1
|
Zhou J, Chen L, Zhang F, Foo H, Cao Z, Lin Q. Dynamics Changes in Physicochemical Properties, Antioxidant Activity, and Non-Volatile Metabolites During Bulang Pickled Tea Fermentation. Foods 2025; 14:878. [PMID: 40077581 PMCID: PMC11898713 DOI: 10.3390/foods14050878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
The present study investigated the dynamics changes in physicochemical properties and non-volatile metabolites during Bulang pickled tea fermentation. A combination of artificial sensory evaluation, chemical-physical analysis, ultra performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UPLC-QTOF-MS), and multivariate statistical analysis were employed to examine the differences among four fermentation stages of Bulang pickled tea. The bitterness, astringency, sweetness after taste, sourness and fermentation taste tended to increase with fermentation. The highest lactic acid bacteria, aerobic bacteria, total titratable acidity, total soluble sugar, total polyphenols, and total flavonoids were recorded at the second month of fermentation, while fungi, total free amino acids, total antioxidant capacity and hydroxyl free radical scavenging capacity increased with fermentation. Mantel test demonstrated significant associations between lactic acid bacteria /fungal communities and taste characteristics. UPLC-QTOF-MS analysis led to the identification of 35 differential non-volatile metabolites, predominantly comprising heterocyclic compounds, organic acids with their derivatives, and flavonoids. Nine non-volatile metabolites are related to antioxidant activity, and morin, malvidin and 7-methylxanthine exhibit relatively strong antioxidant activity. This study provides comprehensive insights into the non-volatile metabolites and antioxidant function of Bulang pickled tea.
Collapse
Affiliation(s)
- Jinping Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (L.C.)
| | - Laifeng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (L.C.)
| | - Fan Zhang
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Hooiling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Research Laboratory of Probiotics and Cancer Therapeutics, UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zhenhui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qiuye Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (L.C.)
| |
Collapse
|
2
|
Darwish AG, Das PR, Olaoye E, Gajjar P, Ismail A, Mohamed AG, Tsolova V, Hassan NA, El Kayal W, Walters KJ, El-Sharkawy I. Untargeted flower volatilome profiling highlights differential pollinator attraction strategies in muscadine. FRONTIERS IN PLANT SCIENCE 2025; 16:1548564. [PMID: 40093614 PMCID: PMC11906380 DOI: 10.3389/fpls.2025.1548564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/27/2025] [Indexed: 03/19/2025]
Abstract
Floral aromas are a mixture of volatile organic compounds, essential attributes associated with the attraction of different pollinators. This investigation is the first in-depth exploration of the volatile profiles of sixteen muscadine grape genotypes, producing female and perfect flowers using the headspace solid-phase microextraction (HS-SPME)-GC-MS-based untargeted volatilomics approach. A total of one hundred fifty volatile metabolites were identified in the muscadine flower genotypes, including the functional groups of hydrocarbons, esters, alcohols, ketones, aldehydes, miscellaneous, and acids. Multivariate statistical analysis for volatile terpenes revealed eleven bio-marker terpene volatiles that primarily distinguish between female and perfect flowers. The β-elemene, β-bisabolene, and α-muurolene were the marker volatiles characterizing perfect flowers; however, α-selinene, (Z,E)-α-farnesene, and (E,E)-geranyl linalool were the typical marker terpene in the female flowers. Perfect flowers exhibited better pollinator attraction capacity associated with a higher number of flowers per inflorescence, enhanced pollinator rewards, and higher numbers and quantities of terpene volatiles than female flowers, resulting in superior pollinator attraction capacity and fruit set efficiency. The pollinator attraction mechanism of female flowers exhibited several morphological and biochemical floral defects, causing random pollinator visits and low fruit set efficiency. The controlled pollination assay could express female flowers' full fruit set capabilities by avoiding casual insect pollination. This comprehensive study suggests that these marker terpenes might contribute to pollinator attraction in muscadine flower genotypes and should be considered an excellent reference for agroecosystem ecologists and entomologists.
Collapse
Affiliation(s)
- Ahmed G. Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
- Department of Horticultural Sciences, Texas A&M University, College, Station, TX, United States
| | - Protiva R. Das
- Plant Sciences Department, University of Tennessee, Knoxville, TN, United States
| | - Eniola Olaoye
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Pranavkumar Gajjar
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ahmed Ismail
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, United States
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Ahmed G. Mohamed
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Nasser A. Hassan
- Synthetic Unit, Department of Photochemistry, Chemical Industries Research Institute, National Research Center, Cairo, Egypt
| | - Walid El Kayal
- Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Kellie J. Walters
- Plant Sciences Department, University of Tennessee, Knoxville, TN, United States
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
3
|
Aftab H, Samudio J, Wang G, Le L, Soni RK, Donegan RK. Heme alters biofilm formation in Mycobacterium abscessus. Microbiol Spectr 2025; 13:e0241524. [PMID: 39705014 PMCID: PMC11792503 DOI: 10.1128/spectrum.02415-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Mycobacterium abscessus (Mabs) is commonly found in the cystic fibrosis (CF) lung. During infection, Mabs can form biofilms in the lung which reduce both the ability of the immune response to clear infection and the effectiveness of antibiotic therapy. In the CF lung, heme and hemoglobin levels are increased and may provide both iron and heme to Mabs cells. In this work, we show that exogenous heme altered Mabs biofilm formation and measured the effects of exogenous heme on protein level and metabolism in Mabs. Our findings suggest that heme impacts iron homeostasis in Mabs and affects other aspects of its metabolism, highlighting the potential role of heme as a critical nutrient for Mabs growth and biofilm formation.IMPORTANCEMycobacterium abscessus (Mabs) is commonly found in the cystic fibrosis (CF) lung, where Mabs can form biofilms that can reduce the efficacy of antibiotics. During infection, the CF lung can have more than 10 times the extracellular heme than that of a healthy lung. We have found that extracellular heme can change the way Mabs cells grow and form biofilms, which may have implications for pathogenesis.
