1
|
Erdem F, Tas O, Erol N, Oztop M, Alpas H. Quality changes in high hydrostatic pressure treated enriched tomato sauce. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9151-9159. [PMID: 38970166 DOI: 10.1002/jsfa.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 05/09/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Use of high hydrostatic pressure (HHP) with reduced processing times is gaining traction in the food industry as an alternative to conventional thermal treatment. In order to enhance functional benefits while minimizing processing losses, functionalized products are being developed with such novel techniques. In this study, changes in quality parameters for HHP treated enriched tomato sauce were evaluated, with the aim to assess its viability as an alternative to conventional thermal treatment methods. RESULTS HHP treatments at 500 MPa, 30 °C/50 °C significantly increased the total phenolic and lycopene content of the sauce samples, achieving 6.7% and 7.5% improvements over conventionally treated samples. The antioxidant capacity of the HHP-treated samples was also found to match or be better than conventionally treated samples. Furthermore, a T2 relaxation time study revealed that pressure-temperature processing treatments were effective in maintaining the structural integrity of water molecules. Microbiological analyses revealed that 500 MPa/50 °C 5 min treatment can offer 8 logs reduction colony formation, matching the results of conventional thermal treatment. CONCLUSION Combined pressure-temperature treatments improve results, reduce time consumption. 500 MPa/50 °C treatments provided retention of quality parameters and significant reduction in microbial activity. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Furkan Erdem
- Department of Food Engineering, Middle East Technical University, Ankara, Türkiye
| | - Ozan Tas
- Department of Food Engineering, Middle East Technical University, Ankara, Türkiye
| | | | - Mecit Oztop
- Department of Food Engineering, Middle East Technical University, Ankara, Türkiye
| | - Hami Alpas
- Department of Food Engineering, Middle East Technical University, Ankara, Türkiye
| |
Collapse
|
2
|
Protudjer JLP, Roth-Walter F, Meyer R. Nutritional Considerations of Plant-Based Diets for People With Food Allergy. Clin Exp Allergy 2024; 54:895-908. [PMID: 39317227 DOI: 10.1111/cea.14557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024]
Abstract
Plant-based diets (PBD) have been reported throughout history, but are increasingly common in current times, likely in part due to considerable emphasis on climate change and human health and wellness. Many dietary organisations around the world endorse well-planned, nutritionally adequate PBD, which exclude some or all forms of animal-based foods. However, special attention must be given to patients who follow PBD and also have food allergy (FA), as avoidance may increase the risk of developing nutritional deficiencies, including poor growth in children, weight loss in adults and vitamin and mineral deficiencies. Given the increasing prevalence of both PBD and food allergen avoidance diets, healthcare providers are likely to counsel patients with FA who also follow a PBD. In this review, an overview of PBD in patients with FA is provided, including recent trends, macro- and micronutrient needs, and growth for children and weight gain considerations for adults. With regard to a PBD, special attention should be given to ensure adequate fat and protein intake and improving the bioavailability of several minerals such as iron, zinc, iodine, calcium and magnesium, and vitamins such as A, B2, B12 and D. Although the collective data on growth amongst children following a PBD are varied in outcome and may be influenced in part by the type of PBD, growth must be regularly monitored and in adults weight gain assessed as part of any clinical assessment in those people with FA.
Collapse
Affiliation(s)
- Jennifer L P Protudjer
- Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- George and Fay Yee Centre for Healthcare Innovation, Winnipeg, Manitoba, Canada
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Franziska Roth-Walter
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rosan Meyer
- Department of Nutrition and Dietetics, University of Winchester, Winchester, UK
- Department of Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Feng L, Jia X, Yin L. Role of pectin in the delivery of β-carotene embedded in interpenetrating emulsion-filled gels made with soy protein isolate. Food Chem 2024; 446:138797. [PMID: 38442678 DOI: 10.1016/j.foodchem.2024.138797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
This study investigated the effects of different matrices on gel properties, lipid digestibility, β-carotene bioaccessibility, released free amino acids and gel network degradation. Microstructure studies have proven that sugar beet pectin/soy protein isolate-based emulsion-filled gel (SBP/SPI-E) with interpenetrating networks was formed. SBP/SPI-E exhibited higher hardness (2.67 N, p < 0.05) and released lesser free amino acids (269.48-μmol/g SPI) than soy protein isolate-based emulsion-filled gel (SPI-E) in simulated intestinal fluid (SIF); however, both had similar free amino acids contents in simulated colonic fluid. SBP has the potential to delay gel network degradation in SIF, as evidenced by the sugar stain strips of SDS-PAGE and microstructure observation. Furthermore, SBP/SPI-E and SPI-E exhibited similar β-carotene bioaccessibility in SIF, suggesting that SBP from composite gel could not affect the aforementioned bioaccessibility. The study provides useful information for the design of functional gels in the application of fat-soluble nutrient delivery.
