1
|
Vitale M, Gomez-Estaca J, Chung J, Chua SC, Pampanin DM. Encapsulation Techniques to Enhance Astaxanthin Utilization as Functional Feed Ingredient. Mar Drugs 2025; 23:143. [PMID: 40278264 DOI: 10.3390/md23040143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Herein, the effectiveness of astaxanthin (AX) as functional feed ingredient was assessed by enhancing its stability and bioavailability using encapsulation methods. Spray-drying and liposome entrapment were applied to a natural AX source from shrimp by-products, along with two commercially synthetic alternatives. Encapsulated AX formulations were evaluated for their physico-chemical properties, thermal stability, and in vitro performance using RTL-W1, a rainbow trout (Oncorhynchus mykiss) liver-derived cell line. Both techniques achieved high encapsulation efficiency (73-89%) and provided remarkable protection to AX during thermal treatments, maintaining its stability at 80 °C for up to 2 h and at 100 °C for 30 min. Nevertheless, neither encapsulation methods significantly mitigated water absorption over time. Additionally, morphological characterization revealed spray-dried microcapsules with typical round, partially collapsed particles with a broad size distribution, while liposomes further stabilized into dry powders by spray-drying showed structural rearrangements and an increase in size upon rehydration, although maintaining a uniform and stable distribution. In vitro testing revealed enhanced RTL-W1 cell viability and reduced reactive oxygen species (ROS) production when encapsulation was employed. Overall, these findings demonstrate the potential of the selected encapsulation techniques to optimize the stability, bioavailability, and functionality of AX, providing valuable insights to improve its utilization as a functional ingredient in fish feed formulations.
Collapse
Affiliation(s)
- Matteo Vitale
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway
- Skretting Aquaculture Innovation, 4016 Stavanger, Norway
| | - Joaquin Gomez-Estaca
- Instituto de Ciencia y Tecnologia de Alimentos y Nutricion (ICTAN-CSIC), 28040 Madrid, Spain
| | - Janete Chung
- Skretting Aquaculture Innovation, 4016 Stavanger, Norway
| | | | - Daniela Maria Pampanin
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway
| |
Collapse
|
2
|
Jin M, Chen X, Zheng L, Peng Y, Lin M, Liang K, Liu X, Xu Z, Yang Y, Wei B, Wan J. Astaxanthin-loaded polylactic acid-glycolic acid nanoparticles alleviates atherosclerosis by suppressing macrophage ferroptosis via the NRF2/SLC7A11/GPX4 pathway. Arch Biochem Biophys 2025; 765:110316. [PMID: 39848420 DOI: 10.1016/j.abb.2025.110316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Astaxanthin (ASX), a fat-soluble carotenoid mainly sourced from Haematococcus pluvialis, shows promise for clinical applications in chronic inflammatory diseases. This study investigates whether ASX can mitigate atherosclerosis (AS) by modulating macrophage ferroptosis and provides astaxanthin-loaded polylactic acid-glycolic acid nanoparticles (ASX-PLGA NPs) as comparison. METHOD ApoE-/- mice were fed a high-fat diet with ASX or statin intervention. Plaque area, lipid aggregation, collagen content, and ferroptosis-related indicators were assessed. Moreover, ASX-PLGA NPs were synthesized and characterized and were used to pretreat macrophages induced with oxidized low-density lipoprotein (ox-LDL). Indicators linked to ferroptosis and oxidative stress were detected. Finally, the expression of nuclear factor erythroid -related factor 2 (NRF2) was evaluated. RESULTS ASX intervention significantly delayed the progression of AS plaques, characterized by reductions in plaque area and increased collagen fibers. The observed improvements in AS were consistent with statins. ASX-PLGA NPs demonstrate good safety and stability and have better therapeutic effects than ASX alone. Indicators linked to ferroptosis and oxidative stress were significantly improved in groups containing ASX in vivo and vitro. Additionally, ASX facilitated the nuclear translocation of NRF2, which could be attenuated with ML385, a specific inhibitor of NRF2. CONCLUSION ASX-PLGA NPs have better therapeutic effects than ASX alone. The regulation of NRF2/SLC7A11/GPX4 represents a novel mechanism by which ASX can counteract ferroptosis and impede AS progression.
