1
|
Zhao L, Chen H, Sun Y, Wei H. A novel strategy to promote sludge solubilization and short-chain fatty acid production by coupling thermal hydrolysis and sodium thiosulfate pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125930. [PMID: 40408854 DOI: 10.1016/j.jenvman.2025.125930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 05/15/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Thermal hydrolysis (TH) technology is promising for sludge pretreatment, but the high cost and the generation of refractory substances limit its application. In this study, sodium thiosulfate (STS) was innovatively combined with TH pretreatment to improve the anaerobic fermentation efficiency of sludge. TH-STS pretreatment (140 °C, 0.132 g/g TSS) increased sludge solubility by 33.4 % and increased short-chain fatty acid (SCFA) production to 1.86 times that of the control group. TH effectively stripped the extracellular polymeric substances, and STS subsequently lysed the cells through its reducing power. TH-STS pretreatment promoted SCFA accumulation by increasing the activity of key enzymes and enriching hydrolyzing and acidifying bacteria. In addition, TH-STS pretreatment increased the activity of the electron transport system, which positively promoted the biotransformation of SCFAs. This study reveals that STS and TH pretreatment have a synergistic effect, providing an effective method for improving sludge pretreatment and resource recycling.
Collapse
Affiliation(s)
- Lina Zhao
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| | - Yihu Sun
- Hunan Diya Environmental Engineering Co., Ltd., Changsha, 410007, China
| | - Huibin Wei
- Hunan Diya Environmental Engineering Co., Ltd., Changsha, 410007, China.
| |
Collapse
|
2
|
Ni J, Huang S, Yang W, Chen Q, Lin Z. Electrochemiluminescence Detecting and Imaging of Yeast Metabolism Indicated by Endogenetic Co-reactant. Anal Chem 2025; 97:921-927. [PMID: 39700391 DOI: 10.1021/acs.analchem.4c05663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Glycolysis, a pivotal step in yeast metabolism, plays an indispensable role as a carbohydrate utilization process crucial for cellular survival. Developing advanced technologies to elucidate this fundamental physiological process holds significant scientific implications. Electrochemiluminescence (ECL) imaging exhibits the advantage of negligible background interference and facilitates straightforward visualization, thereby conferring significant value in biomolecular observation. In this study, we present an ECL imaging method for investigating yeast metabolism by utilizing the endogenetic NADH as an efficient coreactant for ECL generation. The yeast glycolysis process drives the conversion of NAD+ to NADH, resulting in enhanced ECL response as well as the increased brightness of ECL images that can be used for quantification of yeast activity. There was a linear correlation between the reciprocal of both the gray value of ECL image and yeast concentration within the range of 6.25 × 106 - 6.25 × 108 CFU/mL. Due to the highly efficient coreactant behavior of NADH, our method demonstrated excellent selectivity with minimal interference. Furthermore, we employed this approach to investigate some toxic inhibitors on yeast metabolism, yielding reliable results. This ECL imaging method not only avoids the use of additional coreactants but also provides a sensitive and intuitive approach for monitoring yeast metabolism, demonstrating great potential in revealing various complex biological processes.
Collapse
Affiliation(s)
- Jiancong Ni
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Shengxiu Huang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Weiqiang Yang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Qiaoling Chen
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
3
|
Pandey V, Pandey T. The role of hydrogen sulfide (H 2S) in postharvest fruits: A comprehensive analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109204. [PMID: 39437669 DOI: 10.1016/j.plaphy.2024.109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Hydrogen sulfide (H2S) has emerged as a crucial signaling molecule in plant biology, exhibiting diverse roles in growth, development, and stress responses. In recent years, its involvement in postharvest physiology has drawn significant attention, particularly in the context of fruit ripening, senescence, and quality maintenance. However, despite the increasing recognition of H2S's importance in postharvest processes, there remains a limited understanding of the specific molecular mechanisms by which H2S modulates these physiological responses and its interaction with other signaling pathways in fruit tissues. This review provides a comprehensive analysis of the role of H2S in postharvest fruits, encompassing its biosynthesis pathways, regulatory mechanisms, and physiological effects. By identifying existing gaps in the current literature, such as the need for more targeted studies on H2S's synergistic effects with other phytohormones and its potential impact on different fruit varieties, this review elucidates the multifaceted functions of H2S and its potential applications in postharvest technologies aimed at prolonging fruit shelf-life and preserving quality.