Collapse
Affiliation(s)
- Liping Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xin Jia
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lijun Yin
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
4
|
Vahid F, Krischler P, Leners B, Bohn T. Effect of Digested Selected Food Items on Markers of Oxidative Stress and Inflammation in a Caco-2-Based Human Gut Epithelial Model. Antioxidants (Basel) 2024; 13:150. [PMID: 38397747 PMCID: PMC10885899 DOI: 10.3390/antiox13020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The human gut epithelium presents a crucial interface between ingested food items and the host. Understanding how different food items influence oxidative stress and inflammation in the gut is of great importance. This study assessed the impact of various digested food items on oxidative stress, inflammation, and DNA/RNA damage in human gut epithelial cells. Differentiated Caco-2 cells were exposed to food items and their combinations (n = 22) selected from a previous study, including sausage, white chocolate, soda, coffee, orange juice, and curcumin. Following stimulation with TNF-α/IFN-1β/LPS and H2O2 for 4 h, the cells were exposed to digested food items or appropriate controls (empty digesta and medium) for a further 16 h. Cell viability, antioxidant capacity (ABTS, FRAP), IL-6, IL-8, F2-isoprostanes, lipid peroxidation (MDA), and DNA/RNA oxidative damage were assessed (3 independent triplicates). The ABTS assay revealed that cells treated with "white chocolate" and "sausage + coffee" exhibited significantly reduced antioxidant capacity compared to stimulated control cells (ABTS = 52.3%, 54.8%, respectively, p < 0.05). Similar results were observed for FRAP (sausage = 34.9%; white chocolate + sausage = 35.1%). IL-6 levels increased in cells treated with "white chocolate + sausage" digesta (by 101%, p < 0.05). Moreover, MDA levels were significantly elevated in cells treated with digested "sausage" or sausage in combination with other food items. DNA/RNA oxidative damage was found to be higher in digesta containing sausage or white chocolate (up to 550%, p < 0.05) compared to stimulated control cells. This investigation provides insights into how different food items may affect gut health and underscores the complex interplay between food components and the epithelium at this critical interface of absorption.
Collapse
Affiliation(s)
| | | | | | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (F.V.); (P.K.); (B.L.)
| |
Collapse
|
5
|
Zhang J, Wang H, Ai C, Lu R, Chen L, Xiao J, Teng H. Food matrix-flavonoid interactions and their effect on bioavailability. Crit Rev Food Sci Nutr 2023; 64:11124-11145. [PMID: 37427580 DOI: 10.1080/10408398.2023.2232880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Flavonoid compounds exhibit a wide range of health benefits as plant-derived dietary components. Typically, co-consumed with the food matrix,they must be released from the matrix and converted into an absorbable form (bioaccessibility) before reaching the small intestine, where they are eventually absorbed and transferred into the bloodstream (bioavailability) to exert their biological activity. However, a large number of studies have revealed the biological functions of individual flavonoid compounds in different experimental models, ignoring the more complex but common relationships established in the diet. Besides, it has been appreciated that the gut microbiome plays a crucial role in the metabolism of flavonoids and food substrates, thereby having a significant impact on their interactions, but much progress still needs to be made in this area. Therefore, this review intends to comprehensively investigate the interactions between flavonoids and food matrices, including lipids, proteins, carbohydrates and minerals, and their effects on the nutritional properties of food matrices and the bioaccessibility and bioavailability of flavonoid compounds. Furthermore, the health effects of the interaction of flavonoid compounds with the gut microbiome have also been discussed.HIGHLIGHTSFlavonoids are able to bind to nutrients in the food matrix through covalent or non-covalent bonds.Flavonoids affect the digestion and absorption of lipids, proteins, carbohydrates and minerals in the food matrix (bioaccessibility).Lipids, proteins and carbohydrates may favorably affect the bioavailability of flavonoids.Improved intestinal flora may improve flavonoid bioavailability.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Rui Lu