Collapse
Affiliation(s)
- Hadia Aftab
- Department of Chemistry, Barnard College, Columbia University, New York, New York, USA
| | - Jessica Samudio
- Department of Chemistry, Barnard College, Columbia University, New York, New York, USA
| | - Grace Wang
- Department of Chemistry, Barnard College, Columbia University, New York, New York, USA
| | - Lily Le
- Department of Chemistry, Barnard College, Columbia University, New York, New York, USA
| | - Rajesh K. Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Rebecca K. Donegan
- Department of Chemistry, Barnard College, Columbia University, New York, New York, USA
| |
Collapse
|
4
|
Du Y, Pang M, Chen H, Zhou X, Geng R, Zhang Y, Yang L, Li J, Han Y, Liu J, Zhang R, Bi H, Guo D. Inhibitory effect of Zhujing Pill on myopia progression: Mechanistic insights based on metabonomics and network pharmacology. PLoS One 2024; 19:e0312379. [PMID: 39625993 PMCID: PMC11614212 DOI: 10.1371/journal.pone.0312379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/02/2024] [Indexed: 12/06/2024] Open
Abstract
OBJECTIVES This study endeavored to uncover the mechanisms by which Zhujing pill (ZJP) slows myopia progression. METHODS We employed biometric analyses to track diopter and axial length changes in guinea pigs with negative lens-induced myopia (LIM). Through integrating metabonomics and network pharmacology, we aimed to predict the anti-myopic targets and active ingredients of ZJP. Subsequent analysis, including real-time fluorescent quantitative PCR (qPCR) and Western blotting (WB), assessed the expression levels of CHRNA7, LPCAT1, and NOS2 in retinal tissues. KEY FINDINGS Our findings demonstrate that ZJP significantly mitigates diopter increase and axial elongation in LIM guinea pigs. Metabonomic analysis revealed significant changes in 13 serum metabolites, with ZJP reversing the expression of 5 key metabolites. By integrating metabonomics with network pharmacology, we identified core targets of ZJP against myopia and constructed a compound-gene-disease-metabolite network. The expressions of LPCAT1 and CHRNA7 were found to decrease in the LIM group but increase with ZJP treatment, whereas NOS2 expression showed the opposite pattern. CONCLUSIONS This investigation provides the first evidence of ZJP's multifaceted effectiveness in managing myopia, highlighting its impact on multiple components, targets, and pathways, including the novel involvement of LPCAT1 and CHRNA7 in myopia pathogenesis.
Collapse
Affiliation(s)
- Yongle Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengran Pang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haoyu Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangkun Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruyue Geng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linqi Yang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawen Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufeng Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinpeng Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Jinan, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Su R, Chang L, Zhou T, Meng F, Zhang D. Effects of GABA on Oxidative Stress and Metabolism in High-Glucose Cultured Mongolian Sheep Kidney Cells. Int J Mol Sci 2024; 25:10033. [PMID: 39337519 PMCID: PMC11432592 DOI: 10.3390/ijms251810033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The Mongolian sheep, emblematic of the Inner Mongolian grasslands, is renowned for its exceptional stress resistance and adaptability to harsh environments, drawing considerable attention. Recent research has unveiled the novel role of γ-aminobutyric acid (GABA) in combating oxidative stress. This investigation examined how GABA impacts renal-cortex and medulla cells from Mongolian sheep exposed to high-glucose stress conditions, utilizing gene expression analysis and non-targeted metabolomics. Elevated glucose levels significantly reduced the viability of Mongolian sheep renal cells and increased reactive oxygen species (ROS) levels. Conversely, the introduction of GABA notably enhanced cell viability, reduced ROS production, and stimulated the expression of antioxidant genes (e.g., Gpx, SOD, CAT) in the renal cortex. In the renal medulla, CAT expression increased, while Gpx gene expression showed mixed responses. Metabolomics analysis indicated that high-glucose exposure altered various metabolites, whereas GABA alleviated the metabolic stress induced by high glucose through modulating glycolysis and the tricarboxylic acid cycle. In Mongolian sheep renal cells, GABA effectively mitigated oxidative damage triggered by high-glucose stress by upregulating antioxidant genes and regulating metabolic pathways, revealing insights into its potential mechanism for adapting to extreme environments. This finding offers a fresh perspective on understanding the stress resilience of Mongolian sheep and may provide valuable insights for research across diverse disciplines.