Collapse
Affiliation(s)
- Vivek Pandey
- Department of Chemistry, School for Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Tejasvi Pandey
- Department of Forensic Sciences, School for Bioengineering and Biosciences Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
4
|
Kaur M, Miquel S, Ollivier-Nakusi L, Thoral C, Vareille-Delarbre M, Bekirian C, d'Enfert C, Fontaine T, Roget K, Forestier C. Elemental sulfur enhances the anti-fungal effect of Lacticaseibacillus rhamnosus Lcr35. Microbes Infect 2024; 26:105286. [PMID: 38160785 DOI: 10.1016/j.micinf.2023.105286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Lacticaseibacillus rhamnosus Lcr35 is a well-known bacterial strain whose efficiency in preventing recurrent vulvovaginal candidiasis has been largely demonstrated in clinical trials. The presence of sodium thiosulfate (STS) has been shown to enhance its ability to inhibit the growth of Candida albicans strains. In this study, we confirmed that Lcr35 has a fungicidal effect not only on the planktonic form of C. albicans but also on other life forms such as hypha and biofilm. Transcriptomic analysis showed that the presence of C. albicans induced a metabolic adaptation of Lcr35 potentially associated with a competitive advantage over yeast cells. However, STS alone had no impact on the global gene expression of Lcr35, which is not in favor of the involvement of an enzymatic transformation of STS. Comparative HPLC and gas chromatography-mass spectrometry analysis of the organic phase from cell-free supernatant (CFS) fractions obtained from Lcr35 cultures performed in the presence and absence of STS identified elemental sulfur (S0) in the samples initially containing STS. In addition, the anti-Candida activity of CFS from STS-containing cultures was shown to be pH-dependent and occurred at acidic pH lower than 5. We next investigated the antifungal activity of lactic acid and acetic acid, the two main organic acids produced by lactobacilli. The two molecules affected the viability of C. albicans but only at pH 3.5 and in a dose-dependent manner, an antifungal effect that was enhanced in samples containing STS in which the thiosulfate was decomposed into S0. In conclusion, the use of STS as an excipient in the manufacturing process of Lcr35 exerted a dual action since the production of organic acids by Lcr35 facilitates the decomposition of thiosulfate into S0, thereby enhancing the bacteria's own anti-fungal effect.
Collapse
Affiliation(s)
- Manjyot Kaur
- NEXBIOME Therapeutics, 22 Allée Alan Turing, 63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Sylvie Miquel
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France.
| | | | - Claudia Thoral
- NEXBIOME Therapeutics, 22 Allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Clara Bekirian
- Institut Pasteur, Université Paris Cité, INRAE USC 2019, Unité Biologie et Pathogénicité Fongiques, 25, rue du Docteur Roux, 75015 Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC 2019, Unité Biologie et Pathogénicité Fongiques, 25, rue du Docteur Roux, 75015 Paris, France
| | - Thierry Fontaine
- Institut Pasteur, Université Paris Cité, INRAE USC 2019, Unité Biologie et Pathogénicité Fongiques, 25, rue du Docteur Roux, 75015 Paris, France
| | - Karine Roget
- NEXBIOME Therapeutics, 22 Allée Alan Turing, 63000 Clermont-Ferrand, France
| | | |
Collapse
|
5
|
Liu H, Yu H, Gao R, Ge F, Zhao R, Lu X, Wang T, Liu H, Yang C, Xia Y, Xun L. A Zero-Valent Sulfur Transporter Helps Podophyllotoxin Uptake into Bacterial Cells in the Presence of CTAB. Antioxidants (Basel) 2023; 13:27. [PMID: 38247452 PMCID: PMC10812762 DOI: 10.3390/antiox13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Podophyllotoxin (PTOX) is naturally produced by the plant Podophyllum species. Some of its derivatives are anticancer drugs, which are produced mainly by using chemical semi-synthesis methods. Recombinant bacteria have great potential in large-scale production of the derivatives of PTOX. In addition to introducing the correct enzymes, the transportation of PTOX into the cells is an important factor, which limits its modification in the bacteria. Here, we improved the cellular uptake of PTOX into Escherichia coli with the help of the zero-valent sulfur transporter YedE1E2 in the presence of cetyltrimethylammonium bromide (CTAB). CTAB promoted the uptake of PTOX, but induced the production of reactive oxygen species. A protein complex (YedE1E2) of YedE1 and YedE2 enabled E. coli cells to resist CTAB by reducing reactive oxygen species, and YedE1E2 was a hypothetical transporter. Further investigation showed that YedE1E2 facilitated the uptake of extracellular zero-valent sulfur across the cytoplasmic membrane and the formation of glutathione persulfide (GSSH) inside the cells. The increased GSSH minimized oxidative stress. Our results indicate that YedE1E2 is a zero-valent sulfur transporter and it also facilitates CTAB-assisted uptake of PTOX by recombinant bacteria.
