1
|
Liu K, Ma X, Zhang Y, Zhao L, Shi Y. Precision delivery of pretreated macrophage-membrane-coated Pt nanoclusters for improving Alzheimer's disease-like cognitive dysfunction induced by Porphyromonas gingivalis. Biomaterials 2025; 319:123211. [PMID: 40020501 DOI: 10.1016/j.biomaterials.2025.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/19/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Oral infection with Porphyromonas gingivalis (P. gingivalis), a kind of pathogenic bacteria causing periodontitis, can increase the risk of Alzheimer's disease (AD) and cause cognitive decline. Therefore, precise intracerebral antimicrobial therapy to reduce the load of P. gingivalis in brain may serve as a potential therapeutic approach to improve AD-like cognitive impairment. A kind of nano-delivery system precisely targets bacteria in the brain through coating P. gingivalis stimulated macrophage membrane onto the surface of platinum nanoclusters (Pg-M-PtNCs). Approximate 50 nm spherical Pg-M-PtNCs demonstrate good biocompatibility and the pretreated macrophage membranes can inhibit macrophages phagocytosis and increase the adherence to bacteria. Pg-M-PtNCs can significantly inhibit the growth of P.gingivalis in vitro, and are effectively delivered and remain at the infection site in the mice brain to reduce the bacterial load and neuronal damage, and then improve the AD-like cognitive dysfunction in the chronic periodontitis mice. Platinum nanoclusters coated with P. gingivalis pretreated macrophage membrane play an important role in targeting bacteria in the brain, and effectively improve AD-like cognitive function disorder caused by P. gingivalis infection in the brain.
Collapse
Affiliation(s)
- Kang Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China.
| | - Xuejing Ma
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, PR China.
| | - Yifei Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China.
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China; Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou, 121000, PR China.
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China; Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou, 121000, PR China.
| |
Collapse
|
2
|
Xu Y, Zheng H, Slabu I, Liehn EA, Rusu M. Vitamin C in Cardiovascular Disease: From Molecular Mechanisms to Clinical Evidence and Therapeutic Applications. Antioxidants (Basel) 2025; 14:506. [PMID: 40427388 PMCID: PMC12108419 DOI: 10.3390/antiox14050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Vitamin C, also known as ascorbic acid, is an essential nutrient that humans cannot synthesize, making its intake crucial for health. Discovered nearly a century ago, vitamin C is widely recognized for its ability to prevent scurvy and has become one of the most commonly used supplements. Beyond its antioxidant activity, vitamin C is pivotal in regulating lipid metabolism, promoting angiogenesis, enhancing collagen synthesis, modulating remodeling, and stabilizing the extracellular matrix. While preclinical studies have shown promising results, clinical trials have yielded inconsistent findings, due to suboptimal study design, results misinterpretation, and misleading conclusions. This review provides a holistic overview of existing evidence on the pleiotropic role of vitamin C in cardiovascular diseases, identifying both the strengths and limitations of current research and highlighting gaps in understandings in vitamin C's underlying mechanisms. By integrating molecular insights with clinical data and evaluating the pleiotropic role of vitamin C in cardiovascular disease management and prevention, this review aims to guide future research toward personalized, evidence-based therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Yichen Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China;
| | - Huabo Zheng
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Department of Electrical Engineering, Helmut Schmidt University, 22043 Hamburg, Germany
| | - Elisa Anamaria Liehn
- Department of Electrical Engineering, Helmut Schmidt University, 22043 Hamburg, Germany
- National Heart Center Singapore, 5 Hospital Dr., Singapore 169609, Singapore
- Center for Innovation and eHealth, University of Medicine and Pharmacy Carol Davila, Pitar Mos 20, 010451 Bucharest, Romania
| | - Mihaela Rusu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Department of Electrical Engineering, Helmut Schmidt University, 22043 Hamburg, Germany
| |
Collapse
|
3
|
Ramachandran R, Manan A, Kim J, Choi S. NLRP3 inflammasome: a key player in the pathogenesis of life-style disorders. Exp Mol Med 2024; 56:1488-1500. [PMID: 38945951 PMCID: PMC11297159 DOI: 10.1038/s12276-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 07/02/2024] Open
Abstract
Proinflammatory cytokines and chemokines play a crucial role in regulating the inflammatory response, which is essential for the proper functioning of our immune system. When infections or threats to the body's defense mechanisms are detected, the innate immune system takes the lead. However, an excessive inflammatory response can lead to the production of high concentrations of cytotoxic molecules, resulting in tissue damage. Inflammasomes are significant contributors to innate immunity, and one of the most extensively studied inflammasome complexes is NOD-like receptor 3 (NLRP3). NLRP3 has a wide range of recognition mechanisms that streamline immune activation and eliminate pathogens. These cytosolic multiprotein complexes are composed of effector, adaptor, and sensor proteins, which are crucial for identifying intracellular bacterial breakdown products and initiating an innate immune cascade. To understand the diverse behavior of NLRP3 activation and its significance in the development of lifestyle-related diseases, one must delve into the study of the immune response and apoptosis mediated by the release of proinflammatory cytokines. In this review, we briefly explore the immune response in the context of lifestyle associated disorders such as obesity, hyperlipidemia, diabetes, chronic respiratory disease, oral disease, and cardiovascular disease.