Collapse
Affiliation(s)
- Rina Su
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Longwei Chang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Tong Zhou
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Fanhua Meng
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Dong Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| |
Collapse
|
6
|
Petrov Ivanković A, Ćorović M, Milivojević A, Blagojević S, Radulović A, Pjanović R, Bezbradica D. Assessment of Enzymatically Derived Blackcurrant Extract as Cosmetic Ingredient-Antioxidant Properties Determination and In Vitro Diffusion Study. Pharmaceutics 2024; 16:1209. [PMID: 39339245 PMCID: PMC11435148 DOI: 10.3390/pharmaceutics16091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Blackcurrant is an anthocyanin-rich berry with proven antioxidant and photoprotective activity and emerging prebiotic potential, widely applied in cosmetic products. Hereby, highly efficient enzyme-assisted extraction of blackcurrant polyphenols was performed, giving extract with very high antioxidant activity. Obtained extract was characterized in terms of anthocyanin composition, incorporated into three different cosmetic formulations and subjected to Franz cell diffusion study. Experimental values obtained using cellulose acetate membrane for all four dominant anthocyanins (delphinidin 3-glucoside, delphinidin 3-rutinoside, cyanidin 3-glucoside and cyanidin 3-rutinoside) were successfully fitted with the Korsmeyer-Peppas diffusion model. Calculated effective diffusion coefficients were higher for hydrogel compared to oil-in-water cream gel and oil-in-water emulsion, whereas the highest value was determined for cyanidin 3-rutinoside. On the other hand, after a 72 h long experiment with transdermal skin diffusion model (Strat-M® membrane), no anthocyanins were detected in the receptor fluid, and only 0.5% of the initial quantity from the donor compartment was extracted from the membrane itself after experiment with hydrogel. Present study revealed that hydrogel is a suitable carrier system for the topical delivery of blackcurrant anthocyanins, while dermal and transdermal delivery of these molecules is very limited, which implies its applicability for treatments targeting skin surface (i.e., prebiotic, photoprotective).
Collapse
Affiliation(s)
| | - Marija Ćorović
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (R.P.); (D.B.)
| | - Ana Milivojević
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (R.P.); (D.B.)
| | - Stevan Blagojević
- Institute of General and Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia; (S.B.); (A.R.)
| | - Aleksandra Radulović
- Institute of General and Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia; (S.B.); (A.R.)
| | - Rada Pjanović
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (R.P.); (D.B.)
| | - Dejan Bezbradica
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (R.P.); (D.B.)
| |
Collapse
|
7
|
Kaur P, Darwish AG, El-Sharkawy I, Singh A, Subramanian J. Comparative Antioxidant Activity and Untargeted Metabolomic Analyses of Sour Cherry Cultivars Based on Ultra-Performance-Time of Flight-Mass Spectrometry. PLANTS (BASEL, SWITZERLAND) 2024; 13:1511. [PMID: 38891319 PMCID: PMC11175011 DOI: 10.3390/plants13111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
This study was conducted for the comparative analysis of antioxidant activity and untargeted metabolomics of dark- and light-colored sour cherry cultivars grown in Canada. Based on our previous study, we selected four cultivars-'Heimann R', 'Gorsemska', V70142, and 'Montmorency'-to determine the untargeted metabolites and their role in antioxidant activities. A total of 473 metabolites were identified from four sour cherry genotypes using UPLC-ToF-MS. Untargeted metabolomics revealed the dominant chemical groups present in sour cherries. PCA showed that the diversity in sour cherry metabolites was due to the genotype differences indicating iditol, malic acid, chlorobenzene, 2-mercaptobenzothiazole, and pyroglutamic acid as the predominant contributors. The variable importance in the projection (VIP > 1.0) in partial least-squares-discriminant analysis described 20 biomarker metabolites representing the cherry metabolome profiles. A heatmap of Pearson's correlation analysis between the 20 biomarker metabolites and antioxidant activities identified seven antioxidant determinants that displayed the highest correlations with different types of antioxidant activities. TPC and TAC were evaluated using the Folin-Ciocalteu method. The total antioxidant activity was performed using three different assays (ABTS, FRAP, and DPPH). This study of correlating metabolomics and antioxidant activities elucidated that the higher nutritional value and biological functions of sour cherry genotypes can be useful for the development of nutraceutical and functional foods.
Collapse
Affiliation(s)
- Prabhjot Kaur
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada; (P.K.); (A.S.)
| | - Ahmed G. Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (A.G.D.); (I.E.-S.)
- Department of Biochemistry, Faculty of Agriculture, Minia University, Minia 61519, Egypt
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (A.G.D.); (I.E.-S.)