Collapse
Affiliation(s)
- Honglei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Huiyuan Yu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Rui Gao
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fulin Ge
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Rui Zhao
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Xia Lu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Tianqi Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| |
Collapse
|
6
|
D'Amico F, Casalino G, Dinardo FR, Schiavitto M, Camarda A, Romito D, Bove A, Circella E. Antimicrobial Efficacy of Phyto-L, Thiosulfonate from Allium spp. Containing Supplement, against Escherichia Coli Strains from Rabbits. Vet Sci 2023; 10:411. [PMID: 37505817 PMCID: PMC10384763 DOI: 10.3390/vetsci10070411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Colibacillosis, caused by enteropathogenic Escherichia coli (EPEC), is one of the most common diseases in rabbit farms, resulting in economic losses due to mortality and decrease in production. Until recently, antimicrobials were used to both treat and prevent disease on livestock farms, leading to the possible risk of antimicrobial resistance (AMR) and the selection of multidrug-resistant (MDR) bacteria. Therefore, interest in alternative control methods, such as the use of natural substances, has increased in the scientific community. The aim of this study was to evaluate the antimicrobial efficacy of Phyto-L (Pro Tech s.r.l.), a product containing organosulfur compounds (OSCs) such as propyl propane thiosulfonate (PTSO) from Allium spp., against 108 strains of E. coli isolated from rabbits with colibacillosis from 19 farms. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Phyto-L were assessed. Bacterial suspensions with a charge of 108 CFU/mL, corresponding to those found in the rabbit gut under pathologic conditions, were tested with different concentrations from 20 to 0.15 μL/mL of Phyto-L. For each strain, the MIC and concentrations above the MIC were plated on Tryptic Soy agar (TSA) without Phyto-L to assess the MBCs. MIC and MBC values ranged from 1.25 to 5 μL/mL and 1.25 to 20 μL/mL, respectively, depending on the strain tested. The data showed an interesting antibacterial activity of Phyto-L against EPEC strains. Therefore, this product could be effective in preventing colibacillosis in field application, especially considering that 104-105 CFU/g of feces is the amount of E. coli usually found in the gut contents of rabbits under physiological condition.
Collapse
Affiliation(s)
- Francesco D'Amico
- Department of Veterinary Medicine, University of Bari "Aldo Moro", S. P. Casamassima km 3, 70010 Valenzano, BA, Italy
| | - Gaia Casalino
- Department of Veterinary Medicine, University of Bari "Aldo Moro", S. P. Casamassima km 3, 70010 Valenzano, BA, Italy
| | - Francesca Rita Dinardo
- Department of Veterinary Medicine, University of Bari "Aldo Moro", S. P. Casamassima km 3, 70010 Valenzano, BA, Italy
| | - Michele Schiavitto
- Italian Rabbit Breeders Association-ANCI, Contrada Giancola snc, 71030 Volturara Appula, FG, Italy
| | - Antonio Camarda
- Department of Veterinary Medicine, University of Bari "Aldo Moro", S. P. Casamassima km 3, 70010 Valenzano, BA, Italy
| | - Diana Romito
- Department of Veterinary Medicine, University of Bari "Aldo Moro", S. P. Casamassima km 3, 70010 Valenzano, BA, Italy
| | - Antonella Bove
- Department of Veterinary Medicine, University of Bari "Aldo Moro", S. P. Casamassima km 3, 70010 Valenzano, BA, Italy
| | - Elena Circella
- Department of Veterinary Medicine, University of Bari "Aldo Moro", S. P. Casamassima km 3, 70010 Valenzano, BA, Italy
| |
Collapse
|
7
|
Li Z, Liu Q, Sun J, Sun J, Li M, Zhang Y, Deng A, Liu S, Wen T. Multivariate modular metabolic engineering for enhanced L-methionine biosynthesis in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:101. [PMID: 37312226 DOI: 10.1186/s13068-023-02347-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND L-Methionine is the only bulk amino acid that has not been industrially produced by the fermentation method. Due to highly complex and strictly regulated biosynthesis, the development of microbial strains for high-level L-methionine production has remained challenging in recent years. RESULTS By strengthening the L-methionine terminal synthetic module via site-directed mutation of L-homoserine O-succinyltransferase (MetA) and overexpression of metAfbr, metC, and yjeH, L-methionine production was increased to 1.93 g/L in shake flask fermentation. Deletion of the pykA and pykF genes further improved L-methionine production to 2.51 g/L in shake flask fermentation. Computer simulation and auxotrophic experiments verified that during the synthesis of L-methionine, equimolar amounts of L-isoleucine were accumulated via the elimination reaction of cystathionine γ-synthetase MetB due to the insufficient supply of L-cysteine. To increase the supply of L-cysteine, the L-cysteine synthetic module was strengthened by overexpression of cysEfbr, serAfbr, and cysDN, which further increased the production of L-methionine by 52.9% and significantly reduced the accumulation of the byproduct L-isoleucine by 29.1%. After optimizing the addition of ammonium thiosulfate, the final metabolically engineered strain MET17 produced 21.28 g/L L-methionine in 64 h with glucose as the carbon source in a 5 L fermenter, representing the highest L-methionine titer reported to date. CONCLUSIONS In this study, a high-efficiency strain for L-methionine production was derived from wild-type Escherichia coli W3110 by rational metabolic engineering strategies, providing an efficient platform for the industrial production of L-methionine.