Collapse
Affiliation(s)
- Mengying Jin
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| | - Xiao Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| | - Lanzhuoying Zheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| | - Yuanyuan Peng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| | - Mingying Lin
- Department of Cardiology, Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China.
| | - Ke Liang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| | - Xinran Liu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| | - Zihan Xu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| | - Yiming Yang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| | - Baozhu Wei
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| | - Jing Wan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
3
|
Daré RG, Lautenschlager SOS. Nanoparticles with Antioxidant Activity. Antioxidants (Basel) 2025; 14:221. [PMID: 40002407 PMCID: PMC11852090 DOI: 10.3390/antiox14020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Oxidative stress is commonly defined as an imbalance between reactive oxygen species (ROS) production and an organism's ability to neutralize them via antioxidant defense mechanisms, leading to damage to biomolecules, including lipids, proteins, and DNA [...].
Collapse
Affiliation(s)
- Regina G. Daré
- Institute of Biomedical Sciences, University of São Paulo, 1524 Professor Lineu Prestes Avenue, São Paulo 05508-000, SP, Brazil
| | - Sueli O. S. Lautenschlager
- Department of Basic Health Sciences, State University of Maringá (UEM), Maringá 87020900, PR, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá (UEM), Maringá 87020900, PR, Brazil
| |
Collapse
|
4
|
Rodrigues VD, Boaro BL, Laurindo LF, Chagas EFB, de Lima EP, Laurindo LF, Barbalho SM. Exploring the benefits of astaxanthin as a functional food ingredient: Its effects on oxidative stress and reproductive outcomes in women with PCOS - A systematic review and single-arm meta-analysis of randomized clinical trials. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1155-1169. [PMID: 39269488 DOI: 10.1007/s00210-024-03432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent gynecological-endocrinological disorder characterized by hyperandrogenism, menstrual irregularities, and metabolic disturbances. Recent research has highlighted the role of oxidative stress and chronic inflammation in exacerbating PCOS symptoms and impeding reproductive outcomes. Astaxanthin, a potent antioxidant found in marine organisms, has been suggested as a potential therapeutic intervention due to its ability to reduce oxidative stress and inflammation. This meta-analysis systematically reviews randomized controlled trials assessing the impact of astaxanthin supplementation on oxidative stress and reproductive outcomes in women with PCOS. Data from four trials were analyzed, focusing on markers of oxidative stress and reproductive health metrics. The meta-analysis utilized fixed and random-effects models to synthesize results, with heterogeneity assessed using Chi-square and I2 statistics. The findings indicate that while astaxanthin significantly improves markers of total antioxidant capacity (TAC) in follicular fluid, it does not show a consistent effect on other oxidative stress biomarkers such as malondialdehyde (MDA), catalase (CAT), or superoxide dismutase (SOD). Reproductive outcomes, including oocyte quality and the number of high-quality embryos, showed moderate improvements, although effects on fertilization rates and pregnancy outcomes were insignificant. The analysis highlights variability in study designs and dosing, suggesting a need for further research with standardized protocols and larger sample sizes. Future studies should focus on determining optimal dosing, exploring mechanistic pathways, and investigating the combined effects of astaxanthin with other interventions. Longitudinal studies are needed to assess long-term benefits and safety, and personalized approaches could enhance treatment efficacy for individuals with PCOS.