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada; (P.K.); (A.S.)
| | | |
Collapse
|
8
|
Luo Q, Yang Y, Ho C, Li Z, Chiu W, Li A, Dai Y, Li W, Zhang X. Dynamic hydrogel-metal-organic framework system promotes bone regeneration in periodontitis through controlled drug delivery. J Nanobiotechnology 2024; 22:287. [PMID: 38797862 PMCID: PMC11129436 DOI: 10.1186/s12951-024-02555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Periodontitis is a prevalent chronic inflammatory disease, which leads to gradual degradation of alveolar bone. The challenges persist in achieving effective alveolar bone repair due to the unique bacterial microenvironment's impact on immune responses. This study explores a novel approach utilizing Metal-Organic Frameworks (MOFs) (comprising magnesium and gallic acid) for promoting bone regeneration in periodontitis, which focuses on the physiological roles of magnesium ions in bone repair and gallic acid's antioxidant and immunomodulatory properties. However, the dynamic oral environment and irregular periodontal pockets pose challenges for sustained drug delivery. A smart responsive hydrogel system, integrating Carboxymethyl Chitosan (CMCS), Dextran (DEX) and 4-formylphenylboronic acid (4-FPBA) was designed to address this problem. The injectable self-healing hydrogel forms a dual-crosslinked network, incorporating the MOF and rendering its on-demand release sensitive to reactive oxygen species (ROS) levels and pH levels of periodontitis. We seek to analyze the hydrogel's synergistic effects with MOFs in antibacterial functions, immunomodulation and promotion of bone regeneration in periodontitis. In vivo and in vitro experiment validated the system's efficacy in inhibiting inflammation-related genes and proteins expression to foster periodontal bone regeneration. This dynamic hydrogel system with MOFs, shows promise as a potential therapeutic avenue for addressing the challenges in bone regeneration in periodontitis.
Collapse
Affiliation(s)
- Qipei Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, People's Republic of China
| | - Yuxin Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, People's Republic of China
| | - Chingchun Ho
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, People's Republic of China
| | - Zongtai Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, People's Republic of China
| | - Weicheng Chiu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, People's Republic of China
| | - Anqi Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, People's Republic of China
| | - Yulin Dai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, People's Republic of China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, People's Republic of China
| | - Xinchun Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, People's Republic of China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
9
|
Li W, Chen X, Yao M, Sun B, Zhu K, Wang W, Zhang A. LC-MS based untargeted metabolomics studies of the metabolic response of Ginkgo biloba extract on arsenism patients. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116183. [PMID: 38471343 DOI: 10.1016/j.ecoenv.2024.116183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Arsenic is an environmentally ubiquitous toxic metalloid. Chronic exposure to arsenic may lead to arsenicosis, while no specific therapeutic strategies are available for the arsenism patients. And Ginkgo biloba extract (GBE) exhibited protective effect in our previous study. However, the mechanisms by which GBE protects the arsenism patients remain poorly understood. A liquid chromatography-mass spectrometry (LC-MS) based untargeted metabolomics analysis was used to study metabolic response in arsenism patients upon GBE intervention. In total, 39 coal-burning type of arsenism patients and 50 healthy residents were enrolled from Guizhou province of China. The intervention group (n = 39) were arsenism patients orally administered with GBE (three times per day) for continuous 90 days. Plasma samples from 50 healthy controls (HC) and 39 arsenism patients before and after GBE intervention were collected and analyzed by established LC-MS method. Statistical analysis was performed by MetaboAnalyst 5.0 to identify differential metabolites. Multivariate analysis revealed a separation in arsenism patients between before (BG) and after GBE intervention (AG) group. It was observed that 35 differential metabolites were identified between BG and AG group, and 30 of them were completely or partially reversed by GBE intervention, with 14 differential metabolites significantly up-regulated and 16 differential metabolites considerably down-regulated. These metabolites were involved in promoting immune response and anti-inflammatory functions, and alleviating oxidative stress. Taken together, these findings indicate that the GBE intervention could probably exert its protective effects by reversing disordered metabolites modulating these functions in arsenism patients, and provide insights into further exploration of mechanistic studies.
Collapse
Affiliation(s)
- Weiwei Li
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Xiong Chen
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Maolin Yao
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Baofei Sun
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Kai Zhu
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Wenjuan Wang
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China.
| |
Collapse
|
10
|
Idaguko CA, Orabueze I. Trace element levels and bio-active compounds in ethanolic leaf extract of Chrysophyllum albidum characterised using gas chromatography - mass spectrometry. J Trace Elem Med Biol 2023; 80:127311. [PMID: 37806006 DOI: 10.1016/j.jtemb.2023.127311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
AIM AND OBJECTIVES Chrysophyllum albidum, also known as Africa star apple, has so many ethnobotanical uses in African healing system. Thus, a study that reveals possible trace elements and its phytochemical profile will give an essential insight to the bioactivity profile of the plant. The study was to identify the trace elements and the bioactive compounds present in Chrysophyllum albidum (C. albidum) leaf extract MATERIALS AND METHODS: The ethanol leaf extract of Chrysophyllum albidum was evaluated for trace elements using an Atomic Absorption Spectrophotometry (ASS) while the chemical composition was analysed using Gas Chromatography-Mass Spectrometry (GC/MS). The identification of phytoconstituents using GC/MS was based on the instrument library, peak area and retention time. RESULT The ethanol leaf extract of C. albidum showed a high content of potassium, calcium, magnesium and sodium, while relative low content of manganese, iron, copper, zinc, lead and nickel. Total of 30 peaks representing 30 identified compounds were recorded in the GC/MS analysis. These include a variety of heterocyclic compounds such as fatty acids, organic compounds, esters, and disaccharides etc. The major constituents of the extract were: Sucrose (37.45%), followed by 1,2,3-Propanetriol,1-acetate (7.86%), di-Glyceraldehyde dimer (5.70%), 1-(3-Benzyl-2-thioureido)-1-deoxy-beta-d glucopyranose 2,3,4,6-tetraacetate (4.53%), 4 H-Pyran-4-one, 2,3-dihydro-3, 5-dihydroxy-6-methyl- (4.49%), 3-Deoxy-d-Mannoic lactone (3.14%), Glycerine (3.04%) and minor compounds that are less than 3%. CONCLUSION The elemental composition of the leaf extract of C. albidum may be influenced by the environmental factors such as soil composition surrounding the plant's roots, while a variety of bioactive compounds with diverse biological activities were present. Hence, the plant have a potential pharmacological activities.
