1
|
Zhang K, Yang N, Teng D, Mao R, Hao Y, Wang J. Expression and characterization of the new antimicrobial peptide AP138L-arg26 anti Staphylococcus aureus. Appl Microbiol Biotechnol 2024; 108:111. [PMID: 38229298 DOI: 10.1007/s00253-023-12947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 01/18/2024]
Abstract
The low activity and yield of antimicrobial peptides (AMPs) are pressing problems. The improvement of activity and yield through modification and heterologous expression, a potential way to solve the problem, is a research hot-pot. In this work, a new plectasin-derived variant L-type AP138 (AP138L-arg26) was constructed for the study of recombination expression and druggablity. As a result, the total protein concentration of AP138L-arg26 was 3.1 mg/mL in Pichia pastoris X-33 supernatant after 5 days of induction expression in a 5-L fermenter. The recombinant peptide AP138L-arg26 has potential antibacterial activity against selected standard and clinical Gram-positive bacteria (G+, minimum inhibitory concentration (MIC) 2-16 µg/mL) and high stability under different conditions (temperature, pH, ion concentration) and 2 × MIC of AP138L-arg26 could rapidly kill Staphylococcus aureus (S. aureus) (> 99.99%) within 1.5 h. It showed a high safety in vivo and in vivo and a long post-antibiotic effect (PAE, 1.91 h) compared with vancomycin (1.2 h). Furthermore, the bactericidal mechanism was revealed from two dimensions related to its disruption of the cell membrane resulting in intracellular potassium leakage (2.5-fold higher than control), and an increase in intracellular adenosine triphosphate (ATP), and reactive oxygen species (ROS), the decrease of lactate dehydrogenase (LDH) and further intervening metabolism in S. aureus. These results indicate that AP138L-arg26 as a new peptide candidate could be used for more in-depth development in the future. KEY POINTS: • The AP138L-arg26 was expressed in the P. pastoris expression system with high yield • The AP138 L-arg26 showed high stability and safety in vitro and in vivo • The AP138L-arg26 killed S. aureus by affecting cell membranes and metabolism.
Collapse
Affiliation(s)
- Kun Zhang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| |
Collapse
|
2
|
Guo X, Cheng Y, Qiao Z, Xu J, Liang J, Zuo R, Xu P, Chu T, Yuan Y, Yue T. Biological Properties of S. warneri KYS-164 Isolated from Kefir Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25704-25719. [PMID: 39509287 DOI: 10.1021/acs.jafc.4c07215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Staphylococcus worderi KYS-164, isolated from homemade Tibetan kefir grains, produces bacteriocin-like inhibitory substances (BLIS), which are peptides with antimicrobial properties, but have not been fully characterized. The research on BLIS will lay the foundation for mining new bacteriocins. In this study, the optimal culture conditions for the production of highly active BLIS were found to be incubation at 30 °C and 120 rpm, and the most effective extraction method was ammonium sulfate precipitation (ASP) using ammonium sulfate at 80% saturation. The postantibiotic effect (PAE) of BLIS on Staphylococcus aureus CICC 10384 is significant, with a 4 × MIC BLIS concentration able to prolong the PAE to 2.39 h. BLIS has excellent biosafety, with no deleterious effects observed at 8 × MIC concentration. Gas chromatography-ion mobility spectrometry (GC-IMS) was used to analyze the volatile compounds synthesized by Staphylococcus warneri KYS-164 during its growth. Hydroxycitronellal, ethyl pyruvate, and α-pinene were found to be unique substances produced by this strain, which can provide fresh, refreshing floral and fruity aromas as well as strong pine and resinous aromas in the process of kefir grain fermentation of milk. Analysis of the S. warneri KYS-164 genome provided insights into the major metabolic pathways in which genes expressed in this strain are involved. This study represents the first isolation of S. warneri KYS-164 from kefir grains prepared by Tibetan families, and provides a comprehensive analysis of its physicochemical properties. This research provides a solid foundation for better understanding and utilization of S. warneri KYS-164.
