1
|
Devi ST, Kshetrimayum V, Heisnam R, Akula SJ, Radhakrishnanand P, Mukherjee PK, Singh KB, Sharma N. Investigating the impact of Terminalia chebula, an underutilized functional fruit, on oral squamous cell carcinoma: Exploring cell death mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119482. [PMID: 39938761 DOI: 10.1016/j.jep.2025.119482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
ETHNOPHARMALOGICAL RELEVANCE Terminalia chebula, known for its extensive use in traditional medicinal practices among indigenous cultures, is recognized for its effectiveness in treating various oral disorders. Healers in India and China utilize the ripe fruits of T. chebula to prevent and manage conditions such as dental cavities, gingivitis, bleeding gums and stomatitis. The fruits have also been traditionally used in Ayurvedic and Siddha medicines for treatment of various diseases including anticancer properties. It is also an important component of Tibetan traditional medicine used for the treatment of cancer. Studies have demonstrated the efficacy of T. chebula against lung and colon carcinoma. AIM OF THE STUDY Despite its historical significance in oral health, the potential of T. chebula against oral cancer has not been explored, warranting further investigation into its bioactive properties. This study aims to explore the therapeutic potential of the hydroalcoholic extract of Terminalia chebula fruits and its fractions against oral squamous cell carcinoma (OSCC) using SCC9 cells focusing on their cytotoxicity, anti-proliferative effect and the synergistic action of its ethyl-acetate fraction with cisplatin (CP). Additionally it seeks to identify the bioactive phytoconstituents in EAF were identified using LC-ESI-QTOF-MS. MATERIALS AND METHODS Antioxidant activity of TYH and its fraction were assessed using DPPH and ABTS assays. Total phenolic (TPC) and total flavonoid content (TFC) were quantified via Folin-ciocalteau and alluminium chloride assays respectively. Cytotoxic and antiproliferative effects were assessed using MTT assay, clonogenic assay and cell migration assay. Apoptosis in EAF treated SCC9 cells was analysed by using DAPI, Giemsa staining and flow cytometry using Annexin V-FITC/PI apoptosis detection kit. Intracellular reactive oxygen species (ROS) was assessed using H2DCFDA, western blotting examined expression of apoptosis related proteins in SCC9 cells. Combinational effect of EAF with cisplatin (CP) was also assessed and phytochemical constituents of EAF were analysed using LC-ESI-QTOF-MS. RESULTS The ethyl acetate fraction (EAF) showed the highest antioxidant activity (IC50 value of 8.16 ± 0.59 μg/mL and 4.99 ± 0.82 μg/mL in DPPH and ABTS assays respectively) which reciprocated with a high TPC and TFC (528.46 ± 2.59 mgGAE/g and 49.10 ± 1.61 mgQE/g dry weight of the extract respectively) content. EAF significantly reduced cell viability with an IC50 value of 86.73 ± 0.55 μg/mL, resulted in dose dependent cell death, and prevented the proliferation and migration in SCC9 cells. Further Annexin V-PI based flow cytometric analysis and caspase-3/7 enzyme activity assay confirmed the apoptotic effect of EAF in SCC9 cells. Intrinsic pathway of apoptosis post treatment with EAF was confirmed by western blotting with marker proteins, Bax, Bcl-2, Mcl-1, cleaved caspase, procaspase and PARP. A combinatorial study of EAF with the standard drug cisplatin also indicated a synergistic effect of the fraction in cisplatin treated cells with a CI value of 0.67571. LC-ESI-QTOF-MS led to identification of the presence of phenolics and gallotannins with anticancer properties in EAF. CONCLUSION This study demonstrates the potential of the hydroalcoholic extract of Terminalia chebula fruits (TYH), especially its ethyl acetate fraction (EAF), as a therapeutic agent against oral squamous cell carcinoma (OSCC).
Collapse
Affiliation(s)
- Soibam Thoithoisana Devi
- Institute of Bioresources and Sustainable Development (An Autonomous Institute Under the Department of Biotechnology, Govt. of India) Takyelpat, Imphal- 795001, Manipur, India; Department of Zoology, Manipur University (MU), Imphal- 795003, Manipur, India
| | - Vimi Kshetrimayum
- Institute of Bioresources and Sustainable Development (An Autonomous Institute Under the Department of Biotechnology, Govt. of India) Takyelpat, Imphal- 795001, Manipur, India; School of Biotechnology Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University Bhubaneshwar, Odisha-751024, India
| | - Rameshwari Heisnam
- Institute of Bioresources and Sustainable Development (An Autonomous Institute Under the Department of Biotechnology, Govt. of India) Takyelpat, Imphal- 795001, Manipur, India; School of Biotechnology Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University Bhubaneshwar, Odisha-751024, India
| | - Sai Jyothi Akula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, India
| | - Pullapanthula Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, India
| | - Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development (An Autonomous Institute Under the Department of Biotechnology, Govt. of India) Takyelpat, Imphal- 795001, Manipur, India
| | | | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development (An Autonomous Institute Under the Department of Biotechnology, Govt. of India) Takyelpat, Imphal- 795001, Manipur, India.