Collapse
Affiliation(s)
- Rajath Ramachandran
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
| | - Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Jei Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea.
| |
Collapse
|
4
|
Xu S, Zhao L, Li Y, Gu X, Liu Z, Han X, Li W, Ma W. Activating the healing process: three-dimensional culture of stem cells in Matrigel for tissue repair. BMC Biotechnol 2024; 24:36. [PMID: 38796454 PMCID: PMC11128131 DOI: 10.1186/s12896-024-00862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/22/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND To establish a strategy for stem cell-related tissue regeneration therapy, human gingival mesenchymal stem cells (hGMSCs) were loaded with three-dimensional (3D) bioengineered Matrigel matrix scaffolds in high-cell density microtissues to promote local tissue restoration. METHODS The biological performance and stemness of hGMSCs under 3D culture conditions were investigated by viability and multidirectional differentiation analyses. A Sprague‒Dawley (SD) rat full-thickness buccal mucosa wound model was established, and hGMSCs/Matrigel were injected into the submucosa of the wound. Autologous stem cell proliferation and wound repair in local tissue were assessed by histomorphometry and immunohistochemical staining. RESULTS Three-dimensional suspension culture can provide a more natural environment for extensions and contacts between hGMSCs, and the viability and adipogenic differentiation capacity of hGMSCs were significantly enhanced. An animal study showed that hGMSCs/Matrigel significantly accelerated soft tissue repair by promoting autologous stem cell proliferation and enhancing the generation of collagen fibers in local tissue. CONCLUSION Three-dimensional cell culture with hydrogel scaffolds, such as Matrigel, can effectively improve the biological function and maintain the stemness of stem cells. The therapeutic efficacy of hGMSCs/Matrigel was confirmed, as these cells could effectively stimulate soft tissue repair to promote the healing process by activating the host microenvironment and autologous stem cells.
Collapse
Affiliation(s)
- Shukui Xu
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Liru Zhao
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Yinghui Li
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Xiuge Gu
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Ziyang Liu
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Xing Han
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Wenwen Li
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Wensheng Ma
- Department of Orthodontics, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China.
| |
Collapse
|
5
|
Diomede F, Guarnieri S, Lanuti P, Konstantinidou F, Gatta V, Rajan TS, Pierdomenico SD, Trubiani O, Marconi GD, Pizzicannella J. Extracellular vesicles (EVs): A promising therapeutic tool in the heart tissue regeneration. Biofactors 2024; 50:509-522. [PMID: 38131134 DOI: 10.1002/biof.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/04/2023] [Indexed: 12/23/2023]
Abstract
Mesenchymal stem cells (MSCs) treatment has been widely explored as a therapy for myocardial infarction, peripheral ischemic vascular diseases, dilated cardiomyopathy, and pulmonary hypertension. Latest in vitro studies suggest that MSCs can differentiate into contractile cardiomyocytes. One of the best-characterized MSCs products are MSCs-derived extracellular vesicles (EVs). EVs are crucial paracrine effectors of MSCs. Based on previous works, paracrine effects of MSCs play a primary role in the regenerative ability. Hence, in the current paper, we focused our attention on an alternative approach, exploiting products derived from human dental pulp stem cells (hDPSCs) rather than MSCs themselves, which may denote a cost-effective and safer approach. The focus has been on EVs and the bioactive molecules they contain to evaluate their ability to influence the differentiation process toward cardiomyogenic lineage. The expression of GATA4, ACTC1, CX43, and Nkx2.5 was evaluated using Immunofluorescence, real time-PCR, and Western blotting analyses. Furthermore, the expression profiling analysis of the microRNA hsa-miR-200c-3p, targeting the GATA4 gene, was studied. The hsa-miR-200c-3p was found significantly down-regulated in both c-hDPSCs + EVs-hDPSCs and c-hDPSCs + EVs-HL-1 compared to untreated c-hDPSCs underlying a possible epigenetic mechanism behind the prevalent up-regulation of its targeted GATA4 gene. The aim of the present work was to develop an in vitro model of hDPSCs able to differentiate into cardiomyocytes in order to investigate the role of EVs derived from hDPSCs and derived from HL-1 cardiomyocyte cell line in modulating the differentiation process toward cardiomyogenic lineage.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Thangavelu Soundara Rajan
- Research and Development Unit, Theertha Biopharma Private limited, KIADB, Industrial Area, Bangalore, India
| | - Sante D Pierdomenico
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University "G. d'Annunzio" Chieti-Pescara, Pescara, Italy
| |
Collapse
|
6
|
Della Rocca Y, Traini EM, Trubiani O, Traini T, Mazzone A, Marconi GD, Pizzicannella J, Diomede F. Biological Effects of PMMA and Composite Resins on Human Gingival Fibroblasts: An In Vitro Comparative Study. Int J Mol Sci 2024; 25:4880. [PMID: 38732100 PMCID: PMC11084492 DOI: 10.3390/ijms25094880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The use of temporary resin for provisional restorations is a fundamental step to maintain the position of prepared teeth, to protect the pulpal vitality and the periodontal health as well as the occlusion. The present study aimed at evaluating the biological effects of two resins used in dentistry for temporary restorations, Coldpac (Yates Motloid) and ProTemp 4™ (3M ESPE ™), and their eluates, in an in vitro model of human gingival fibroblasts (hGFs). The activation of the inflammatory pathway NFκB p65/NLRP3/IL-1β induced by the self-curing resin disks was evaluated by real-time PCR, Western blotting and immunofluorescence analysis. The hGFs adhesion on resin disks was investigated by means of inverted light microscopy and scanning electron microscopy (SEM). Our results suggest that hGF cells cultured in adhesion and with eluate derived from ProTemp 4™ (3M ESPE ™) resin evidenced a downregulation in the expression of the inflammatory mediators such as NFκB p65, NLRP3 and IL-1β compared to the cells cultured with Coldpac (Yates Motloid) after 24 h and 1 week of culture. Furthermore, the cells cultured with ProTemp 4™ (3M ESPE ™) after 24 h and 1 week of culture reported a higher cell viability compared to the cells cultured with Coldpac (Yates Motloid), established by MTS cell analysis. Similar results were obtained when hGFs were placed in culture with the eluate derived from ProTemp 4™ (3M ESPE ™) resin which showed a higher cell viability compared to the cells cultured with eluate derived from Coldpac (Yates Motloid). These results highlighted the lower pro-inflammatory action and improved cell biocompatibility of ProTemp 4™ (3M ESPE ™), suggesting a better performance in terms of cells-material interaction.