Collapse
Affiliation(s)
- Zhongcai Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiahui Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Jianjian Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingjie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Aihua Deng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuwen Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tingyi Wen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
- China Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Remines M, Schoonover M, Knox Z, Kenwright K, Hoffert KM, Coric A, Mead J, Ampfer J, Seye S, Strome ED. Profiling The Compendium Of Changes In Saccharomyces cerevisiae Due To Mutations That Alter Availability Of The Main Methyl Donor S-Adenosylmethionine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544294. [PMID: 37333147 PMCID: PMC10274911 DOI: 10.1101/2023.06.09.544294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The SAM1 and SAM2 genes encode for S-AdenosylMethionine (AdoMet) synthetase enzymes, with AdoMet serving as the main methyl donor. We have previously shown that independent deletion of these genes alters chromosome stability and AdoMet concentrations in opposite ways in S. cerevisiae. To characterize other changes occurring in these mutants, we grew wildtype, sam1∆/sam1∆, and sam2∆/sam2∆ strains in 15 different Phenotypic Microarray plates with different components, equal to 1440 wells, and measured for growth variations. RNA-Sequencing was also carried out on these strains and differential gene expression determined for each mutant. In this study, we explore how the phenotypic growth differences are linked to the altered gene expression, and thereby predict the mechanisms by which loss of the SAM genes and subsequent AdoMet level changes, impact S. cerevisiae pathways and processes. We present six stories, discussing changes in sensitivity or resistance to azoles, cisplatin, oxidative stress, arginine biosynthesis perturbations, DNA synthesis inhibitors, and tamoxifen, to demonstrate the power of this novel methodology to broadly profile changes due to gene mutations. The large number of conditions that result in altered growth, as well as the large number of differentially expressed genes with wide-ranging functionality, speaks to the broad array of impacts that altering methyl donor abundance can impart, even when the conditions tested were not specifically selected as targeting known methyl involving pathways. Our findings demonstrate that some cellular changes are directly related to AdoMet-dependent methyltransferases and AdoMet availability, some are directly linked to the methyl cycle and its role is production of several important cellular components, and others reveal impacts of SAM gene mutations on previously unconnected pathways.
Collapse
Affiliation(s)
- McKayla Remines
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Makailyn Schoonover
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Zoey Knox
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kailee Kenwright
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kellyn M. Hoffert
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Amila Coric
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - James Mead
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Joseph Ampfer
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Serigne Seye
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Erin D. Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| |
Collapse
|
9
|
Cheng B, Wang Y, Zhang D, Wu D, Zan F, Ma J, Miao L, Wang Z, Chen G, Guo G. Thiosulfate pretreatment enhancing short-chain fatty acids production from anaerobic fermentation of waste activated sludge: Performance, metabolic activity and microbial community. WATER RESEARCH 2023; 238:120013. [PMID: 37148694 DOI: 10.1016/j.watres.2023.120013] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
A novel strategy based on thiosulfate pretreatment for enhancing short-chain fatty acids (SCFAs) from anaerobic fermentation (AF) of waste activated sludge (WAS) was proposed in this study. The results showed that the maximal SCFA yield increased from 206.1 ± 4.7 to 1097.9 ± 17.2 mg COD/L with thiosulfate dosage increasing from 0 to 1000 mg S/L, and sulfur species contribution results revealed that thiosulfate was the leading contributor to improve SCFA yield. Mechanism exploration disclosed that thiosulfate addition largely improved WAS disintegration, due to thiosulfate serving as a cation binder for removing organic-binding cations, especially Ca2+ and Mg2+, dispersing the extracellular polymeric substance (EPS) structure and further entering into the intracellularly by stimulated carrier protein SoxYZ and subsequently caused cell lysis. Typical enzyme activities and related functional gene abundances indicated that both hydrolysis and acidogenesis were remarkably enhanced while methanogenesis was substantially suppressed, which were further strengthened by the enriched hydrolytic bacteria (e.g. C10-SB1A) and acidogenic bacteria (e.g. Aminicenantales) but severely reduced methanogens (e.g. Methanolates and Methanospirillum). Economic analysis confirmed that thiosulfate pretreatment was a cost-effective and efficient strategy. The findings obtained in this work provide a new thought for recovering resource through thiosulfate-assisted WAS AF for sustainable development.