Collapse
Affiliation(s)
- Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil
| | - Beatriz Leme Boaro
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil
| | - Lívia Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de São José Do Rio Preto (FAMERP), São José Do Rio Preto, São Paulo, 15090-000, Brazil
| | - Eduardo Federighi Baisi Chagas
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
- Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
- UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| |
Collapse
|
5
|
Giercuszkiewicz-Hecold B, Kulka M, Czopowicz M, Wilczak J, Szarska E, Strzelec K, Grzeczka A, Graczyk S, Hryniszyn A, Mularczyk M, Marycz K, Cywińska A. The effect of long term astaxanthin supplementation on the antioxidant status of racing Arabian horses - preliminary study. Sci Rep 2024; 14:27991. [PMID: 39543175 PMCID: PMC11564757 DOI: 10.1038/s41598-024-77732-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Astaxanthin due to its strong antioxidant activity is believed to reduce oxidative stress and therefore is considered as feed additive in pathological conditions and also for the athletes. It is promoted by several equine web portals, however, data supporting that concept in horses is limited. Thus, the aim of this study was to evaluate the effect of astaxanthin supplementation on the parameters of oxidative status in 3 years old, racing Arabian horses during long term observation and the changes related to a single training session of high intensity. Six horses were supplemented with astaxanthin at a dose of 0.52-0.58 mg/kg BW and 7 received no supplementation. Astaxanthin supplementation resulted in the increase in total antioxidant status by 31.5%, accompanied by decreases in the amount of total thiobarbituric acid-reactive substances -TBARS and glutathione reductases - GR values by 34.5% and 45.4%, respectively, after 1 month and this effect persisted until the end of the observation. After individual training session the activities of glutathione peroxidases and GR were lower by 69% and 46%, respectively, and TBARS lower by 38% in supplemented horses. These results directly confirmed the beneficial effects of astaxanthin supplementation on the antioxidant status of race horses. Astaxanthin partially counterbalance the training-related oxidative stress, save the horse natural antioxidant defense, and shift the redox status towards a more reducing environment. At the same time, exercise-induced reactive oxygen species production at certain level was maintained and so that contributed to training progress.
Collapse
Affiliation(s)
| | - Marek Kulka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Jacek Wilczak
- Department of Physiology, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Ewa Szarska
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-001, Warsaw, Poland
| | - Katarzyna Strzelec
- Department of Horse Breeding and Use, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Arkadiusz Grzeczka
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Szymon Graczyk
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Adrian Hryniszyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Malwina Mularczyk
- International Institute of Translational Medicine, Jesionowa 11, 55-114, Malin, Wisznia Mała, Poland
| | - Krzysztof Marycz
- International Institute of Translational Medicine, Jesionowa 11, 55-114, Malin, Wisznia Mała, Poland
- Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA, 95516, USA
| | - Anna Cywińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland.
| |
Collapse
|
6
|
Zhao L, Li L, Zhang Y, He Z, Chen X, Liu Y, Shi B, Liu Y. Targeting Synovial Macrophages with Astaxanthin-Loaded Liposomes for Antioxidant Treatment of Osteoarthritis. ACS Biomater Sci Eng 2024; 10:7191-7205. [PMID: 39413302 DOI: 10.1021/acsbiomaterials.4c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Osteoarthritis (OA) is a chronic joint disease highly associated with an imbalance in the network of inflammatory factors and typically characterized by oxidative stress and cartilage damage. Moreover, the specificity of the joint structure makes it difficult for drugs to achieve good penetration and effective enrichment in the joint cavity. Therefore, therapeutic strategies that increase the specific targeting of drugs to inflammatory joint and incorporate antioxidative stress effects are important to improve the efficacy of OA. Here, we developed a folic acid-modified liposomal nanoparticle (AST@Lip-FA) loaded with the antioxidant astaxanthin (AST) to enhance the water solubility and stability of AST and to target the delivery of AST to the site of OA, leading to a significant improvement in therapeutic efficacy. In vitro experiments demonstrated that, due to the recognition by FA of the receptor folate receptor β on the surface of activated macrophages, the cellular uptake efficiency of AST@Lip-FA was increased. Meanwhile, intracellularly overexpressed inflammatory mediators such as reactive oxygen species and nitric oxide were efficiently removed by AST@Lip-FA. In addition, in the ACLT-induced OA mouse model, AST@Lip-FA was precisely enriched in the inflamed joints and achieved long-term retention, fully utilizing the anti-inflammatory, antioxidant, and cartilage-protecting effects of AST to effectively alleviate the progression of OA. In summary, AST@Lip-FA has an important prospect as a potential and effective therapeutic strategy for OA.