Collapse
Affiliation(s)
- Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (E.M.T.); (O.T.); (T.T.); (A.M.); (F.D.)
| | - Enrico Matteo Traini
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (E.M.T.); (O.T.); (T.T.); (A.M.); (F.D.)
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (E.M.T.); (O.T.); (T.T.); (A.M.); (F.D.)
| | - Tonino Traini
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (E.M.T.); (O.T.); (T.T.); (A.M.); (F.D.)
| | - Antonella Mazzone
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (E.M.T.); (O.T.); (T.T.); (A.M.); (F.D.)
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (E.M.T.); (O.T.); (T.T.); (A.M.); (F.D.)
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University “G. d’Annunzio” Chieti-Pescara, Viale Pindaro, 42, 65127 Pescara, Italy;
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (E.M.T.); (O.T.); (T.T.); (A.M.); (F.D.)
| |
Collapse
|
7
|
Paganelli A, Diomede F, Marconi GD, Pizzicannella J, Rajan TS, Trubiani O, Paganelli R. Inhibition of LPS-Induced Inflammatory Response of Oral Mesenchymal Stem Cells in the Presence of Galectin-3. Biomedicines 2023; 11:1519. [PMID: 37371614 DOI: 10.3390/biomedicines11061519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Galectin-3 (GAL-3) is a beta-galactoside binding lectin produced by mesenchymal stem cells (MSCs) and other cell sources under inflammatory conditions. Several studies have reported that GAL-3 exerts an anti-inflammatory action, regulated by its natural ligand GAL-3 BP. In the present study, we aimed to assess the GAL-3 mediated regulation of the MSC function in an LPS-induced inflammation setting. Human gingival mesenchymal stem cells (hGMSCs) were stimulated in vitro with LPSs; the expression of TLR4, NFκB p65, MyD88 and NALP3 were assessed in the hGMSCs via immunofluorescence imaging using confocal microscopy, Western blot assay, and RT-PCR before and after the addition of GAL-3, both alone and with the addition of its inhibitors. LPSs stimulated the expression of TLR4, NFκB p65, MyD88 and NALP3 in hGMSCs, which was inhibited by GAL-3. The addition of either GAL3-BP or the antibody to GAL-3 were able to revert the GAL-3-mediated effects, restoring the expression of TLR4, NFκB p65, MyD88 and NALP3. GAL-3 induces the downregulation of the LPS-induced inflammatory program in MSCs.