Collapse
Affiliation(s)
- Xing Guo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yifan Cheng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zhu Qiao
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, Henan 463000, China
| | - Jinyue Xu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jingyimei Liang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
- College of Analytical Chemistry and Food Science, Universidade de Vigo, Vigo 36310, Spain
| | - Rui Zuo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Pandi Xu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tianyu Chu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
3
|
Mao R, Zhao Q, Lu H, Yang N, Li Y, Teng D, Hao Y, Gu X, Wang J. The Marine Antimicrobial Peptide AOD with Intact Disulfide Bonds Has Remarkable Antibacterial and Anti-Biofilm Activity. Mar Drugs 2024; 22:463. [PMID: 39452871 PMCID: PMC11509771 DOI: 10.3390/md22100463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
American Oyster Defensin (AOD) is a marine peptide that is derived from North American mussels. It has been demonstrated to exhibit potent antimicrobial activity and high safety in both in vitro and in vivo models. In this study, to facilitate synthesis, mutants of AOD with fewer disulfide bonds were designed and subjected to structural, antimicrobial, and anti-biofilm analysis. The antimicrobial activity of AOD-derived peptides decreased after reduction in the disulfide bond, and among its three derivatives, only AOD-1 inhibited very few bacteria with a MIC value of 64 μg/mL, whereas the others had no inhibitory effect on pathogenic bacteria. The findings demonstrated that full disulfide bonds are indispensable for bactericidal activity, with the α-helix playing a pivotal role in inhibiting bacterial membranes. Furthermore, the results of the ATP, ROS, membrane potential, and membrane fluidity assays demonstrated that intracellular ATP, reactive oxygen species, and membrane fluidity were all increased, while membrane potential was reduced. This indicated that AOD resulted in the impairment of membrane fluidity and induced metabolic disorders, ultimately leading to bacterial death. The inhibitory effect of AOD on the biofilm of S. epidermidis G-81 was determined through the crystal violet and confocal microscopy. The results demonstrated that AOD exhibited a notable inhibitory impact on the biofilm of S. epidermidis G-81. The minimum biofilm inhibitory concentration of AOD on S. epidermidis G-81 was 16 μg/mL, and the minimum biofilm scavenging concentration was 32 μg/mL, which exhibited superior efficacy compared to that of lincomycin. The inhibitory effect on the primary biofilm was 90.3%, and that on the mature biofilm was 82.85%, with a dose-dependent inhibition effect. Concurrently, AOD cleared intra-biofilm organisms and reduced the number of biofilm-holding bacteria by six orders of magnitude. These data indicate that disulfide bonds are essential to the structure and activity of AOD, and AOD may potentially become an effective dual-action antimicrobial and anti-biofilm agent.
Collapse
Affiliation(s)
- Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qingyi Zhao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Haiqiang Lu
- Enzyme Engineering Laboratory, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yuanyuan Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xinxi Gu
- Enzyme Engineering Laboratory, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
4
|
Girdhar M, Sen A, Nigam A, Oswalia J, Kumar S, Gupta R. Antimicrobial peptide-based strategies to overcome antimicrobial resistance. Arch Microbiol 2024; 206:411. [PMID: 39311963 DOI: 10.1007/s00203-024-04133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
Antibiotic resistance has emerged as a global threat, rendering the existing conventional treatment strategies ineffective. In view of this, antimicrobial peptides (AMPs) have proven to be potent alternative therapeutic interventions with a wide range of applications in clinical health. AMPs are small peptides produced naturally as a part of the innate immune responses against a broad range of bacterial, fungal and viral pathogens. AMPs present a myriad of advantages over traditional antibiotics, including their ability to target multiple sites, reduced susceptibility to resistance development, and high efficacy at low doses. These peptides have demonstrated notable potential in inhibiting microbes resistant to traditional antibiotics, including the notorious ESKAPE pathogens, recognized as the primary culprits behind nosocomial infections. AMPs, with their multifaceted benefits, emerge as promising candidates in the ongoing efforts to combat the escalating challenges posed by antibiotic resistance. This in-depth review provides a detailed discussion on AMPs, encompassing their classification, mechanism of action, and diverse clinical applications. Focus has been laid on combating newly emerging drug-resistant organisms, emphasizing the significance of AMPs in mitigating this pressing challenge. The review also illuminates potential future strategies that may be implemented to improve AMP efficacy, such as structural modifications and using AMPs in combination with antibiotics and matrix-inhibiting compounds.
Collapse
Affiliation(s)
| | - Aparajita Sen
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110021, India
| | - Arti Nigam
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, 110016, India
| | - Jyoti Oswalia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sachin Kumar
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Rashi Gupta
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.