Collapse
Affiliation(s)
- Chika Anna Idaguko
- Department of Anatomy, Faculty of Basic Medical Sciences, Edo State University Uzairue, Edo State, Nigeria.
| | - Ifeoma Orabueze
- Department of Pharmacognosy, Faculty of Pharmacy, College of Medicine, University of Lagos, Lagos State, Nigeria
| |
Collapse
|
11
|
Ismail A, Pervaiz T, Comstock S, Bodaghi S, Rezk A, Vidalakis G, El-Sharkawy I, Obenland D, El-kereamy A. Unraveling the occasional occurrence of berry astringency in table grape cv. Scarlet Royal: a physiological and transcriptomic analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1271251. [PMID: 37965000 PMCID: PMC10641383 DOI: 10.3389/fpls.2023.1271251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/27/2023] [Indexed: 11/16/2023]
Abstract
Scarlet Royal, a mid-season ripening table grape, is one of the popular red grape varieties in California. However, its berries develop an undesirable astringent taste under certain conditions. Among the various factors contributing to the degradation of berry attributes, the levels and compositions of polyphenols play a fundamental role in defining berry quality and sensory characteristics. To comprehend the underlying mechanism of astringency development, Scarlet Royal berries with non-astringent attributes at the V7 vineyard were compared to astringent ones at the V9 vineyard. Biochemical analysis revealed that the divergence in berry astringency stemmed from alterations in its polyphenol composition, particularly tannins, during the late ripening stage at the V9 vineyard. Furthermore, transcriptomic profiling of berries positively associated nineteen flavonoid/proanthocyanidins (PAs) structural genes with the accumulation of PAs in V9 berries. The identification of these genes holds significance for table grape genetic improvement programs. At a practical level, the correlation between the taste panel and tannin content revealed a threshold level of tannins causing an astringent taste at approximately 400 mg/L. Additionally, berry astringency at the V9 vineyard was linked to a lower number of clusters and yield during the two study seasons, 2016 and 2017. Furthermore, petiole nutrient analysis at bloom showed differences in nutrient levels between the two vineyards, including higher levels of nitrogen and potassium in V9 vines compared to V7. It's worth noting that V9 berries at harvest displayed a lower level of total soluble solids and higher titratable acidity compared to V7 berries. In conclusion, our results indicate that the accumulation of tannins in berries during the ripening process results in a reduction in their red color intensity but significantly increases the astringency taste, thereby degrading the berry quality attributes. This study also highlights the association of high nitrogen nutrient levels and a lower crop load with berry astringency in table grapes, paving the way for further research in this area.
Collapse
Affiliation(s)
- Ahmed Ismail
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, Riverside, CA, United States
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Tariq Pervaiz
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, Riverside, CA, United States
| | - Stacey Comstock
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, Riverside, CA, United States
| | - Sohrab Bodaghi
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, Riverside, CA, United States
| | - Alaaeldin Rezk
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, Riverside, CA, United States
| | - Georgios Vidalakis
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, Riverside, CA, United States
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - David Obenland
- United States Department of Agriculture (USDA), Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Ashraf El-kereamy
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, Riverside, CA, United States
| |
Collapse
|
12
|
Darwish AG, El-Sharkawy I, Tang C, Rao Q, Tan J. Investigation of Antioxidant and Cytotoxicity Activities of Chocolate Fortified with Muscadine Grape Pomace. Foods 2023; 12:3153. [PMID: 37685084 PMCID: PMC10487172 DOI: 10.3390/foods12173153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Muscadine grape pomace and mixed products with chocolate extracts from three muscadine genotypes exhibiting different berry skin colors (black and bronze) were investigated for total phenolic content (TPC), total flavonoid content (TFC), DPPH, FRAP antioxidant activity, and anticancer activity using MDA-MB-468 (MM-468; African American) breast cancer cells. Muscadine berry extracts and mixed products showed cytotoxicity activities of up to 70% against MM-468 breast cancer cells. Cell growth inhibition was higher in 'macerated Floriana' with an IC50 value of 20.70 ± 2.43 followed by 'Alachua' with an IC50 value of 22.25 ± 2.47. TPC and TFC in macerated MGP powder were (1.4 ± 0.14 and 0.45 ± 0.01 GAE/g FW, respectively), which was significantly higher than those in cocoa powder. Data analysis showed a high association between DPPH, FRAP antioxidant activities, and TPC content and a positive high correlation between anticancer activity and antioxidant capacity and between TPC and anticancer activity. The anticancer and antioxidant effects of muscadine grape pomace and chocolate extracts are attributed to the TPC of extracts, which showed a stronger positive correlation with growth inhibition of African American breast cancer cells. This study would be of great value for food industries as well as other manufacturers who are interested in new food blends.