Collapse
Affiliation(s)
- Alessia Paganelli
- PhD Course in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University "G. d'Annunzio" Chieti-Pescara, Viale Pindaro, 42, 65127 Pescara, Italy
| | - Thangavelu Soundara Rajan
- Research and Development Unit, Theertha Biopharma Private Limited, KIADB, Industrial Area, Bommasandra, Jigani Link Road, Bangalore 560105, India
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Roberto Paganelli
- Saint Camillus International University of Health and Medical Sciences (UniCamillus), 00131 Rome, Italy
| |
Collapse
|
8
|
Hosseini E, Kohan-Ghadr HR, Bazrafkan M, Amorim CA, Askari M, Zakeri A, Mousavi SN, Kafaeinezhad R, Afradiasbagharani P, Esfandyari S, Nazari M. Rescuing fertility during COVID-19 infection: exploring potential pharmacological and natural therapeutic approaches for comorbidity, by focusing on NLRP3 inflammasome mechanism. J Assist Reprod Genet 2023; 40:1173-1185. [PMID: 36892705 PMCID: PMC9995769 DOI: 10.1007/s10815-023-02768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
The respiratory system was primarily considered the only organ affected by Coronavirus disease 2019 (COVID-19). As the pandemic continues, there is an increasing concern from the scientific community about the future effects of the virus on male and female reproductive organs, infertility, and, most significantly, its impact on the future generation. The general presumption is that if the primary clinical symptoms of COVID-19 are not controlled, we will face several challenges, including compromised infertility, infection-exposed cryopreserved germ cells or embryos, and health complications in future generations, likely connected to the COVID-19 infections of parents and ancestors. In this review article, we dedicatedly studied severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) virology, its receptors, and the effect of the virus to induce the activation of inflammasome as the main arm of the innate immune response. Among inflammasomes, nucleotide oligomerization domain-like receptor protein, pyrin domain containing 3 (NLRP3) inflammasome pathway activation is partly responsible for the inflicted damages in both COVID-19 infection and some reproductive disorders, so the main focus of the discussion is on NLRP3 inflammasome in the pathogenesis of COVID-19 infection alongside in the reproductive biology. In addition, the potential effects of the virus on male and female gonad functions were discussed, and we further explored the potential natural and pharmacological therapeutic approaches for comorbidity via NLRP3 inflammasome neutralization to develop a hypothesis for averting the long-term repercussions of COVID-19. Since activation of the NLRP3 inflammasome pathway contributes to the damage caused by COVID-19 infection and some reproductive disorders, NLRP3 inflammasome inhibitors have a great potential to be considered candidates for alleviating the pathological effects of the COVID-19 infection on the germ cells and reproductive tissues. This would impede the subsequent massive wave of infertility that may threaten the patients.
Collapse
Affiliation(s)
- Elham Hosseini
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Obstetrics and Gynecology, Mousavi Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI USA
| | - Mahshid Bazrafkan
- Reproductive Biotechnology Research Center, Avicenna Research Institute (ARI), ACECR, Tehran, Iran
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maryam Askari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Armin Zakeri
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh Neda Mousavi
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Raheleh Kafaeinezhad
- Department of Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | | | - Sahar Esfandyari
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Mahboobeh Nazari
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Jiang J, Zhang N, Song H, Yang Y, Li J, Hu X. Oridonin alleviates the inhibitory effect of lipopolysaccharide on the proliferation and osteogenic potential of periodontal ligament stem cells by inhibiting endoplasmic reticulum stress and NF-κB/NLRP3 inflammasome signaling. BMC Oral Health 2023; 23:137. [PMID: 36894905 PMCID: PMC9999511 DOI: 10.1186/s12903-023-02827-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the protective effect and mechanism of oridonin in an in vitro lipopolysaccharide (LPS)-induced human periodontal ligament stem cells (hPDLSCs) model of periodontitis. METHODS Primary hPDLSCs were isolated and cultured, and then the expression of surface antigens CD146, STRO-1 and CD45 of hPDLSCs was detected by flow cytometry. The mRNA expression level of Runx2, OPN, Col-1, GRP78, CHOP, ATF4 and ATF6 in the cells was tested by qRT-PCR. MTT was taken to determine the cytotoxicity of oridonin at different concentrations (0-4 μM) on hPDLSCs. Besides, ALP staining, alizarin red staining and Oil Red O staining were utilized to assess the osteogenic differentiation (ALP concentration, mineralized calcium nodule formation) and adipogenic differentiation abilities of the cells. The proinflammatory factors level in the cells was measured by ELISA. The protein expression level of NF-κB/NLRP3 pathway-related proteins and endoplasmic reticulum (ER) stress-related markers in the cells were detected by Western blot. RESULTS hPDLSCs with positive CD146 and STRO-1 expression and negative CD45 expression were successfully isolated in this study. 0.1-2 μM of oridonin had no significant cytotoxicity on the growth of hPDLSCs, while 2 μM of oridonin could not only greatly reduce the inhibitory effect of LPS on the proliferation and osteogenic differentiation of hPDLSCs cells, but also inhibit LPS-induced inflammation and ER stress in hPDLSCs cells. Moreover, further mechanism research showed that 2 μM of oridonin suppressed NF-κB/NLRP3 signaling pathway activity in LPS-induced hPDLSCs cells. CONCLUSIONS Oridonin promotes proliferation and osteogenic differentiation of LPS-induced hPDLSCs in an inflammatory environment, possibly by inhibiting ER stress and NF-κB/NLRP3 pathway. Oridonin may have a potential role in the repair and regeneration of hPDLSCs.
Collapse
Affiliation(s)
- Junhao Jiang
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China.
| | - Nong Zhang
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Haibo Song
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Ya Yang
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Juan Li
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Xiaoli Hu
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, China.