| |
Collapse
|
5
|
Ma X, Aminov R, Franco OL, de la Fuente-Nunez C, Wang G, Wang J. Editorial: Antimicrobial peptides and their druggability, bio-safety, stability, and resistance. Front Microbiol 2024; 15:1425952. [PMID: 38846567 PMCID: PMC11154904 DOI: 10.3389/fmicb.2024.1425952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Affiliation(s)
- Xuanxuan Ma
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rustam Aminov
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Octavio Luiz Franco
- S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Guangshun Wang
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jianhua Wang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
6
|
Zheng X, Yang N, Mao R, Hao Y, Teng D, Wang J. Pharmacokinetics and pharmacodynamics of antibacterial peptide NZX in Staphylococcus aureus mastitis mouse model. Appl Microbiol Biotechnol 2024; 108:260. [PMID: 38472422 PMCID: PMC11636681 DOI: 10.1007/s00253-024-13101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Staphylococcus aureus is associated with dairy mastitis, which causes serious economic losses to dairy farming industry. Antibacterial peptide NZX showed good antibacterial activity against S. aureus. This study aimed to evaluate pharmacokinetics and pharmacodynamics of NZX against S. aureus-induced mouse mastitis. NZX exhibited potent in vitro antibacterial activity against the test S. aureus strains (minimal inhibitory concentration (MIC): 0.23-0.46 μM), low mutant prevention concentration (MPC: 1.18-3.68 μM), and a long post antibiotic effect (PAE: 2.20-8.84 h), which was superior to those of lincomycin and ceftiofur. Antibacterial mechanisms showed that NZX could penetrate the cell membrane, resulting in obvious cell membrane perforation and morphological changes, and bind to intracellular DNA. Furthermore, NZX had a good stability in milk environment (retention rate: 85.36%, 24 h) than that in mammary homogenate (47.90%, 24 h). In mouse mastitis model, NZX (25-400 μg/gland) could significantly reduce the bacterial load of mammary tissue in a dose-dependent manner. In addition, NZX (100 μg/gland) could relieve the inflammatory symptoms of mammary tissue, and significantly decreased its pathological scores. The concentration-time curve of NZX (100 μg/gland) in the mammary tissue was plotted and the corresponding pharmacokinetic parameters were obtained by non-compartment model calculation. Those parameters of Tmax, T1/2, Cmax and AUC were 0.5 h, 35.11 h, 32.49 μg/g and 391 μg·h/g, respectively. Therefore, these results suggest that NZX could act as a promising candidate for treating dairy mastitis disease caused by S. aureus. KEY POINTS: • NZX could kill S. aureus by dual mechanism involved in membrane and DNA disruption • NZX could relieve S. aureus-induced mouse mastitis • Pharmacokinetic parameters of NZX in mouse mammary gland were obtained.
Collapse
Affiliation(s)
- Xueling Zheng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| |
Collapse
|
7
|
Ma X, Yang N, Mao R, Hao Y, Teng D, Huang Y, Wang J. Polylactic Glycolic Acid-Mediated Delivery of Plectasin Derivative NZ2114 in Staphylococcus epidermidis Biofilms. Antibiotics (Basel) 2024; 13:228. [PMID: 38534663 DOI: 10.3390/antibiotics13030228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are antibiotic candidates; however, their instability and protease susceptibility limit clinical applications. In this study, the polylactic acid-glycolic acid (PLGA)-polyvinyl alcohol (PVA) drug delivery system was screened by orthogonal design using the double emulsion-solvent evaporation method. NZ2114 nanoparticles (NZ2114-NPs) displayed favorable physicochemical properties with a particle size of 178.11 ± 5.23 nm, polydispersity index (PDI) of 0.108 ± 0.10, ζ potential of 4.78 ± 0.67 mV, actual drug-loading rate of 4.07 ± 0.37%, encapsulation rate of 81.46 ± 7.42% and cumulative release rate of 67.75% (120 h) in PBS. The results showed that PLGA encapsulation increased HaCaT cell viability by 20%, peptide retention in 50% serum by 24.12%, and trypsin tolerance by 4.24-fold. Meanwhile, in vitro antimicrobial assays showed that NZ2114-NPs had high inhibitory activity against Staphylococcus epidermidis (S. epidermidis) (4-8 μg/mL). Colony counting and confocal laser scanning microscopy (CLSM) confirmed that NZ2114-NPs were effective in reducing the biofilm thickness and bacterial population of S. epidermidis G4 with a 99% bactericidal rate of persister bacteria, which was significantly better than that of free NZ2114. In conclusion, the results demonstrated that PLGA nanoparticles can be used as a reliable NZ2114 delivery system for the treatment of biofilm infections caused by S. epidermidis.
