, Aljohani A, Hemeg HA, Almuzaini AM, Alzaben F, Abalkhail A, Alsubki RA, Najdi A, Algohani N, Abead B, Gazzaz B, Abu-Okail A. Using Protein Fingerprinting for Identifying and Discriminating Methicillin Resistant Staphylococcus aureus Isolates from Inpatient and Outpatient Clinics. Diagnostics (Basel) 2023; 13:2825. [PMID: 37685363 PMCID: PMC10486511 DOI: 10.3390/diagnostics13172825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
In hospitals and other clinical settings, Methicillin-resistant Staphylococcus aureus (MRSA) is a particularly dangerous pathogen that can cause serious or even fatal infections. Thus, the detection and differentiation of MRSA has become an urgent matter in order to provide appropriate treatment and timely intervention in infection control. To ensure this, laboratories must have access to the most up-to-date testing methods and technology available. This study was conducted to determine whether protein fingerprinting technology could be used to identify and distinguish MRSA recovered from both inpatients and outpatients. A total of 326 S. aureus isolates were obtained from 2800 in- and outpatient samples collected from King Faisal Specialist Hospital and Research Centre in Riyadh, Saudi Arabia, from October 2018 to March 2021. For the phenotypic identification of 326 probable S. aureus cultures, microscopic analysis, Gram staining, a tube coagulase test, a Staph ID 32 API system, and a Vitek 2 Compact system were used. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), referred to as protein fingerprinting, was performed on each bacterial isolate to determine its proteomic composition. As part of the analysis, Principal Component Analysis (PCA) and a single-peak analysis of MALDI-TOF MS software were also used to distinguish between Methicillin-sensitive Staphylococcus aureus (MSSA) and MRSA. According to the results, S. aureus isolates constituted 326 out of 2800 (11.64%) based on the culture technique. The Staph ID 32 API system and Vitek 2 Compact System were able to correctly identify 262 (80.7%) and 281 (86.2%) S. aureus strains, respectively. Based on the Oxacillin Disc Diffusion Method, 197 (62.23%) of 326 isolates of S. aureus exhibited a cefoxitin inhibition zone of less than 21 mm and an oxacillin inhibition zone of less than 10 mm, and were classified as MRSA under Clinical Laboratory Standards Institute guidelines. MALDI-TOF MS was able to correctly identify 100% of all S. aureus isolates with a score value equal to or greater than 2.00. In addition, a close relationship was found between S. aureus isolates and higher peak intensities in the mass ranges of 3990 Da, 4120 Da, and 5850 Da, which were found in MRSA isolates but absent in MSSA isolates. Therefore, protein fingerprinting has the potential to be used in clinical settings to rapidly detect and differentiate MRSA isolates, allowing for more targeted treatments and improved patient outcomes.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Ihab Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sulaiman Anagreyyah
- Family Medicine Department, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| | - Abdulaziz AlGhamdi
- Medical Director Office, North Area Armed Forces Hospital, King Khalid Military City 39747, Saudi Arabia
| | - Ali Alqarni
- Respiratory Therapy Department, Armed Forces Hospital Dhahran, Dhahran 34641, Saudi Arabia
| | - Ahmed Aljohani
- Patient Affairs Department, Sharourah Armed Forces Hospital, Sharourah 68372, Saudi Arabia
| | - Hassan A. Hemeg
- Department of Medical Technology/Microbiology, College of Applied Medical Science, Taibah University, Madina 30001, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Roua A. Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Science, King Saud University, Riyadh 11433, Saudi Arabia
| | - Ali Najdi
- Northern Area Armed Forces Hospital, King Khalid Military City 39748, Saudi Arabia
| | - Nawaf Algohani
- Consultant Forensic Medicine, Forensic Medicine Center, Madina 42319, Saudi Arabia
| | - Banan Abead
- Support Service Department, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia;
| | - Bassam Gazzaz
- Patient Affairs Department, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|