Collapse
Affiliation(s)
- Linlin Zhao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Liangxiao Li
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yingyu Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ziye He
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Chen
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yingying Liu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Bin Shi
- Department of Traditional Chinese Medicine Orthopedics, Neck-Shoulder and Lumbocrural Pain Hospital Affiliated to Shandong First Medical University, Jinan 250014, Shandong, China
| | - Yajun Liu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| |
Collapse
|
7
|
Cattaneo N, Zarantoniello M, Conti F, Tavano A, Frontini A, Sener I, Cardinaletti G, Olivotto I. Natural-based solutions to mitigate dietary microplastics side effects in fish. CHEMOSPHERE 2024; 367:143587. [PMID: 39433100 DOI: 10.1016/j.chemosphere.2024.143587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Dietary microplastics (MPs) can be consumed by fish, crossing through the gastrointestinal tract. MPs smaller than 20 μm can easily translocate to other organs, such as liver, commonly triggering oxidative stress in fish. Given the current unlikelihood of their short-term elimination, strategies to mitigate MPs-related issues on fish are of considerable interest to the scientific community. In the present study, to reduce both the dietary MPs-induced oxidative stress and the accumulation of MPs, the effectiveness of microencapsulated astaxanthin (ASX) was evaluated in zebrafish (Danio rerio). Specifically, zebrafish were reared from larvae to adults (6 months) and fed diets containing MPs different in range-size (polymer A: 1-5 μm; polymer B: 40-47 μm) at different concentrations (50 or 500 mg/kg). After this period, fish from each experimental group were divided in two sub-groups that were fed, for an additional month, with the previous diets or with the same diets containing implemented with microencapsulated ASX (7 g/kg), respectively. Results showed that microencapsulated ASX was able to counteract the negative effects caused by MPs different in size. Particularly, in zebrafish fed diets containing polymer B microbeads, microencapsulated astaxanthin was able to restore the intestinal epithelium, affected by the abrasive role of MPs during gut transit. Differently, in zebrafish fed diets containing polymer A microbeads, absorbed at intestinal level and translocated mainly to the liver, the microencapsulated ASX decreased the oxidative stress response and reduced the MPs accumulation in target organs due to the antioxidant and the coagulant properties of the ASX and microcapsules wall, respectively. Taken together, the results highlighted that the aquafeeds' implementation with microencapsulated astaxanthin is a prospective tool to prevent MPs-related issues in fish.
Collapse
Affiliation(s)
- N Cattaneo
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - M Zarantoniello
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - F Conti
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - A Tavano
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - A Frontini
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - I Sener
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - G Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2, 33100, Udine, Italy.
| | - I Olivotto
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
8
|
Zarantoniello M, Cattaneo N, Conti F, Carrino M, Cardinaletti G, Şener İ, Olivotto I. Mitigating Dietary Microplastic Accumulation and Oxidative Stress Response in European Seabass ( Dicentrarchus labrax) Juveniles Using a Natural Microencapsulated Antioxidant. Antioxidants (Basel) 2024; 13:812. [PMID: 39061881 PMCID: PMC11273845 DOI: 10.3390/antiox13070812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Aquafeed's contamination by microplastics can pose a risk to fish health and quality since they can be absorbed by the gastrointestinal tract and translocate to different tissues. The liver acts as a retaining organ with the consequent triggering of oxidative stress response. The present study aimed to combine the use of natural astaxanthin with natural-based microcapsules to counteract these negative side effects. European seabass juveniles were fed diets containing commercially available fluorescent microplastic microbeads (1-5 μm; 50 mg/kg feed) alone or combined with microencapsulated astaxanthin (AX) (7 g/kg feed; tested for half or whole feeding trial-30 or 60 days, respectively). Fish from the different dietary treatments did not evidence variations in survival and growth performance and did not show pathological alterations at the intestinal level. However, the microplastics were absorbed at the intestinal level with a consequent translocation to the liver, leading, when provided solely, to sod1, sod2, and cat upregulation. Interestingly, the dietary implementation of microencapsulated AX led to a mitigation of oxidative stress. In addition, the microcapsules, due to their composition, promoted microplastic coagulation in the fish gut, limiting their absorption and accumulation in all the tissues analyzed. These results were supported by in vitro tests, which demonstrated that the microcapsules promoted microplastic coagula formation too large to be absorbed at the intestinal level and by the fact that the coagulated microplastics were released through the fish feces.