Collapse
Affiliation(s)
- Xuanxuan Ma
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing 100193, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ruoyu Mao
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yinhua Huang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing 100193, China
| | - Jianhua Wang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
8
|
Li X, Hao Y, Yang N, Mao R, Teng D, Wang J. Plectasin: from evolution to truncation, expression, and better druggability. Front Microbiol 2023; 14:1304825. [PMID: 38188573 PMCID: PMC10771296 DOI: 10.3389/fmicb.2023.1304825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Non-computational classical evolution analysis of plectasin and its functional relatives can especially contribute tool value during access to meet requirements for their better druggability in clinical use. Staphylococcus aureus is a zoonotic pathogen that can infect the skin, blood, and other tissues of humans and animals. The impact of pathogens on humans is exacerbated by the crisis of drug resistance caused by the misuse of antibiotics. In this study, we analyzed the evolution of anti-Staphylococcus target functional sequences, designed a series of plectasin derivatives by truncation, and recombinantly expressed them in Pichia pastoris X-33, from which the best recombinant Ple-AB was selected for the druggability study. The amount of total protein reached 2.9 g/L following 120 h of high-density expression in a 5-L fermenter. Ple-AB was found to have good bactericidal activity against gram-positive bacteria, with minimum inhibitory concentration (MIC) values ranging between 2 and 16 μg/mL. It showed good stability and maintained its bactericidal activity during high temperatures, strong acid and alkali environments. Notably, Ple-AB exhibited better druggability, including excellent trypsin resistance, and still possessed approximately 50% of its initial activity following exposure to simulated intestinal fluids for 1 h. In vitro safety testing of Ple-AB revealed low hemolytic activity against mouse erythrocytes and cytotoxicity against murine-derived macrophages. This study successfully realized the high expression of a new antimicrobial peptide (AMP), Ple-AB, in P. pastoris and the establishment of its oral administration as an additive form with high trypsin resistance; the study also revealed its antibacterial properties, indicating that truncation design is a valuable tool for improving druggability and that the candidate Ple-AB may be a novel promising antimicrobial agent.
Collapse
Affiliation(s)
- Xuan Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Chinese Academy of Agricultural Sciences, Department of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Chinese Academy of Agricultural Sciences, Department of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Chinese Academy of Agricultural Sciences, Department of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Chinese Academy of Agricultural Sciences, Department of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Chinese Academy of Agricultural Sciences, Department of Agriculture and Rural Affairs, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Chinese Academy of Agricultural Sciences, Department of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
9
|
Zhao Q, Yang N, Gu X, Li Y, Teng D, Hao Y, Lu H, Mao R, Wang J. High-Yield Preparation of American Oyster Defensin (AOD) via a Small and Acidic Fusion Tag and Its Functional Characterization. Mar Drugs 2023; 22:8. [PMID: 38276646 PMCID: PMC10821286 DOI: 10.3390/md22010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The marine peptide, American oyster defensin (AOD), is derived from Crassostrea virginica and exhibits a potent bactericidal effect. However, recombinant preparation has not been achieved due to the high charge and hydrophobicity. Although the traditional fusion tags such as Trx and SUMO shield the effects of target peptides on the host, their large molecular weight (12-20 kDa) leads to the yields lower than 20% of the fusion protein. In this study, a short and acidic fusion tag was employed with a compact structure of only 1 kDa. Following 72 h of induction in a 5 L fermenter, the supernatant exhibited a total protein concentration of 587 mg/L. The recombinant AOD was subsequently purified through affinity chromatography and enterokinase cleavage, resulting in the final yield of 216 mg/L and a purity exceeding 93%. The minimum inhibitory concentrations (MICs) of AOD against Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus galactis ranged from 4 to 8 μg/mL. Moreover, time-killing curves indicated that AOD achieved a bactericidal rate of 99.9% against the clinical strain S. epidermidis G-81 within 0.5 h at concentrations of 2× and 4× MIC. Additionally, the activity of AOD was unchanged after treatment with artificial gastric fluid and intestinal fluid for 4 h. Biocompatibility testing demonstrated that AOD, at a concentration of 128 μg/mL, exhibited a hemolysis rate of less than 0.5% and a cell survival rate of over 83%. Furthermore, AOD's in vivo therapeutic efficacy against mouse subcutaneous abscess revealed its capability to restrain bacterial proliferation and reduce bacterial load, surpassing that of antibiotic lincomycin. These findings indicate AOD's potential for clinical usage.
Collapse
Affiliation(s)
- Qingyi Zhao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xinxi Gu
- Enzyme Engineering Laboratory, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yuanyuan Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Haiqiang Lu
- Enzyme Engineering Laboratory, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
10
|
Xu K, Zhao X, Tan Y, Wu J, Cai Y, Zhou J, Wang X. A systematical review on antimicrobial peptides and their food applications. BIOMATERIALS ADVANCES 2023; 155:213684. [PMID: 37976831 DOI: 10.1016/j.bioadv.2023.213684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Food safety issues are a major concern in food processing and packaging industries. Food spoilage is caused by microbial contamination, where antimicrobial peptides (APs) provide solutions by eliminating microorganisms. APs such as nisin have been successfully and commonly used in food processing and preservation. Here, we discuss all aspects of the functionalization of APs in food applications. We briefly review the natural sources of APs and their native functions. Recombinant expression of APs in microorganisms and their yields are described. The molecular mechanisms of AP antibacterial action are explained, and this knowledge can further benefit the design of functional APs. We highlight current utilities and challenges for the application of APs in the food industry, and address rational methods for AP design that may overcome current limitations.
Collapse
Affiliation(s)
- Kangjie Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - XinYi Zhao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yameng Tan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Junheng Wu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yiqing Cai
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China..
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|