| |
Collapse
|
10
|
AlSaleh A, Shahid M, Farid E, Bindayna K. The Effect of Ascorbic Acid and Nicotinamide on Panton-Valentine Leukocidin Cytotoxicity: An Ex Vivo Study. Toxins (Basel) 2023; 15:38. [PMID: 36668859 PMCID: PMC9865643 DOI: 10.3390/toxins15010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Panton−Valentine Leukocidin sustains a strong cytotoxic activity, targeting immune cells and, consequently, perforating the plasma membrane and inducing cell death. The present study is aimed to examine the individual effect of ascorbic acid and nicotinamide on PVL cytotoxicity ex vivo, as well as their effect on granulocytes viability when treated with PVL. Materials and Methods: The PVL cytotoxicity assay was performed in triplicates using the commercial Cytotoxicity Detection Kit PLUS (LDH). LDH release was measured to determine cell damage and cell viability was measured via flow cytometry. Results and discussion: A clear reduction in PVL cytotoxicity was demonstrated (p < 0.001). Treatment with ascorbic acid at 5 mg/mL has shown a 3-fold reduction in PVL cytotoxicity; likewise, nicotinamide illustrated a 4-fold reduction in PVL cytotoxicity. Moreover, granulocytes’ viability after PVL treatment was maintained when incubated with 5 mg/mL of ascorbic acid and nicotinamide. Conclusions: our findings illustrated that ascorbic acid and nicotinamide exhibit an inhibitory effect on PVL cytotoxicity and promote cell viability, as the cytotoxic effect of the toxin is postulated to be neutralized by antioxidant incubation. Further investigations are needed to assess whether these antioxidants may be viable options in PVL cytotoxicity attenuation in PVL-associated diseases.
Collapse
Affiliation(s)
- Abdullah AlSaleh
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
| | | | | | | |
Collapse
|
11
|
Huang C, Zhang B, Xu D. The effects of natural active substances in food on the toxicity of patulin. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2022.2794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Patulin (PAT) is a mycotoxin, a secondary metabolite mainly produced by fungi of the genera Aspergillus, Byssochlamys, and Penicillium. Many studies have looked into the potential impacts of this mycotoxin due to its high risk. Researchers are currently doing a more in-depth investigation of and employing physical, chemical, and biological ways to remove PAT. However, existing technology cannot completely remove it, and the residual PAT will continue to pose a threat to human health. As a result, substances capable of reducing PAT toxicity need be discovered. According to previous studies, natural components in food could reduce the toxicity of PAT. This article will review the different types of active compounds and discus the detoxification processes, as well as give recommendations for decreasing the toxicity of PAT and future research directions.
Collapse
Affiliation(s)
- C. Huang
- College of Life Science and Engineering, Lanzhou University of Technology, No.287 Langongping Road, Lanzhou, Gansu 730050, China P.R
| | - B. Zhang
- College of Life Science and Engineering, Lanzhou University of Technology, No.287 Langongping Road, Lanzhou, Gansu 730050, China P.R
| | - D. Xu
- College of Life Science and Engineering, Lanzhou University of Technology, No.287 Langongping Road, Lanzhou, Gansu 730050, China P.R
| |
Collapse
|
12
|
Caspase-11/4 is involved in bacteria-mediated periodontitis by promoting the release of interleukin-1 β and tumor necrosis factor-α. Arch Oral Biol 2022; 142:105517. [DOI: 10.1016/j.archoralbio.2022.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
|
13
|
Improved osteogenic differentiation by extremely low electromagnetic field exposure: possible application for bone engineering. Histochem Cell Biol 2022; 158:369-381. [PMID: 35751679 PMCID: PMC9512759 DOI: 10.1007/s00418-022-02126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/21/2022]
Abstract
Human periodontal ligament mesenchymal stem cells (hPDLSCs) are a promising cell type model for regenerative medicine applications due to their anti-inflammatory, immunomodulatory and non-tumorigenic potentials. Extremely low-frequency electromagnetic fields (ELF-EMF) are reported to affect biological properties such as cell proliferation and differentiation and modulate gene expression profile. In this study, we investigated the effects of an intermittent ELF-EMF exposure (6 h/day) for the standard differentiation period (28 days) and for 10 days in hPDLSCs in the presence or not of osteogenic differentiation medium (OM). We evaluated cell proliferation, de novo calcium deposition and osteogenic differentiation marker expression in sham and ELF-EMF-exposed cells. After ELF-EMF exposure, compared with sham-exposed, an increase in cell proliferation rate (p < 0.001) and de novo calcium deposition (p < 0.001) was observed after 10 days of exposure. Real-time PCR and Western blot results showed that COL1A1 and RUNX-2 gene expression and COL1A1, RUNX-2 and OPN protein expression were upregulated respectively in the cells exposed to ELF-EMF exposure along with or without OM for 10 days. Altogether, these results suggested that the promotion of osteogenic differentiation is more efficient in ELF-EMF-exposed hPDLSCs. Moreover, our analyses indicated that there is an early induction of hPDLSC differentiation after ELF-EMF application.
Collapse
|
14
|
Fonticoli L, Della Rocca Y, Rajan TS, Murmura G, Trubiani O, Oliva S, Pizzicannella J, Marconi GD, Diomede F. A Narrative Review: Gingival Stem Cells as a Limitless Reservoir for Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23084135. [PMID: 35456951 PMCID: PMC9024914 DOI: 10.3390/ijms23084135] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
The gingival tissue can be collected in an easy way and represent an accessible source to isolate gingival-derived mesenchymal stem cells (GMSCs). GMSCs are a subpopulation of dental-derived mesenchymal stem cells that show the mesenchymal stem cells (MSCs) features, such as differentiation abilities and immunomodulatory properties. Dental-derived stem cells are also expandable in vitro with genomic stability and the possibility to maintain the stemness properties over a prolonged period of passages. Moreover, several preclinical studies have documented that the extracellular vesicles (EVs) released from GMSCs possess similar biological functions and therapeutic effects. The EVs may represent a promising tool in the cell-free regenerative therapy approach. The present review paper summarized the GMSCs, their multi-lineage differentiation capacities, immunomodulatory features, and the potential use in the treatment of several diseases in order to stimulate tissue regeneration. GMSCs should be considered a good stem cell source for potential applications in tissue engineering and regenerative dentistry.