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Jianbo Xiao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Teng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| |
Collapse
|
6
|
Su W, Xu W, Liu E, Su W, Polyakov NE. Improving the Treatment Effect of Carotenoids on Alzheimer's Disease through Various Nano-Delivery Systems. Int J Mol Sci 2023; 24:ijms24087652. [PMID: 37108814 PMCID: PMC10142927 DOI: 10.3390/ijms24087652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Natural bioactive compounds have recently emerged as a current strategy for Alzheimer's disease treatment. Carotenoids, including astaxanthin, lycopene, lutein, fucoxanthin, crocin and others are natural pigments and antioxidants, and can be used to treat a variety of diseases, including Alzheimer's disease. However, carotenoids, as oil-soluble substances with additional unsaturated groups, suffer from low solubility, poor stability and poor bioavailability. Therefore, the preparation of various nano-drug delivery systems from carotenoids is a current measure to achieve efficient application of carotenoids. Different carotenoid delivery systems can improve the solubility, stability, permeability and bioavailability of carotenoids to a certain extent to achieve Alzheimer's disease efficacy. This review summarizes recent data on different carotenoid nano-drug delivery systems for the treatment of Alzheimer's disease, including polymer, lipid, inorganic and hybrid nano-drug delivery systems. These drug delivery systems have been shown to have a beneficial therapeutic effect on Alzheimer's disease to a certain extent.
Collapse
Affiliation(s)
- Wenjing Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenhao Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Enshuo Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nikolay E Polyakov
- Institute of Solid State Chemistry and Mechanochemistry, 630128 Novosibirsk, Russia
- Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Teixé-Roig J, Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. Effect of the Emulsifier Used in Dunaliella salina-Based Nanoemulsions Formulation on the β-Carotene Absorption and Metabolism in Rats. Mol Nutr Food Res 2023; 67:e2200492. [PMID: 36708270 DOI: 10.1002/mnfr.202200492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Indexed: 01/29/2023]
Abstract
SCOPE Microalgae such as Dunaliella salina are a potential sustainable source of natural β-carotene due to their fast growth and high adaptability to environmental conditions. This work aims to evaluate the effect of the incorporation of β-carotene from this alga into different emulsifier-type nanoemulsions (soybean lecithin [SBL], whey protein isolate [WPI], sodium caseinate [SDC]) on its absorption, metabolization, and biodistribution in rats. METHODS AND RESULTS Nanoemulsions formulated with different emulsifiers at 8% concentration are obtained by five cycles of microfluidization at 130 mPa, then expose to an in vitro digestion or orally administer to rats. Feeding rats with nanoemulsions improves β-carotene uptake compared to control suspension, especially using SDC and WPI as emulsifiers. A greater presence of β-carotene and retinol in the intestine, plasma, and liver is observed, being the liver the tissue that shows the highest accumulation. This fact can be a consequence of the smaller droplets that protein-nanoemulsions present compared to that with SBL in the intestine of rats, which promote faster digestibility and higher β-carotene bioaccessibility (35%-50% more) according to the in vitro observations. CONCLUSIONS Nanoemulsions, especially those formulated with protein emulsifiers, are effective systems for increasing β-carotene absorption, as well as retinol concentration in different rat tissues.