Collapse
Affiliation(s)
- Matteo Zarantoniello
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (N.C.); (F.C.); (M.C.); (İ.Ş.)
| | - Nico Cattaneo
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (N.C.); (F.C.); (M.C.); (İ.Ş.)
| | - Federico Conti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (N.C.); (F.C.); (M.C.); (İ.Ş.)
| | - Margherita Carrino
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (N.C.); (F.C.); (M.C.); (İ.Ş.)
| | - Gloriana Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| | - İdris Şener
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (N.C.); (F.C.); (M.C.); (İ.Ş.)
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (N.C.); (F.C.); (M.C.); (İ.Ş.)
| |
Collapse
|
9
|
Cutolo EA, Caferri R, Campitiello R, Cutolo M. The Clinical Promise of Microalgae in Rheumatoid Arthritis: From Natural Compounds to Recombinant Therapeutics. Mar Drugs 2023; 21:630. [PMID: 38132951 PMCID: PMC10745133 DOI: 10.3390/md21120630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Rheumatoid arthritis (RA) is an invalidating chronic autoimmune disorder characterized by joint inflammation and progressive bone damage. Dietary intervention is an important component in the treatment of RA to mitigate oxidative stress, a major pathogenic driver of the disease. Alongside traditional sources of antioxidants, microalgae-a diverse group of photosynthetic prokaryotes and eukaryotes-are emerging as anti-inflammatory and immunomodulatory food supplements. Several species accumulate therapeutic metabolites-mainly lipids and pigments-which interfere in the pro-inflammatory pathways involved in RA and other chronic inflammatory conditions. The advancement of the clinical uses of microalgae requires the continuous exploration of phytoplankton biodiversity and chemodiversity, followed by the domestication of wild strains into reliable producers of said metabolites. In addition, the tractability of microalgal genomes offers unprecedented possibilities to establish photosynthetic microbes as light-driven biofactories of heterologous immunotherapeutics. Here, we review the evidence-based anti-inflammatory mechanisms of microalgal metabolites and provide a detailed coverage of the genetic engineering strategies to enhance the yields of endogenous compounds and to develop innovative bioproducts.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Rosanna Campitiello
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| |
Collapse
|
10
|
Truzzi E, Bertelli D, Bilia AR, Vanti G, Maretti E, Leo E. Combination of Nanodelivery Systems and Constituents Derived from Novel Foods: A Comprehensive Review. Pharmaceutics 2023; 15:2614. [PMID: 38004592 PMCID: PMC10674267 DOI: 10.3390/pharmaceutics15112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Novel Food is a new category of food, regulated by the European Union Directive No. 2015/2283. This latter norm defines a food as "Novel" if it was not used "for human consumption to a significant degree within the Union before the date of entry into force of that regulation, namely 15 May 1997". Recently, Novel Foods have received increased interest from researchers worldwide. In this sense, the key areas of interest are the discovery of new benefits for human health and the exploitation of these novel sources of materials in new fields of application. An emerging area in the pharmaceutical and medicinal fields is nanotechnology, which deals with the development of new delivery systems at a nanometric scale. In this context, this review aims to summarize the recent advances on the design and characterization of nanodelivery systems based on materials belonging to the Novel Food list, as well as on nanoceutical products formulated for delivering compounds derived from Novel Foods. Additionally, the safety hazard of using nanoparticles in food products, i.e., food supplements, has been discussed in view of the current European regulation, which considers nanomaterials as Novel Foods.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Davide Bertelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Anna Rita Bilia
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (A.R.B.); (G.V.)
| | - Giulia Vanti
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (A.R.B.); (G.V.)
| | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Eliana Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| |
Collapse
|
11
|
Li C, Zhou Y, Yuan M, Yang Y, Song R, Xu G, Chen G. Astaxanthin-loaded polylactic acid-glycolic acid nanoparticles ameliorate ulcerative colitis through antioxidant effects. Front Nutr 2023; 10:1267274. [PMID: 38024351 PMCID: PMC10665485 DOI: 10.3389/fnut.2023.1267274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Astaxanthin (AST) is a type of carotenoid with strong antioxidant effects. However, the development and use of AST are limited by its water insolubility and low bioavailability. This study aims to investigate whether AST@PLGA can inhibit UC and reveal its possible mechanism. Methods We tested the particle size, polydispersity index, and zeta potential of AST@PLGA. Then, the in vitro release and antioxidant capacity of AST@PLGA were tested. Finally, the mouse model of colitis was established and SOD, MDA, TNF-α, IL-1β, IL-6 and P38 as well as ERK were detected from mice. Results Particle size, polydispersity index and zeta potential of AST @PLGA were 66.78 ± 0.64 nm, 0.247 and -9.8 ± 0.53 mV, respectively, and were stable within 14 days. Then, it was observed that the AST@PLGA nanoparticles not only maintained the effect of AST but also had a sustained release effect. Experiments in mice showed that AST@PLGA effectively reduced MDA, TNF-α, IL-1β and IL-6 levels and increased SOD levels. AST@PLGA also downregulated the protein expression of P38 and ERK. The results showed the positive protective effect of AST@PLGA in inhibiting acute colitis. Discussion AST@PLGA nanoparticles have good stability and alleviating effect in colitis, which could be functional foods in the future.
Collapse
Affiliation(s)
- Chunmei Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| | - Yu Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Meng Yuan
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
| | - Yawen Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Ruilong Song
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Gang Xu
- Department of Burn and Plastic Surgery, Northern Jiangsu People’s Hospital/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Gang Chen
- School of Rehabilitation Science and Engineering, Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
12
|
Shastak Y, Pelletier W. Captivating Colors, Crucial Roles: Astaxanthin's Antioxidant Impact on Fish Oxidative Stress and Reproductive Performance. Animals (Basel) 2023; 13:3357. [PMID: 37958112 PMCID: PMC10648254 DOI: 10.3390/ani13213357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Fish, constantly exposed to environmental stressors due to their aquatic habitat and high metabolic rates, are susceptible to oxidative stress. This review examines the interplay between oxidative stress and fish reproduction, emphasizing the potent antioxidant properties of astaxanthin. Our primary objective is to highlight astaxanthin's role in mitigating oxidative stress during critical reproductive stages, leading to improved gamete quality, ovary development, and hormone levels. We also explore its practical applications in aquaculture, including enhanced pigmentation and overall fish health. We conducted a comprehensive literature review, analyzing studies on astaxanthin's antioxidant properties and its impact on fish reproduction. Astaxanthin, a carotenoid pigment, effectively combats reactive oxygen species, inhibiting lipid peroxidation and maintaining membrane integrity. It significantly enhances reproductive success in fish and improves overall fish health in aquaculture settings. This review reveals astaxanthin's multifaceted benefits in fish health and reproduction, offering economic advantages in aquaculture. Future research should delve into species-specific responses, optimal dosages, and the long-term effects of astaxanthin supplementation to inform sustainable aquaculture strategies.