Collapse
Affiliation(s)
- Ahmed G. Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (A.G.D.); (I.E.-S.)
- Department of Biochemistry, Faculty of Agriculture, Minia University, Minia 61519, Egypt
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (A.G.D.); (I.E.-S.)
| | - Chunya Tang
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - Qinchun Rao
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - Juzhong Tan
- Department of Animal and Food Science, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
13
|
Darwish AG, Moniruzzaman M, Tsolova V, El-Sharkawy I. Integrating Metabolomics and Gene Expression Underlying Potential Biomarkers Compounds Associated with Antioxidant Activity in Southern Grape Seeds. Metabolites 2023; 13:metabo13020210. [PMID: 36837828 PMCID: PMC9963462 DOI: 10.3390/metabo13020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
Different southern grape (Muscadine) genotypes (Muscadinia rotundifolia Michx.) were evaluated for their contents of metabolites in ripe berries. The metabolome study identified 331 metabolites in ripening skin and seed tissues. The major chemical groups were organic acids, fatty acyls, polyketides, and organic heterocycle compounds. The metabolic pathways of the identified metabolite were mainly arginine biosynthesis, D-glutamine, D-glutamate metabolism, alanine, aspartate metabolism, aminoacyl-tRNA biosynthesis, and citrate cycle. Principal component analysis indicated that catechin, gallic acid, and epicatechin-3-gallate were the main metabolites existing in muscadine seed extracts. However, citramalic and malic acids were the main metabolites contributing to muscadine skin extracts. Partial least-squares discriminant analysis (VIP > 1) described 25 key compounds indicating the metabolome in muscadine tissues (skin and seed). Correlation analysis among the 25 compounds and oxidation inhibition activities identified five biomarker compounds that were associated with antioxidant activity. Catechin, gallic acid, epicatechin-3-gallate, fertaric acid, and procyanidin B1 were highly associated with DPPH, FRAP, CUPRAC, and ABTS. The five biomarker compounds were significantly accumulated in the seed relative to the skin tissues. An evaluation of 15 antioxidant-related genes represented by the 3-dehydroquinate dehydratase (DHD), shikimate kinase (SK), chalcone synthase (CHS), anthocyanidin reductase (ANR), laccase (LAC), phenylalanine ammonia-lyase (PAL), dihydroflavonol 4-reductase (DFR), 3-dehydroquinate synthase (DHQS), chorismate mutase (CM), flavanone-3-hydroxylase (F3H), cinnamoyl-CoA reductase (CCR), cinnamyl alcohol dehydrogenase (CAD), leucoanthocyanidin reductase (LAR), gallate 1-β-glucosyltransferase (UGT), and anthocyanidin 3-O-glucosyltransferase (UFGT) encode critical enzymes related to polyphenolics pathway throughout four developmental stages (fruit-set FS, véraison V, ripe-skin R, and ripe-seed; S) in the C5 genotype demonstrated the dramatic accumulation of all transcripts in seed tissue or a developmental stage-dependent manner. Our findings suggested that muscadine grape seeds contain essential metabolites that could attract the attention of those interested in the pharmaceutical sector and the plant breeders to develop new varieties with high nutraceutical value.
Collapse
Affiliation(s)
- Ahmed G. Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
- Department of Biochemistry, Faculty of Agriculture, Minia University, Minia 61519, Egypt
| | - Md Moniruzzaman
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
- Correspondence: ; Tel.: +1-850-599-8685
| |
Collapse
|
14
|
Zheng R, Xiong X, Li X, Wang D, Xu Z, Li X, Yang M, Ren X, Kong Q. Changes in Polyphenolic Compounds of Hutai No. 8 Grapes during Low-Temperature Storage and Their Shelf-Life Prediction by Identifying Biomarkers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15818-15829. [PMID: 36479857 DOI: 10.1021/acs.jafc.2c06573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The aim of this experiment was to assess the effect of different storage temperatures on the texture quality, phenolic profile, and antioxidant capacity of a grape. Fresh grapes were stored at 4 and 25 °C for nine days and sampled on alternate days. The hardness, total phenolics, total flavanones, total flavanols, total anthocyanin content, antioxidant activity, differential metabolite screening, and key gene expression were evaluated. In addition, four phenolic compounds were screened out as differential metabolites in response to storage temperature by OPLS-DA analysis. The results showed that the fruit firmness was better maintained in low-temperature storage and the storage life was longer than that at 25 °C. During the whole storage process, the contents of phenolics, flavanones, flavanols, and anthocyanins all showed an increasing trend first and then decreased regardless of what temperature. Since the antioxidant capacity of a grape was positively correlated with the contents of total phenols and total flavonoids, the same trend was also shown. However, the grape's phenolic compound content and antioxidant activity were higher at 25 °C than at 4 °C. Furthermore, through qualitative and quantitative analysis of 16 monomeric phenols, this study selected catechin, 1-O-vanilloyl-β-d-glucose, p-coumaric acid 4-glucoside, and resveratrol-3-O-glucoside as the main differentially expressed metabolites at the two temperatures. In conclusion, for a short shelf life or immediate consumption, keeping grapes at room temperature is more beneficial to obtain high antioxidants. However, if the goal is to prolong the storage period of the fruit, keeping the fruit at 4 °C is recommended.
