1
|
Zou R, Wang L, Zhang X, Dong S, Zhang Z, Chen D, Liu L, Liu A, Amevor FK, Lan X, Cui Z. Multi-omics analyses reveal that sirtuin 5 promotes the development of pre-recruitment follicles by inhibiting the autophagy-lysosome pathway in chicken granulosa cells. Poult Sci 2025; 104:104884. [PMID: 39961169 PMCID: PMC11872079 DOI: 10.1016/j.psj.2025.104884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
The development of pre-recruitment follicles plays a critical role in determining egg-laying performance in poultry. This study combines proteomic and metabolomic analyses to explore changes in proteins and metabolites, to elucidate key regulatory mechanism involved in chicken pre-recruitment follicular development. Histological examination revealed a significant increase in yolk deposition in small yellow follicles (SYF) compared to small white follicles (SWF). Metabolomics analysis identified significantly enriched differential metabolites (DMs) between SWF and SYF in pathways such as Lysosome, Ferroptosis, Biosynthesis of unsaturated fatty acids, and Tryptophan metabolism. Particularly, Adenosine-5'-Diphosphate (ADP) was downregulated during follicular recruitment and was significantly enriched in the lysosome pathway. Proteomic analyses revealed that differentially expressed proteins (DEPs) in SWF and SYF were enriched in pathways including Lysosome, Glutathione metabolism, Cholesterol metabolism, Arginine and proline metabolism, and amino acid biosynthesis. Among these DEPs, NAD-dependent protein deacetylase sirtuin 5 (SIRT5) was significantly upregulated, while lysosomal-associated membrane protein 1 (LAMP1) was down-regulated during the development of pre-recruitment follicles. SIRT5 was linked to the negative regulation of reactive oxygen species metabolism, whereas LAMP1 was associated with lysosome and autophagy pathways. Further validation experiments demonstrated high expression of SIRT5 in SYF, particularly in granulosa cells (GCs). Silencing SIRT5 in GCs resulted in increased ROS production and upregulated expression of autophagy-related proteins LC3Ⅱ and Beclin1, as well as lysosome markers LAMP1. Conversely, lipid droplet deposition and p62 expression were suppressed. inhibited. Taken together, these findings suggest that SIRT5 upregulation promotes the development of pre-recruitment follicles by inhibiting the autophagy-lysosome pathway in chicken GCs.
Collapse
Affiliation(s)
- Ruotong Zou
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, China
| | - Li Wang
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Xi Zhang
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, China
| | - Siyao Dong
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, China
| | - Zhidan Zhang
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, China
| | - Donghong Chen
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, China
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, China
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, China
| |
Collapse
|
2
|
Yan JJ, Wang YY, Shi ZY, Ding YY, Wen HQ, Wu MP, Sun SC, Cai YF, Zhang Y. SIRT5 modulates mitochondria function via mitophagy and antioxidant mechanisms to facilitate oocyte maturation in mice. Int J Biol Macromol 2025; 306:141488. [PMID: 40015402 DOI: 10.1016/j.ijbiomac.2025.141488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Mitochondrial homeostasis, closely associated with mitophagy and antioxidant mechanisms, is essential for proper meiotic spindle assembly and chromosome segregation during oocyte maturation. SIRT5, known to modulate mitochondrial function under various conditions, has been shown to impact oocyte quality when inhibited, however, the precise mechanisms linking SIRT5 to mitochondrial homeostasis during meiotic progression remain unclear. In this study, we demonstrate that SIRT5 localizes predominantly at the periphery of the meiotic spindle and is enriched on chromosomes during oocyte maturation. Inhibition of SIRT5 led to significant meiotic defects, including disrupted spindle organization and chromosome misalignment. These defects were associated with increased histone acetylation, which impaired kinetochore-microtubule attachments. Moreover, SIRT5 inhibition resulted in mitochondrial dysfunction, subsequently elevating ROS levels and triggering oxidative stress, which further exacerbated meiotic abnormalities. Mechanistically, SIRT5 inhibition disrupted the balance of Parkin-dependent mitophagy by inducing ULK phosphorylation. Additionally, it activated the PI3K/Akt signaling pathway, which increased NADPH consumption and reduced GSH levels. Collectively, these findings reveal that SIRT5 plays dual roles in maintaining mitochondrial homeostasis during oocyte maturation: (1) by regulating Parkin-dependent mitophagy to prevent excessive mitochondrial clearance, and (2) by preserving the NADPH/GSH antioxidant system to ensure redox balance. These insights provide potential targets for improving oocyte quality and addressing mitochondrial dysfunction-related reproductive disorders in females.