Collapse
Affiliation(s)
- Boyi Cheng
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Da Zhang
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Di Wu
- Centre for Environmental and Energy Research, Department of Green Chemistry and Technology, Ghent University Global Campus, Ghent University, Ghent B9000, Belgium.
| | - Feixiang Zan
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Jie Ma
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Lei Miao
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Zongping Wang
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Guanghao Chen
- Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, PR China
| | - Gang Guo
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China.
| |
Collapse
|
10
|
Fan K, Wang W, Xu X, Yuan Y, Ren N, Lee DJ, Chen C. Recent Advances in Biotechnologies for the Treatment of Environmental Pollutants Based on Reactive Sulfur Species. Antioxidants (Basel) 2023; 12:antiox12030767. [PMID: 36979016 PMCID: PMC10044940 DOI: 10.3390/antiox12030767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The definition of reactive sulfur species (RSS) is inspired by the reactivity and variable chemical valence of sulfur. Sulfur is an essential element for life and is a part of global geochemical cycles. Wastewater treatment bioreactors can be divided into two major categories: sulfur reduction and sulfur oxidation. We review the origins of the definition of RSS and related biotechnological processes in environmental management. Sulfate reduction, sulfide oxidation, and sulfur-based redox reactions are key to driving the coupled global carbon, nitrogen, and sulfur co-cycles. This shows the coupling of the sulfur cycle with the carbon and nitrogen cycles and provides insights into the global material-chemical cycle. We also review the biological classification and RSS metabolic mechanisms of functional microorganisms involved in the biological processes, such as sulfate-reducing and sulfur-oxidizing bacteria. Developments in molecular biology and genomic technologies have allowed us to obtain detailed information on these bacteria. The importance of RSS in environmental technologies requires further consideration.
Collapse
Affiliation(s)
- Kaili Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing 100176, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
11
|
Noroozi K, Jarboe LR. Strategic nutrient sourcing for biomanufacturing intensification. J Ind Microbiol Biotechnol 2023; 50:kuad011. [PMID: 37245065 PMCID: PMC10549214 DOI: 10.1093/jimb/kuad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
The successful design of economically viable bioprocesses can help to abate global dependence on petroleum, increase supply chain resilience, and add value to agriculture. Specifically, bioprocessing provides the opportunity to replace petrochemical production methods with biological methods and to develop novel bioproducts. Even though a vast range of chemicals can be biomanufactured, the constraints on economic viability, especially while competing with petrochemicals, are severe. There have been extensive gains in our ability to engineer microbes for improved production metrics and utilization of target carbon sources. The impact of growth medium composition on process cost and organism performance receives less attention in the literature than organism engineering efforts, with media optimization often being performed in proprietary settings. The widespread use of corn steep liquor as a nutrient source demonstrates the viability and importance of "waste" streams in biomanufacturing. There are other promising waste streams that can be used to increase the sustainability of biomanufacturing, such as the use of urea instead of fossil fuel-intensive ammonia and the use of struvite instead of contributing to the depletion of phosphate reserves. In this review, we discuss several process-specific optimizations of micronutrients that increased product titers by twofold or more. This practice of deliberate and thoughtful sourcing and adjustment of nutrients can substantially impact process metrics. Yet the mechanisms are rarely explored, making it difficult to generalize the results to other processes. In this review, we will discuss examples of nutrient sourcing and adjustment as a means of process improvement. ONE-SENTENCE SUMMARY The potential impact of nutrient adjustments on bioprocess performance, economics, and waste valorization is undervalued and largely undercharacterized.