Collapse
Affiliation(s)
- Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | | | - Giovanna Murmura
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Stefano Oliva
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | | | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
15
|
Vaillancourt K, Ben Lagha A, Grenier D. A Phenolic-rich Extract of Cocoa (Theobroma cacao L.) Beans Impairs the Pathogenic Properties of Porphyromonas gingivalis and Attenuates the Activation of Nuclear Factor Kappa B in a Monocyte Model. FRONTIERS IN ORAL HEALTH 2022; 3:867793. [PMID: 35392377 PMCID: PMC8980215 DOI: 10.3389/froh.2022.867793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
Periodontitis, an inflammatory disease that affects tooth-supporting tissues, is the result of a polymicrobial infection involving mainly Gram negative anaerobic bacteria. The aim of the present study was to investigate the effects of a phenolic-rich extract of cocoa (Theobroma cacao L.) beans on the pathogenic properties of Porphyromonas gingivalis, which is well-known as a keystone pathogen in the development of periodontitis. The effect of the cocoa extract on P. gingivalis-induced activation of the nuclear factor kappa B (NF-κB) transcription factor in a monocyte model was also assessed. The cocoa extract, whose major phenolic compound was epicatechin, inhibited the growth, hemolytic activity, proteolytic activities, and adherence properties (basement membrane matrix, erythrocytes) of P. gingivalis in a dose-dependent manner. It also protected the barrier function of a keratinocyte model against the deleterious effects mediated by P. gingivalis, and attenuated reactive oxygen species (ROS) production by oral keratinocytes treated with P. gingivalis. Lastly, the cocoa extract showed an anti-inflammatory property by preventing P. gingivalis-induced NF-κB activation in monocytes. In conclusion, this in vitro study highlighted the potential value of an epicatechin-rich extract of cocoa beans for preventing and/or treating periodontal diseases.
Collapse
|
16
|
Enhanced Extracellular Matrix Deposition on Titanium Implant Surfaces: Cellular and Molecular Evidences. Biomedicines 2021; 9:biomedicines9111710. [PMID: 34829938 PMCID: PMC8615957 DOI: 10.3390/biomedicines9111710] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
The surface structure of the titanium dental implants can modulate the activity of mesenchymal stem cells in order to promote the upregulation of osteoblastic related genes and the release of extracellular matrix (ECM) components. The present work was focused on the in vitro evaluation of the interaction of human periodontal ligament stem cells (hPDLSCs) and two different implant titanium surfaces topography (CTRL and TEST). This study was aimed at analyzing the cytotoxicity of the dental implant surfaces, the cellular adhesion capacity, and the improvement in the release of ECM molecules in an in vitro model. These parameters were carried out by means of the microscopic evaluation, viability assays, immunofluorescence, Western blot and RT-PCR investigations. The knowledge of the cell/implant interaction is essential for implant healing in order to obtain a more performing surfaces that promote the ECM release and provide the starting point to initiate the osseointegration process.
Collapse
|
17
|
De Nuccio F, Cianciulli A, Porro C, Kashyrina M, Ruggiero M, Calvello R, Miraglia A, Nicolardi G, Lofrumento DD, Panaro MA. Inflammatory Response Modulation by Vitamin C in an MPTP Mouse Model of Parkinson's Disease. BIOLOGY 2021; 10:biology10111155. [PMID: 34827148 PMCID: PMC8614932 DOI: 10.3390/biology10111155] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Vitamin C (Vit C), also called ascorbic acid, is a nutrient present in many foods, particularly citrus fruits and green vegetables. Inadequate dietary Vit C intake causes hypovitaminosis resulting in the risk of developing clinical scurvy, potentially fatal if untreated. Vit C represents one of the safest and most essential nutrients, with antioxidant and anti-inflammatory properties that protect living organisms against oxidative stress; due to this propriety, it is studied for applications in the prevention and management of different pathologies, including neurodegenerative disease. Persistent neuroinflammation is detrimental for the brain and may lead to pathogenesis and progression of neurodegenerative diseases like Parkinson’s disease (PD) and Alzheimer’s disease. The role of Vit C in the central nervous system is still debated.This study, utilizing a PD mouse model, has demonstrated that Vit C reduces neuroinflammation by the modulation of microglial responses and astrocyte activation, reducing dopaminergic neuronal cell loss involved in PD insurgence.Furthermore, mouse gait and spontaneous locomotor activity were partially ameliorated. In summary, we have demonstrated that the use of Vit C has neuroprotective effects in the brain, alleviating the inflammatory cascade and reducing the progression of PD. Abstract Vitamin C (Vit C) is anutrient present in many foods, particularly citrus fruits, green vegetables, tomatoes, and potatoes. Vit C is studied for its applications in the prevention and management of different pathologies, including neurodegenerative diseases. Neuroinflammation is a defense mechanism activated by a stimulus or an insult that is aimed at the preservation of the brain by promoting tissue repair and removing