Collapse
Affiliation(s)
- Júlia Teixé-Roig
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, Lleida, 25198, Spain
| | - Gemma Oms-Oliu
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, Lleida, 25198, Spain
| | - Isabel Odriozola-Serrano
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, Lleida, 25198, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, Lleida, 25198, Spain
| |
Collapse
|
8
|
Neelissen J, Leanderson P, Jonasson L, Chung RWS. The Effects of Dairy and Plant-Based Liquid Components on Lutein Liberation in Spinach Smoothies. Nutrients 2023; 15:nu15030779. [PMID: 36771485 PMCID: PMC9920929 DOI: 10.3390/nu15030779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Lutein is a dietary lipophilic compound with anti-inflammatory properties. We have previously shown that dairy fat can improve the lutein content in spinach smoothies. It is, however, unclear whether fat concentrations and fermentation status in dairy products affect lutein liberation in smoothies. Moreover, plant-based milks vary in fat, protein, and fiber content which may affect lutein dissolution. This study aimed to provide translatable information to consumers by comparing lutein liberation in spinach smoothies made with different dairy or plant-based liquids in domestic settings. The smoothies were digested in vitro, and liberated lutein was measured by high-performance liquid chromatography (HPLC). High-fat and medium-fat cow's milk, as well as coconut milk with and without additives, were found to significantly improve lutein liberation by 36%, 30%, 25%, and 42%, respectively, compared to blending spinach with water alone. Adjustment models suggested that the effects of cow's milk and coconut milk were derived from fat and protein, respectively. On the other hand, soymilk with and without additives showed significantly reduced lutein liberation by 40% and 61%, respectively. To summarize, only 4 out of 14 tested liquids increased lutein liberation in spinach smoothies. The results highlight the importance of testing food companions for lipophilic active ingredients.
Collapse
Affiliation(s)
- Jan Neelissen
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Per Leanderson
- Occupational and Environmental Medicine Center, 581 85 Linköping, Sweden
- Division of Prevention, Rehabilitation and Community, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Lena Jonasson
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Rosanna W. S. Chung
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden
- Correspondence:
| |
Collapse
|
9
|
Faubel N, Cilla A, Alegriía A, Barberá R, Garcia-Llatas G. Overview of in vitro digestion methods to evaluate bioaccessibility of lipophilic compounds in foods. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2143520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nerea Faubel
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Amparo Alegriía
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| |
Collapse
|
10
|
Bioavailability and Bioactivity of Plant Antioxidants. Antioxidants (Basel) 2022; 11:antiox11122336. [PMID: 36552544 PMCID: PMC9774500 DOI: 10.3390/antiox11122336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Plant-derived antioxidants are a large group of chemical compounds that include the secondary metabolites of plants (e [...].
Collapse
|
11
|
Molteni C, La Motta C, Valoppi F. Improving the Bioaccessibility and Bioavailability of Carotenoids by Means of Nanostructured Delivery Systems: A Comprehensive Review. Antioxidants (Basel) 2022; 11:antiox11101931. [PMID: 36290651 PMCID: PMC9598319 DOI: 10.3390/antiox11101931] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Carotenoids are bioactive compounds provided by the diet playing a key role in maintaining human health. Therefore, they should be ingested daily in an adequate amount. However, even a varied and well-balanced diet does not guarantee an adequate intake, as both the bioaccessibility and bioavailability of the compounds significantly affect their absorption. This review summarizes the main results achieved in improving the bioaccessibility and bioavailability of carotenoids by means of nanostructured delivery systems, discussing in detail the available lipid-based and biopolymeric nanocarriers at present, with a focus on their formulation and functional efficiency. Although the toxicity profile of these innovative delivery systems is not fully understood, especially for long-term intake, these systems are an effective and valuable approach to increase the availability of compounds of nutritional interest.
Collapse
Affiliation(s)
- Camilla Molteni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2219593
| | - Fabio Valoppi
- Department of Food and Nutrition, University of Helsinki, PL 66, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland
- Faculty of Agriculture and Forestry, Helsinki Institute of Sustainability Science, University of Helsinki, 00014 Helsinki, Finland
- Department of Physics, University of Helsinki, PL 64, Gustaf Hällströmin katu 2, 00014 Helsinki, Finland
| |
Collapse
|
12
|
Hu Y, Lin Q, Zhao H, Li X, Sang S, McClements DJ, Long J, Jin Z, Wang J, Qiu C. Bioaccessibility and bioavailability of phytochemicals: Influencing factors, improvements, and evaluations. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Viera I, Herrera M, Roca M. Influence of food composition on chlorophyll bioaccessibility. Food Chem 2022; 386:132805. [PMID: 35509163 DOI: 10.1016/j.foodchem.2022.132805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Chlorophylls are ingested and effectively absorbed by our organism daily, but the effect of food composition on its bioaccessibility is unknown. Therefore, the present research analyses the chlorophyll bioaccessibility of ten commercial foods (guacamole, virgin olive oil, tortellini, basil hummus, creamed spinach, vegetable pasta, green tea chocolate, avocado and kiwi juices, and pesto sauce), selected based on their different nutritional (fat, fiber, protein, and carbohydrates) and chlorophyll composition and content. The most unexpected result was to correlate chlorophyll degradation during in vitro digestion with the salt content of the digested food. Surprisingly, independently of the foods' nutritional composition or the chlorophyll content, the chlorophyll profile after in vitro digestion was formed by 90% pheophytins and 10% chlorophylls and pheophorbides. Such a pattern can only be modified when the ingested food contains a high proportion of pheophorbides (˃20%) that prevailed up to the mixed micelles.