Collapse
Affiliation(s)
- Jing-Jing Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan-Yu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi-Yu Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan-Yuan Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao-Quan Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Ping Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ya-Fei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Shen H, Qi X, Hu Y, Wang Y, Zhang J, Liu Z, Qin Z. Targeting sirtuins for cancer therapy: epigenetics modifications and beyond. Theranostics 2024; 14:6726-6767. [PMID: 39479446 PMCID: PMC11519805 DOI: 10.7150/thno.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/29/2024] [Indexed: 11/02/2024] Open
Abstract
Sirtuins (SIRTs) are well-known as nicotinic adenine dinucleotide+(NAD+)-dependent histone deacetylases, which are important epigenetic enzymes consisting of seven family members (SIRT1-7). Of note, SIRT1 and SIRT2 are distributed in the nucleus and cytoplasm, while SIRT3, SIRT4 and SIRT5 are localized in the mitochondria. SIRT6 and SIRT7 are distributed in the nucleus. SIRTs catalyze the deacetylation of various substrate proteins, thereby modulating numerous biological processes, including transcription, DNA repair and genome stability, metabolism, and signal transduction. Notably, accumulating evidence has recently underscored the multi-faceted roles of SIRTs in both the suppression and progression of various types of human cancers. Crucially, SIRTs have been emerging as promising therapeutic targets for cancer therapy. Thus, in this review, we not only present an overview of the molecular structure and function of SIRTs, but elucidate their intricate associations with oncogenesis. Additionally, we discuss the current landscape of small-molecule activators and inhibitors targeting SIRTs in the contexts of cancer and further elaborate their combination therapies, especially highlighting their prospective utility for future cancer drug development.
Collapse
Affiliation(s)
- Hui Shen
- Department of Respiratory and Critical Care Medicine, Department of Outpatient, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xinyi Qi
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yue Hu
- Department of Respiratory and Critical Care Medicine, Department of Outpatient, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yi Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- No. 989 Hospital of Joint Logistic Support Force of PLA, Luoyang 471031, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zhongyu Liu
- No. 989 Hospital of Joint Logistic Support Force of PLA, Luoyang 471031, China
| | - Zheng Qin
- Department of Respiratory and Critical Care Medicine, Department of Outpatient, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
4
|
Tu H, Gao Q, Zhou Y, Peng L, Wu D, Zhang D, Yang J. The role of sirtuins in intervertebral disc degeneration: Mechanisms and therapeutic potential. J Cell Physiol 2024; 239:e31328. [PMID: 38922861 DOI: 10.1002/jcp.31328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, which affects the patients' quality of life and health and imposes a significant socioeconomic burden. Despite great efforts made by researchers to understand the pathogenesis of IDD, effective strategies for preventing and treating this disease remain very limited. Sirtuins are a highly conserved family of (NAD+)-dependent deacetylases in mammals that are involved in a variety of metabolic processes in vivo. In recent years, sirtuins have attracted much attention owing to their regulatory roles in IDD on physiological activities such as inflammation, apoptosis, autophagy, aging, oxidative stress, and mitochondrial function. At the same time, many studies have explored the therapeutic effects of sirtuins-targeting activators or micro-RNA in IDD. This review summarizes the molecular pathways of sirtuins involved in IDD, and summarizes the therapeutic role of activators or micro-RNA targeting Sirtuins in IDD, as well as the current limitations and challenges, with a view to provide possible solutions for the treatment of IDD.