Collapse
Affiliation(s)
- Renyu Zheng
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Xiaolin Xiong
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Xingyan Li
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Di Wang
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Zhe Xu
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Xue Li
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Miao Yang
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Xueyan Ren
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Qingjun Kong
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| |
Collapse
|
15
|
Ismail A, Gajjar P, Park M, Mahboob A, Tsolova V, Subramanian J, Darwish AG, El-Sharkawy I. A recessive mutation in muscadine grapes causes berry color-loss without influencing anthocyanin pathway. Commun Biol 2022; 5:1012. [PMID: 36153380 PMCID: PMC9509324 DOI: 10.1038/s42003-022-04001-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Anthocyanins, a major class of flavonoids, are important pigments of grape berries. Despite the recent discovery of the genetic cause underlying the loss of color, the metabolomic and molecular responses are unknown. Anthocyanin quantification among diverse berry color muscadines suggests that all genotypes could produce adequate anthocyanin quantities, irrespective of berry color. Transcriptome profiling of contrasting color muscadine genotypes proposes a potential deficiency that occurs within the anthocyanin transport and/or degradation mechanisms and might cause unpigmented berries. Genome-wide association studies highlighted a region on chromosome-4, comprising several genes encoding glutathione S-transferases involved in anthocyanin transport. Sequence comparison among genotypes reveals the presence of two GST4b alleles that differ by substituting the conserved amino acid residue Pro171-to-Leu. Molecular dynamics simulations demonstrate that GST4b2–Leu171 encodes an inactive protein due to modifications within the H-binding site. Population genotyping suggests the recessive inheritance of the unpigmented trait with a GST4b2/2 homozygous. A model defining colorless muscadines’ response to the mutation stimulus, avoiding the impact of trapped anthocyanins within the cytoplasm is established. Transcriptome profiling and mutational analysis suggest a potential deficiency in anthocyanin transport by glutathione S-transferases and/or degradation mechanisms that might cause unpigmented berries.
Collapse
|
16
|
Chang Y, Ahlawat YK, Gu T, Sarkhosh A, Liu T. Transcriptional profiling of two muscadine grape cultivars "Carlos" and "Noble" to reveal new genes, gene regulatory networks, and pathways that involved in grape berry ripening. FRONTIERS IN PLANT SCIENCE 2022; 13:949383. [PMID: 36061784 PMCID: PMC9435441 DOI: 10.3389/fpls.2022.949383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
In commercial fruit production, synchronized ripening and stable shelf life are important properties. The loosely clustered or non-bunching muscadine grape has unrealized potential as a disease-resistant cash crop, but requires repeated hand harvesting due to its unsynchronized or long or heterogeneous maturation period. Genomic research can be used to identify the developmental and environmental factors that control fruit ripening and postharvest quality. This study coupled the morphological, biochemical, and genetic variations between "Carlos" and "Noble" muscadine grape cultivars with RNA-sequencing analysis during berry maturation. The levels of antioxidants, anthocyanins, and titratable acids varied between the two cultivars during the ripening process. We also identified new genes, pathways, and regulatory networks that modulated berry ripening in muscadine grape. These findings may help develop a large-scale database of the genetic factors of muscadine grape ripening and postharvest profiles and allow the discovery of the factors underlying the ripeness heterogeneity at harvest. These genetic resources may allow us to combine applied and basic research methods in breeding to improve table and wine grape ripening uniformity, quality, stress tolerance, and postharvest handling and storage.
Collapse
Affiliation(s)
- Yuru Chang
- Department of Horticultural Science, University of Florida, Gainesville, FL, United States
| | - Yogesh Kumar Ahlawat
- Department of Horticultural Science, University of Florida, Gainesville, FL, United States
| | - Tongjun Gu
- Bioinformatics, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Ali Sarkhosh
- Department of Horticultural Science, University of Florida, Gainesville, FL, United States
| | - Tie Liu
- Department of Horticultural Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Park M, Darwish AG, Elhag RI, Tsolova V, Soliman KFA, El-Sharkawy I. A multi-locus genome-wide association study reveals the genetics underlying muscadine antioxidant in berry skin. FRONTIERS IN PLANT SCIENCE 2022; 13:969301. [PMID: 35991419 PMCID: PMC9386419 DOI: 10.3389/fpls.2022.969301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Muscadine berries display enhanced nutraceutical value due to the accumulation of distinctive phytochemical constituents with great potential antioxidant activity. Such nutritional and health merits are not only restricted to muscadine, but muscadine berries accumulate higher amounts of bioactive polyphenolics compared with other grape species. For the genetic study of the antioxidant trait in muscadine, a multi-locus genome-wide association study (GWAS) with 350 muscadine genotypes and 1,283 RNase H2 enzyme-dependent amplicon sequencing (rhAmpSeq) markers was performed. Phenotyping was conducted with several antioxidant-related traits, including total phenolic content (TPC), total flavonoid content (TFC), 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, and FRAP antioxidant assay in muscadine berry skin. The correlation coefficient analysis revealed that the TPC, and DPPH/FRAP activities were significantly correlated. Through the GWAS analysis, 12 QTNs were identified from the four traits, of which six were pleiotropic QTNs. Two pleiotropic QTNs, chr2_14464718 and chr4_16491374, were commonly identified from the TPC and DPPH/FRAP activities. Co-located genes with the two pleiotropic QTNs were isolated, and two candidate genes were identified with transcriptome analysis. UDP-glycosyltransferase and 4-hydroxy-4-methyl-2-oxoglutarate aldolase were the candidate genes that are positively and negatively correlated to the quantitative property of traits, respectively. These results are the first genetic evidence of the quantitative property of antioxidants in muscadine and provide genetic resources for breeding antioxidant-rich cultivars for both Muscadinia and Euvitis species.