Collapse
Affiliation(s)
- Isabel Viera
- Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain.
| | - Marta Herrera
- Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain.
| | - María Roca
- Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain.
| |
Collapse
|
14
|
Iddir M, Vahid F, Merten D, Larondelle Y, Bohn T. Influence of Proteins on the Absorption of Lipophilic Vitamins, Carotenoids and Curcumin - A Review. Mol Nutr Food Res 2022; 66:e2200076. [PMID: 35506751 DOI: 10.1002/mnfr.202200076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Indexed: 12/13/2022]
Abstract
While proteins have been widely used to encapsulate, protect, and regulate the release of bioactive food compounds, little is known about the influence of co-consumed proteins on the absorption of lipophilic constituents following digestion, such as vitamins (A, D, E, K), carotenoids, and curcumin. Their bioavailability is often low and very variable, depending on the food matrix and host factors. Some proteins can act as emulsifiers during digestion. Their liberated peptides have amphiphilic properties that can facilitate the absorption of microconstituents, by improving their transition from lipid droplets into mixed micelles. Contrarily, the less well digested proteins could negatively impinge on enzymatic accessibility to the lipid droplets, slowing down their processing into mixed micelles and entrapping apolar food compounds. Interactions with mixed micelles and proteins are also plausible, as shown earlier for drugs. This review focuses on the ability of proteins to act as effective emulsifiers of lipophilic vitamins, carotenoids, and curcumin during digestion. The functional properties of proteins, their chemical interactions with enzymes and food constituents during gastro-intestinal digestion, potentials and limitations for their use as emulsifiers are emphasized and data from human, animal, and in vitro trials are summarized.
Collapse
Affiliation(s)
- Mohammed Iddir
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg.,Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| | - Diane Merten
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| |
Collapse
|
15
|
Miedes D, Makran M, Barberá R, Cilla A, Alegría A, Garcia-Llatas G. Elderly gastrointestinal conditions increase sterol bioaccessibility in a plant sterol-enriched beverage: adaptation of the INFOGEST method. Food Funct 2022; 13:4478-4485. [PMID: 35343977 DOI: 10.1039/d1fo04375g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elderly people suffer from a higher cardiovascular risk. Thus, the fortification of foods with plant sterols (PSs), which have a cholesterol-lowering function, could be of great interest for this target group. To date, no studies have analyzed how the gastrointestinal conditions of the elderly affect PS bioaccessibility. Therefore, this study evaluated the impact of the adaptation of the gastric phase alone and in combination with the intestinal phase on sterol bioaccessibility. For this purpose, the standardized INFOGEST 2.0 method previously adapted for sterol bioaccessibility evaluation in healthy adults was applied to PS-enriched milk-based fruit beverages, examining changes in enzyme activity, incubation time, agitation and pH, based on elderly physiology. The results suggest that the specific gastrointestinal conditions of the elderly could increase absorption of PSs, since their bioaccessibility (%) in a PS-enriched milk-based fruit beverage was significantly increased compared with that in adults (14.95 ± 0.33 vs. 7.96 ± 0.26), also indicating that these conditions increase the bioaccessibility of the beverage's own cholesterol (61.25 ± 2.91 vs. 20.86 ± 2.79). These data support the recommendation of foods of this type for the elderly who can benefit from the increase in bioaccessibility of PSs to have an improved potential cholesterol lowering effect, thus decreasing their risk of cardiovascular disease. However, the performance of subsequent in vivo tests to confirm these results is necessary.