Collapse
Affiliation(s)
- Heng Tu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qian Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yumeng Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Peng
- Key Laboratory of Bio-Resource & Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Deng P, Fan T, Gao P, Peng Y, Li M, Li J, Qin M, Hao R, Wang L, Li M, Zhang L, Chen C, He M, Lu Y, Ma Q, Luo Y, Tian L, Xie J, Chen M, Xu S, Zhou Z, Yu Z, Pi H. SIRT5-Mediated Desuccinylation of RAB7A Protects Against Cadmium-Induced Alzheimer's Disease-Like Pathology by Restoring Autophagic Flux. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402030. [PMID: 38837686 PMCID: PMC11321632 DOI: 10.1002/advs.202402030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Cadmium (Cd) is a neurotoxic contaminant that induces cognitive decline similar to that observed in Alzheimer's disease (AD). Autophagic flux dysfunction is attributed to the pathogenesis of AD, and this study aimed to investigate the effect of autophagy on environmental Cd-induced AD progression and the underlying mechanism. Here, Cd exposure inhibited autophagosome-lysosome fusion and impaired lysosomal function, leading to defects in autophagic clearance and then to APP accumulation and nerve cell death. Proteomic analysis coupled with Ingenuity Pathway Analysis (IPA) identified SIRT5 as an essential molecular target in Cd-impaired autophagic flux. Mechanistically, Cd exposure hampered the expression of SIRT5, thus increasing the succinylation of RAB7A at lysine 31 and inhibiting RAB7A activity, which contributed to autophagic flux blockade. Importantly, SIRT5 overexpression led to the restoration of autophagic flux blockade, the alleviation of Aβ deposition and memory deficits, and the desuccinylation of RAB7A in Cd-exposed FAD4T mice. Additionally, SIRT5 levels decrease mainly in neurons but not in other cell clusters in the brains of AD patients according to single-nucleus RNA sequencing data from the public dataset GSE188545. This study reveals that SIRT5-catalysed RAB7A desuccinylation is an essential adaptive mechanism for the amelioration of Cd-induced autophagic flux blockade and AD-like pathogenesis.
Collapse
Affiliation(s)
- Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Tengfei Fan
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410007China
| | - Peng Gao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Yongchun Peng
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410007China
| | - Min Li
- Basic Medical LaboratoryGeneral Hospital of Central Theater CommandWuhan430070China
- Hubei Key Laboratory of Central Nervous System Tumour and InterventionWuhan430070China
| | - Jingdian Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Mingke Qin
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Rongrong Hao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Liting Wang
- Biomedical Analysis CenterArmy Medical UniversityChongqing400038China
| | - Min Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Lei Zhang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Chunhai Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Mindi He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Yonghui Lu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Qinlong Ma
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Shangcheng Xu
- Center of Laboratory MedicineChongqing Prevention and Treatment Center for Occupational DiseasesChongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and PoisoningChongqing400060China
| | - Zhou Zhou
- Center for Neuro IntelligenceSchool of MedicineChongqing UniversityChongqing400030China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
- State Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| |
Collapse
|
6
|
Chen M, Tan J, Jin Z, Jiang T, Wu J, Yu X. Research progress on Sirtuins (SIRTs) family modulators. Biomed Pharmacother 2024; 174:116481. [PMID: 38522239 DOI: 10.1016/j.biopha.2024.116481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Sirtuins (SIRTs) represent a class of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases that exert a crucial role in cellular signal transduction and various biological processes. The mammalian sirtuins family encompasses SIRT1 to SIRT7, exhibiting therapeutic potential in counteracting cellular aging, modulating metabolism, responding to oxidative stress, inhibiting tumors, and improving cellular microenvironment. These enzymes are intricately linked to the occurrence and treatment of diverse pathological conditions, including cancer, autoimmune diseases, and cardiovascular disorders. Given the significance of histone modification in gene expression and chromatin structure, maintaining the equilibrium of the sirtuins family is imperative for disease prevention and health restoration. Mounting evidence suggests that modulators of SIRTs play a crucial role in treating various diseases and maintaining physiological balance. This review delves into the molecular structure and regulatory functions of the sirtuins family, reviews the classification and historical evolution of SIRTs modulators, offers a systematic overview of existing SIRTs modulation strategies, and elucidates the regulatory mechanisms of SIRTs modulators (agonists and inhibitors) and their clinical applications. The article concludes by summarizing the challenges encountered in SIRTs modulator research and offering insights into future research directions.
Collapse
Affiliation(s)
- Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junfei Tan
- School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zihan Jin
- Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou City, China
| | - Tingting Jiang
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaolong Yu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|