Collapse
Affiliation(s)
- Kimia Noroozi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
12
|
Forensic implication of seized drug imitating methamphetamine with mileage in crime. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2023. [DOI: 10.1186/s41935-023-00325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abstract
Background
The increase in drug abuse a major global issue. Clandestine laboratories along with illegal drug trafficking and trade increase the menace. Increased confiscation of illicit drugs not only indicates the manifold rise in drug abuse in Delhi and its neighboring region but also signifies an escalation and proliferation in other drug-related criminal activities. Investigating agencies around the world are working hard to combat and eradicate this problem. The samples seized by these agencies are subsequently sent for forensic examination to rule out the presence of any illicit drugs. Few such seized crystalline samples such as “methamphetamine” were submitted for examination with a query for the identification of any scheduled substance. The analysis outline followed was physical, chemical, Fourier transform infrared spectrometer analysis for detection, identification, and confirmation of seized drug samples. The purpose of a detailed investigation regarding the identification of the crystalline sample was also to understand the criminal activities involved in the consistent seizures and the forensics behind it.
Results
The comprehensive examination identified the sample as an inorganic salt of sodium thiosulfate with the absence of contraband methamphetamine. The study on salt-imitating methamphetamine underlines its diverse uses as in adulteration, trafficking to camouflage narcotics drug and its involvement in numerous other illegal purposes which on the other hand has a very crucial impact on society and its well-being.
Conclusions
The novel findings will update the investigating agencies and other experts regarding the importance of the detection of sodium thiosulfate salt in seized samples and will well establish the foul play behind large seizures to justify the role of forensic science. This unique finding deals with a very sensitive issue that has immense social impact and needs exceptional thoughtfulness.
Collapse
|
13
|
Optimization of a Method for Detecting Intracellular Sulfane Sulfur Levels and Evaluation of Reagents That Affect the Levels in Escherichia coli. Antioxidants (Basel) 2022; 11:antiox11071292. [PMID: 35883783 PMCID: PMC9311597 DOI: 10.3390/antiox11071292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Sulfane sulfur is a class of compounds containing zero-valent sulfur. Most sulfane sulfur compounds are reactive and play important signaling roles. Key enzymes involved in the production and metabolism of sulfane sulfur have been characterized; however, little is known about how to change intracellular sulfane sulfur (iSS) levels. To accurately measure iSS, we optimized a previously reported method, in which reactive iSS reacts with sulfite to produce thiosulfate, a stable sulfane sulfur compound, before detection. With the improved method, several factors were tested to influence iSS in Escherichia coli. Temperature, pH, and osmotic pressure showed little effect. At commonly used concentrations, most tested oxidants, including hydrogen peroxide, tert-butyl hydroperoxide, hypochlorous acid, and diamide, did not affect iSS, but carbonyl cyanide m-chlorophenyl hydrazone increased iSS. For reductants, 10 mM dithiothreitol significantly decreased iSS, but tris(2-carboxyethyl)phosphine did not. Among different sulfur-bearing compounds, NaHS, cysteine, S2O32− and diallyl disulfide increased iSS, of which only S2O32− did not inhibit E. coli growth at 10 mM or less. Thus, with the improved method, we have identified reagents that may be used to change iSS in E. coli and other organisms, providing tools to further study the physiological functions of iSS.
Collapse
|
14
|
Abstract
Reactive compounds with one or more sulfane sulfur atoms can be an important source of reductive off-odors in wine. These substances contain labile sulfur, which can participate in microbiological (enzymatic) and chemical transformations (including in the post-bottling period), releasing malodorous hydrogen sulfide (H2S) and its derivatives (MeSH, EtSH, etc.). The following sulfane sulfur compounds were considered in this review as important precursors in the wine chemistry of reductive aromas: elemental sulfur (S8), persulfides (R-S-S-H), polysulfanes (R-Sn-R(′)), polythionates (−O3S-Sn-SO3−), thiosulfate (S2O32−) and derivatives of (poly)sulfane monosulfonic acids (R-Sn-SO3H). This review discusses the formation of these compounds, their reactivity and chemical transformations in wine, including reactions of nucleophilic substitution. In particular, the reactions of thiolysis, thiosulfatolysis and sulfitolysis of sulfane sulfur compounds are described, which lead in the end to reductive aroma compounds. In this way, the review attempts to shed light on some of the mysteries in the field of sulfur chemistry in wine and the reappearance of reductive off-odors after bottling.
Collapse
|