Collapse
Affiliation(s)
- Diego Miedes
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Mussa Makran
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
16
|
Kabir MT, Rahman MH, Shah M, Jamiruddin MR, Basak D, Al-Harrasi A, Bhatia S, Ashraf GM, Najda A, El-Kott AF, Mohamed HRH, Al-Malky HS, Germoush MO, Altyar AE, Alwafai EB, Ghaboura N, Abdel-Daim MM. Therapeutic promise of carotenoids as antioxidants and anti-inflammatory agents in neurodegenerative disorders. Biomed Pharmacother 2022; 146:112610. [PMID: 35062074 DOI: 10.1016/j.biopha.2021.112610] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative disorders (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis have various disease-specific causal factors and pathological features. A very common characteristic of NDs is oxidative stress (OS), which takes place due to the elevated generation of reactive oxygen species during the progression of NDs. Furthermore, the pathological condition of NDs including an increased level of protein aggregates can further lead to chronic inflammation because of the microglial activation. Carotenoids (CTs) are naturally occurring pigments that play a significant role in averting brain disorders. More than 750 CTs are present in nature, and they are widely available in plants, microorganisms, and animals. CTs are accountable for the red, yellow, and orange pigments in several animals and plants, and these colors usually indicate various types of CTs. CTs exert various bioactive properties because of its characteristic structure, including anti-inflammatory and antioxidant properties. Due to the protective properties of CTs, levels of CTs in the human body have been markedly linked with the prevention and treatment of multiple diseases including NDs. In this review, we have summarized the relationship between OS, neuroinflammation, and NDs. In addition, we have also particularly focused on the antioxidants and anti-inflammatory properties of CTs in the management of NDs.
Collapse
Affiliation(s)
- Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, South Korea.
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Debasish Basak
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, United States
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun, Uttarakhand, 248007, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Attalla F El-Kott
- Biology Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia; Zoology Department, College of Science, Damanhour University, Damanhour 22511, Egypt
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Esraa B Alwafai
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
17
|
Whey- and Soy Protein Isolates Added to a Carrot-Tomato Juice Alter Carotenoid Bioavailability in Healthy Adults. Antioxidants (Basel) 2021; 10:antiox10111748. [PMID: 34829619 PMCID: PMC8614763 DOI: 10.3390/antiox10111748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
Recent findings suggested that proteins can differentially affect carotenoid bioaccessibility during gastro-intestinal digestion. In this crossover, randomized human trial, we aimed to confirm that proteins, specifically whey- and soy-protein isolates (WPI/SPI) impact postprandial carotenoid bioavailability. Healthy adults (n = 12 males, n = 12 females) were recruited. After 2-week washout periods, 350 g of a tomato-carrot juice mixture was served in the absence/presence of WPI or SPI (50% of the recommended dietary allowance, RDA ≈ 60 g/d). Absorption kinetics of carotenoids and triacylglycerols (TAGs) were evaluated via the triacylglycerol-rich lipoprotein (TRL) fraction response, at timed intervals up to 10 h after test meal intake, on three occasions separated by 1 week. Maximum TRL-carotenoid concentration (Cmax) and corresponding time (Tmax) were also determined. Considering both genders and carotenoids/TAGs combined, the estimated area under the curve (AUC) for WPI increased by 45% vs. the control (p = 0.018), to 92.0 ± 1.7 nmol × h/L and by 57% vs. SPI (p = 0.006). Test meal effect was significant in males (p = 0.036), but not in females (p = 0.189). In males, significant differences were found for phytoene (p = 0.026), phytofluene (p = 0.004), α-carotene (p = 0.034), and β-carotene (p = 0.031). Cmax for total carotenoids (nmol/L ± SD) was positively influenced by WPI (135.4 ± 38.0), while significantly lowered by SPI (89.6 ± 17.3 nmol/L) vs. the control (119.6 ± 30.9, p < 0.001). Tmax did not change. The results suggest that a well-digestible protein could enhance carotenoid bioavailability, whereas the less digestible SPI results in negative effects. This is, to our knowledge, the first study finding effects of proteins on carotenoid absorption in humans.
Collapse
|