Collapse
Affiliation(s)
- Yauheni Shastak
- Nutrition & Health Division, BASF SE, 67063 Ludwigshafen am Rhein, Germany
| | | |
Collapse
|
13
|
Zhou LY, Wu ZM, Chen XQ, Yu BB, Pan MX, Fang L, Li J, Cui XJ, Yao M, Lu X. Astaxanthin promotes locomotor function recovery and attenuates tissue damage in rats following spinal cord injury: a systematic review and trial sequential analysis. Front Neurosci 2023; 17:1255755. [PMID: 37881327 PMCID: PMC10595034 DOI: 10.3389/fnins.2023.1255755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
Spinal cord injury (SCI) is a catastrophic condition with few therapeutic options. Astaxanthin (AST), a natural nutritional supplement with powerful antioxidant activities, is finding its new application in the field of SCI. Here, we performed a systematic review to assess the neurological roles of AST in rats following SCI, and assessed the potential for clinical translation. Searches were conducted on PubMed, Embase, Cochrane Library, the Web of Science, China National Knowledge Infrastructure, WanFang data, Vip Journal Integration Platform, and SinoMed databases. Animal studies that evaluated the neurobiological roles of AST in a rat model of SCI were included. A total of 10 articles were included; most of them had moderate-to-high methodological quality, while the overall quality of evidence was not high. Generally, the meta-analyses revealed that rats treated with AST exhibited an increased Basso, Beattie, and Bresnahan (BBB) score compared with the controls, and the weighted mean differences (WMDs) between those two groups showed a gradual upward trend from days 7 (six studies, n = 88, WMD = 2.85, 95% CI = 1.83 to 3.87, p < 0.00001) to days 28 (five studies, n = 76, WMD = 6.42, 95% CI = 4.29 to 8.55, p < 0.00001) after treatment. AST treatment was associated with improved outcomes in spared white matter area, motor neuron survival, and SOD and MDA levels. Subgroup analyses indicated there were differences in the improvement of BBB scores between distinct injury types. The trial sequential analysis then firmly proved that AST could facilitate the locomotor recovery of rats following SCI. In addition, this review suggested that AST could modulate oxidative stress, neuroinflammation, neuron loss, and autophagy via multiple signaling pathways for treating SCI. Collectively, with a protective effect, good safety, and a systematic action mechanism, AST is a promising candidate for future clinical trials of SCI. Nonetheless, in light of the limitations of the included studies, larger and high-quality studies are needed for verification.
Collapse
Affiliation(s)
- Long-yun Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zi-ming Wu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-qing Chen
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Bin-bin Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng-xiao Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Fang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue-jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Sayuti NH, Muhammad Nawawi KN, Goon JA, Mokhtar NM, Makpol S, Tan JK. Preventative and Therapeutic Effects of Astaxanthin on NAFLD. Antioxidants (Basel) 2023; 12:1552. [PMID: 37627546 PMCID: PMC10451858 DOI: 10.3390/antiox12081552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 08/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant public health issue owing to its high incidence and consequences, and its global prevalence is presently 30% and rising, necessitating immediate action. Given the current controversies related to NAFLD, the search for novel therapeutic interventions continues. Astaxanthin is a carotenoid that primarily originates from marine organisms. It is the best antioxidant among carotenoids and one of the most significant components in treating NAFLD. The use of astaxanthin, a xanthophyll carotenoid, as a dietary supplement to treat chronic metabolic diseases is becoming more evident. According to growing data, astaxanthin may be able to prevent or even reverse NAFLD by reducing oxidative stress, inflammation, insulin resistance, lipid metabolism, and fibrosis. Astaxanthin might become a viable therapeutic or treatment option for NAFLD in the upcoming years. Elucidating the impact and mechanism of astaxanthin on NAFLD would not only establish a scientific basis for its clinical application, but also potentially enhance the precision of experimental methodology for future investigations targeting NAFLD treatment. This review explores the potential preventive and therapeutic effects of astaxanthin on liver disorders, especially NAFLD.
Collapse
Affiliation(s)
- Nor Hafiza Sayuti
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (N.H.S.)
| | - Khairul Najmi Muhammad Nawawi
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (N.H.S.)
| | - Norfilza Mohd Mokhtar
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (N.H.S.)