Collapse
Affiliation(s)
- Minkyu Park
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ahmed G. Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
- Department of Biochemistry, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Rashid I. Elhag
- College of Science and Technology, Florida A&M University, Tallahassee, FL, United States
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
18
|
Das PR, Darwish AG, Ismail A, Haikal AM, Gajjar P, Balasubramani SP, Sheikh MB, Tsolova V, Soliman KFA, Sherif SM, El-Sharkawy I. Diversity in blueberry genotypes and developmental stages enables discrepancy in the bioactive compounds, metabolites, and cytotoxicity. Food Chem 2021; 374:131632. [PMID: 34823937 PMCID: PMC8790722 DOI: 10.1016/j.foodchem.2021.131632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023]
Abstract
Eight blueberry cultivars at three developmental stages were investigated for metabolite profiling, antioxidant, and anticancer activities. Cultivars- and developmental stages-variations were determined in total phenolic, flavonoid, DPPH, and FRAP antioxidant assays. The anticancer capacity was equal against A549, HepG2, and Caco-2 cancer cells, whereas the inhibition rate was dose-, incubation period-, cultivar-, and developmental stages-dependent. The untargeted metabolite profiling by UPLC-TOF-MS analysis of two contrast cultivars, 'Vernon' and 'Star', throughout the developmental stages revealed 328 metabolites; the majority of them were amino acids, organic acids, and flavonoids. The multivariate statistical analysis identified five metabolites, including quinic acid, methyl succinic acid, chlorogenic acid, oxoadipic acid, and malic acid, with positively higher correlations with all anticancer activities. This comprehensive database of blueberry metabolites along with anticancer activities could be targeted as natural anticancer potentials. This study would be of great value for food, nutraceutical, and pharmaceutical industries as well as plant biotechnologists.
Collapse
Affiliation(s)
- Protiva Rani Das
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA
| | - Ahmed G Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; Department of Biochemistry, Faculty of Agriculture, Minia University, Minia 61519, Egypt
| | - Ahmed Ismail
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour 22516, Behera, Egypt
| | - Amr M Haikal
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour 22516, Behera, Egypt
| | - Pranavkumar Gajjar
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
| | - Subramani Paranthaman Balasubramani
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; Department of Natural Sciences, Albany State University, Albany, GA 31705, USA
| | - Mehboob B Sheikh
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Sherif M Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA.
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA.
| |
Collapse
|
19
|
Ismail A, Darwish AG, Park M, Gajjar P, Tsolova V, Soliman KFA, El-Sharkawy I. Transcriptome Profiling During Muscadine Berry Development Reveals the Dynamic of Polyphenols Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:818071. [PMID: 35185966 PMCID: PMC8849228 DOI: 10.3389/fpls.2021.818071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/31/2021] [Indexed: 05/17/2023]
Abstract
Muscadine grapes accumulate higher amounts of bioactive phenolics compared with other grape species. To identify the molecular events associated with polyphenolic accumulation that influence antioxidant capacity, two contrasting muscadine genotypes (C5 and C6) with varied phenolic/flavonoid content and antioxidant activity were investigated via RNA-sequencing during berry development. The results showed that berry development is concomitant with transcriptome profile changes, which was more pronounced at the véraison (V) stage. Despite that the downregulation pattern of gene expression dominated the upregulation through berry development, the C5 genotype maintained higher expression levels. Comparative transcript profiling allowed the identification of 94 differentially expressed genes with potential relevance in regulating fruit secondary metabolism, including 18 transcription factors and 76 structural genes. The genes underlying the critical enzymes in the modification reactions of polyphenolics biosynthetic pathway, including hydroxylation, methylation, and glycosylation were more pronounced during the immature stages of prevéraison (PrV), V, and postvéraison (PoV) in the C5 genotype, resulting in more accumulation of biologically active phenolic/flavonoid derivatives. The results suggested that muscadine grapes, as in bunch grapes (Vitis sp.); possess a similar mechanism that organizes polyphenolics accumulation; however, the set of total flavonoids (TFs) and structural genes coordinating the pathway varies between the two species.
Collapse
Affiliation(s)
- Ahmed Ismail
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Ahmed G. Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
- Department of Biochemistry, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Minkyu Park
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Pranavkumar Gajjar
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, United States
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
- *Correspondence: Islam El-Sharkawy,
| |
Collapse
|