cellular debris; however, persistent inflammatory responses are detrimental and may lead to the pathogenesis and progression of neurodegenerative diseases like Parkinson’s disease (PD) and Alzheimer’s disease. PD is one of the most common chronic progressive neurodegenerative disorders, and oxidative stress is one of the most important factors involved in its pathogenesis and progression.Due to this, research on antioxidant and anti-inflammatory compounds is an important target for counteracting neurodegenerative diseases, including PD. In the central nervous system, the presence of Vit C in the brain is higher than in other body districts, but why and how this occurs is still unknown. In this research, Vit C, with its anti-inflammatory and anti-oxidative properties, is studied to better understand its contribution to brain protection; in particular, we have investigated the neuroprotective effects of Vit C in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animal model of PD and its role in the modulation of neuroinflammation. First, we observed that Vit C significantly decreased the MPTP-induced loss of tyrosine hydroxylase (TH)-positive dopaminergic neuronal cells in the substantia nigra, as well as microglial cell activation and astrogliosis. Furthermore, gait and spontaneous locomotor activity, evaluated by an automated treadmill and the Open Field test, respectively, were partially ameliorated by Vit C treatment in MPTP-intoxicated animals. In relation to neuroinflammation, results show that Vit C reduced the protein and mRNA expression of inflammatory cytokines such as IL-6, TLR4, TNF-α, iNOS, and CD40, while anti-inflammatory proteins such as IL-10, CD163, TGF-β, and IL-4 increased. Interestingly, we show for the first time that Vit C reduces neuroinflammation by modulating microglial polarization and astrocyte activation. Moreover, Vit C was able to reduce NLRP3 activation, which is linked to the pathogenesis of many inflammatory diseases, including neuroinflammatory disorders. In conclusion, our study provides evidence that Vit C may represent a new promising dietary supplement for the prevention and alleviation of the inflammatory cascade of PD, thus contributing to neuroprotection.
Collapse
Affiliation(s)
- Francesco De Nuccio
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy; (F.D.N.); (M.K.); (A.M.); (G.N.)
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, I-70125 Bari, Italy; (A.C.); (M.R.); (R.C.); (M.A.P.)
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, I-71100 Foggia, Italy;
| | - Marianna Kashyrina
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy; (F.D.N.); (M.K.); (A.M.); (G.N.)
| | - Melania Ruggiero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, I-70125 Bari, Italy; (A.C.); (M.R.); (R.C.); (M.A.P.)
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, I-70125 Bari, Italy; (A.C.); (M.R.); (R.C.); (M.A.P.)
| | - Alessandro Miraglia
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy; (F.D.N.); (M.K.); (A.M.); (G.N.)
| | - Giuseppe Nicolardi
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy; (F.D.N.); (M.K.); (A.M.); (G.N.)
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy; (F.D.N.); (M.K.); (A.M.); (G.N.)
- Correspondence:
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, I-70125 Bari, Italy; (A.C.); (M.R.); (R.C.); (M.A.P.)
| |
Collapse
|
18
|
Zhang S, Liu Y, Wang X, An N, Ouyang X. STAT1/SOCS1/3 Are Involved in the Inflammation-Regulating Effect of GAS6/AXL in Periodontal Ligament Cells Induced by Porphyromonas gingivalis Lipopolysaccharide In Vitro. J Immunol Res 2021; 2021:9577695. [PMID: 34734092 PMCID: PMC8560282 DOI: 10.1155/2021/9577695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Periodontitis involves chronic inflammation of the tissues around the teeth caused by plaque and the corresponding immune response. Growth arrest-specific protein 6 (GAS6) and AXL receptor tyrosine kinase (AXL) are known to be involved in inflammatory diseases, while signal transducer and activator of transcription-1 (STAT1) and suppressor of cytokine signaling (SOCS) are related to inflammatory processes. Moreover, miRNA34a directly targets AXL to regulate the AXL expression. However, the specific roles of GAS6 and AXL in periodontitis remain unclear. This study was designed to explore the effect and mechanism of AXL on the expression of inflammatory cytokines induced by Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) in human periodontal ligament cells (hPDLCs). The effects of different concentrations of P. gingivalis LPS on the expression of GAS6/AXL in hPDLCs were observed. Additionally, the effect of LPS on AXL was investigated by transfection of the miRNA34a inhibitor. AXL was knocked down or overexpressed to observe the release of inflammatory cytokines interleukin- (IL-) 8 and IL-6. The results showed that the expression levels of GAS6 and AXL decreased after P. gingivalis LPS infection. Transfection of a miR-34a inhibitor to hPDLCs demonstrated a role of miR-34a in the downregulation of AXL expression induced by LPS. Moreover, AXL knockdown or overexpression influencing the expression of IL-8 and IL-6 was investigated under LPS stimulation. AXL knockdown decreased the expression of STAT1 and SOCS1/3. Overall, these results demonstrate that AXL inhibits the expression of LPS-induced inflammatory cytokines in hPDLCs and that STAT1 and SOCS1/3 are involved in the regulation of inflammation by GAS6/AXL.