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (N.H.S.)
| |
Collapse
|
15
|
Paramakrishnan N, Lim KG, Paramaswaran Y, Ali N, Waseem M, Shazly GA, Bin Jardan YA, Muthuraman A. Astaxanthin: A Marine Drug That Ameliorates Cerebrovascular-Damage-Associated Alzheimer's Disease in a Zebrafish Model via the Inhibition of Matrix Metalloprotease-13. Mar Drugs 2023; 21:433. [PMID: 37623714 PMCID: PMC10455645 DOI: 10.3390/md21080433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD) is a major type of dementia disorder. Common cognitive changes occur as a result of cerebrovascular damage (CVD) via the disruption of matrix metalloproteinase-13 (MMP-13). In diabetic cases, the progress of vascular dementia is faster and the AD rate is higher. Patients with type 2 diabetes are known to have a higher risk of the factor for AD progression. Hence, this study is designed to investigate the role of astaxanthin (AST) in CVD-associated AD in zebrafish via the inhibition of MMP-13 activity. CVD was developed through the intraperitoneal and intracerebral injection of streptozotocin (STZ). The AST (10 and 20 mg/L), donepezil (1 mg/L), and MMP-13 inhibitor (i.e., CL-82198; 10 μM) were exposed for 21 consecutive days in CVD animals. The cognitive changes in zebrafish were evaluated through light and dark chamber tests, a color recognition test, and a T-maze test. The biomarkers of AD pathology were assessed via the estimation of the cerebral extravasation of Evans blue, tissue nitrite, amyloid beta-peptide aggregation, MMP-13 activity, and acetylcholinesterase activity. The results revealed that exposure to AST leads to ameliorative behavioral and biochemical changes. Hence, AST can be used for the management of AD due to its multi-targeted actions, including MMP-13 inhibition.
Collapse
Affiliation(s)
| | - Khian Giap Lim
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Yamunna Paramaswaran
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Waseem
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arunachalam Muthuraman
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| |
Collapse
|
16
|
Chen S, Wang J, Feng J, Xuan R. Research progress of Astaxanthin nano-based drug delivery system: Applications, prospects and challenges? Front Pharmacol 2023; 14:1102888. [PMID: 36969867 PMCID: PMC10034004 DOI: 10.3389/fphar.2023.1102888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Astaxanthin (ASX) is a kind of carotenoid widely distributed in nature, which has been shown to extremely strong antioxidative effects and significant preventive and therapeutic effects on cancer, diabetes, cardiovascular disease, etc. However, its application in the medical field is greatly limited due to its poor water solubility, unstable chemical properties and other shortcomings. In recent years, the nano-based drug delivery systems such as nanoparticles, liposomes, nanoemulsions, nanodispersions, and polymer micelles, have been used as Astaxanthin delivery carriers with great potential for clinical applications, which have been proved that they can enhance the stability and efficacy of Astaxanthin and achieve targeted delivery of Astaxanthin. Herein, based on the pharmacological effects of Astaxanthin, we reviewed the characteristics of various drug delivery carriers, which is of great significance for improving the bioavailability of Astaxanthin.
Collapse
Affiliation(s)
- Siqian Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Jiayi Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Jiating Feng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Rongrong Xuan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- *Correspondence: Rongrong Xuan,
| |
Collapse
|
17
|
Cai L, Gan M, Regenstein JM, Luan Q. Improving the biological activities of astaxanthin using targeted delivery systems. Crit Rev Food Sci Nutr 2023; 64:6902-6923. [PMID: 36779336 DOI: 10.1080/10408398.2023.2176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The antioxidant and anti-inflammatory properties of astaxanthin (AST) enable it to protect against oxidative stress-related and inflammatory diseases with a range of biological effects. These activities provide the potential to develop healthier food products. Therefore, it would be beneficial to design delivery systems for AST to overcome its low stability, control its release, and/or improve its bioavailability. This review discusses the basis for AST's various biological activities and the factors limiting these activities, including stability, solubility, and bioavailability. It also discusses the different systems available for the targeted delivery of AST and their applications in enhancing the biological activity of AST. These include systems that are candidates for preventive and therapeutic effects, which include nerves, liver, and skin, particularly for possible cancer reduction. Targeted delivery of AST to specific regions of the gastrointestinal tract, or more selectively to target tissues and cells, can be achieved using targeted delivery systems to increase the biological activities of AST.
Collapse
Affiliation(s)
- Luyun Cai
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| | - Miaoyu Gan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Qian Luan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| |
Collapse
|