Collapse
Affiliation(s)
- Shengnan Zhang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yingjun Liu
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xuekui Wang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Na An
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xiangying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
19
|
Pizzicannella J, Marconi GD, Guarnieri S, Fonticoli L, Della Rocca Y, Konstantinidou F, Rajan TS, Gatta V, Trubiani O, Diomede F. Role of ascorbic acid in the regulation of epigenetic processes induced by Porphyromonas gingivalis in endothelial-committed oral stem cells. Histochem Cell Biol 2021; 156:423-436. [PMID: 34370052 PMCID: PMC8604817 DOI: 10.1007/s00418-021-02014-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Periodontitis is a common inflammatory disease that affects the teeth-supporting tissue and causes bone and tooth loss. Moreover, in a worldwide population, periodontal disease is often associated with cardiovascular diseases. Emerging studies have reported that one of the major pathogens related to periodontitis is Porphyromonas gingivalis (P. gingivalis), which triggers the inflammatory intracellular cascade. Here, we hypothesized a possible protective effect of ascorbic acid (AA) in the restoration of the physiological molecular pathway after exposure to lipopolysaccharide derived from P. gingivalis (LPS-G). In particular, human gingiva-derived mesenchymal stem cells (hGMSCs) and endothelial-differentiated hGMSCs (e-hGMSCs) exposed to LPS-G showed upregulation of p300 and downregulation of DNA methyltransferase 1 (DNMT1), proteins associated with DNA methylation and histone acetylation. The co-treatment of AA and LPS-G showed a physiological expression of p300 and DNMT1 in hGMSCs and e-hGMSCs. Moreover, the inflammatory process triggered by LPS-G was demonstrated by evaluation of reactive oxygen species (ROS) and their intracellular localization. AA exposure re-established the physiological ROS levels. Despite the limitations of in vitro study, these findings collectively expand our knowledge regarding the molecular pathways involved in periodontal disease, and suggest the involvement of epigenetic modifications in the development of periodontitis.
Collapse
Affiliation(s)
- Jacopo Pizzicannella
- "Ss. Annunziata" Hospital, ASL 02 Lanciano-Vasto-Chieti, Via dei Vestini, 29, Chieti, 66100, Italy
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy.,Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" Chieti-Pescara, Via Luigi Polacchi,19, Chieti, 66100, Italy
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy
| | - Fani Konstantinidou
- Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" Chieti-Pescara, Via Luigi Polacchi,19, Chieti, 66100, Italy.,Department of Psychological, Health and Territorial Sciences, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy
| | - Thangavelu Soundara Rajan
- Department of Biotechnology, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, 641021, Tamil Nadu, India
| | - Valentina Gatta
- Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" Chieti-Pescara, Via Luigi Polacchi,19, Chieti, 66100, Italy.,Department of Psychological, Health and Territorial Sciences, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy.
| |
Collapse
|
20
|
Diomede F, Fonticoli L, Guarnieri S, Della Rocca Y, Rajan TS, Fontana A, Trubiani O, Marconi GD, Pizzicannella J. The Effect of Liposomal Curcumin as an Anti-Inflammatory Strategy on Lipopolysaccharide e from Porphyromonas gingivalis Treated Endothelial Committed Neural Crest Derived Stem Cells: Morphological and Molecular Mechanisms. Int J Mol Sci 2021; 22:7534. [PMID: 34299157 PMCID: PMC8305631 DOI: 10.3390/ijms22147534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/03/2021] [Accepted: 07/11/2021] [Indexed: 12/25/2022] Open
Abstract
Curcumin, a yellow polyphenol extracted from the turmeric root is used as a diet supplement. It exhibits anti-inflammatory, antioxidant, and antitumor properties by modulating different intracellular mechanisms. Due to their low solubility in water, the curcumin molecules must be encapsulated into liposomes to improve the bioavailability and biomedical potential. For the periodontal tissue and systemic health, it is essential to regulate the local inflammatory response. In this study, the possible beneficial effect of liposomes loaded with curcumin (CurLIP) in neural crest-derived human periodontal ligament stem cells (hPDLSCs) and in endothelial-differentiated hPDLSCs (e-hPDLSCs) induced with an inflammatory stimulus (lipopolysaccharide obtained from Porphyromonas gingivalis, LPS-G) was evaluated. The CurLIP formulation exhibited a significant anti-inflammatory effect by the downregulation of Toll-like receptor-4 (TLR4)/Myeloid differentiation primary response 88 (MyD88)/nuclear factor kappa light chain enhancer of activated B cells (NFkB)/NLR Family Pyrin Domain Containing 3 (NLRP3)/Caspase-1/Interleukin (IL)-1β inflammation cascade and reactive oxygen species (ROS) formation. Moreover, the exposure to LPS-G caused significant alterations in the expression of epigenetic modifiers, such as DNA Methyltransferase 1 (DNMT1) and P300, while the CurLIP treatment showed physiological expression. Overall, our in vitro study provides novel mechanistic insights into the intracellular pathway exert by CurLIP in the regulation of inflammation and epigenetic modifications.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | | | - Antonella Fontana
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | | |
Collapse
|