| |
Collapse
|
2
|
Wang K, Zhang L, Deng B, Zhao K, Chen C, Wang W. Mitochondrial uncoupling protein 2: a central player in pancreatic disease pathophysiology. Mol Med 2024; 30:259. [PMID: 39707176 DOI: 10.1186/s10020-024-01027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
Pancreatic diseases pose considerable health challenges due to their complex etiology and limited therapeutic options. Mitochondrial uncoupling protein 2 (UCP2), highly expressed in pancreatic tissue, participates in numerous physiological processes and signaling pathways, indicating its potential relevance in these diseases. Despite this, UCP2's role in acute pancreatitis (AP) remains underexplored, and its functions in chronic pancreatitis (CP) and pancreatic steatosis are largely unknown. Additionally, the mechanisms connecting various pancreatic diseases are intricate and not yet fully elucidated. Given UCP2's diverse functionality, broad expression in pancreatic tissue, and the distinct pathophysiological features of pancreatic diseases, this review offers a comprehensive analysis of current findings on UCP2's involvement in these conditions. We discuss recent insights into UCP2's complex regulatory mechanisms, propose that UCP2 may serve as a central regulatory factor in pancreatic disease progression, and hypothesize that UCP2 dysfunction could significantly contribute to disease pathogenesis. Understanding UCP2's role and mechanisms in pancreatic diseases may pave the way for innovative therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Kunpeng Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Beiying Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kailiang Zhao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Zhang X, Sun Z, Sun W, Li Y, Gao F, Teng F, Han Z, Lu Y, Zhang S, Li L. Bioinformatics Analysis and Experimental Findings Reveal the Therapeutic Actions and Targets of Cyathulae Radix Against Type 2 Diabetes Mellitus. J Diabetes Res 2024; 2024:5521114. [PMID: 39534794 PMCID: PMC11557179 DOI: 10.1155/2024/5521114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 07/15/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024] Open
Abstract
Objective: This study elucidated the mechanistic role of Cyathulae Radix (CR) in type 2 diabetes mellitus (T2DM) through bioinformatics analysis and experimental validation. Methods: Components and targets of CR were retrieved from the traditional Chinese medical systems pharmacology, while potential T2DM targets were obtained from GeneCards and Online Mendelian Inheritance in Man databases. Intersecting these datasets yielded target genes between CR and T2DM. Differential genes were used for constructing a protein-protein interaction network, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Molecular docking and dynamics simulations were performed using AutoDock and GROMACS, respectively, and in vitro experiments validated the results. Experiments evaluated the effect of CR on T2DM pancreatic β-cells. Results: Bioinformatics analysis identified four active compounds of CR, 157 related genes, and 5431 T2DM target genes, with 141 shared targets. Key targets such as JUN, MAPK1, and MAPK14 were identified through topological analysis of the PPI network. GO analysis presented 2663 entries, while KEGG analysis identified 161 pathways. The molecular docking results demonstrated favorable binding energy between the core components and the core proteins. Among them, JUN-rubrosterone, MAPK1-rubrosterone, and MAPK14-rubrosterone deserved further investigation. Molecular dynamics results indicated that all of them can form stable binding interactions. CR could inhibit the expression of JUN, MAPK1, and MAPK14, promote insulin secretion, alleviate apoptosis, and regulate autophagy in INS-1 cells. Conclusion: This study suggests CR approach to T2DM management by multitarget and multipathway provides a scientific basis for further research on the hypoglycemic effect of CR.
Collapse
Affiliation(s)
- Xi Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zijin Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Yueming Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Fei Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Fei Teng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhenxu Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yanting Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Shuo Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
4
|
Anaga N, Lekshmy K, Purushothaman J. (+)-Catechin mitigates impairment in insulin secretion and beta cell damage in methylglyoxal-induced pancreatic beta cells. Mol Biol Rep 2024; 51:434. [PMID: 38520585 DOI: 10.1007/s11033-024-09338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The formation of advanced glycation end products (AGEs) is the central process contributing to diabetic complications in diabetic individuals with sustained and inconsistent hyperglycemia. Methylglyoxal, a reactive carbonyl species, is found to be a major precursor of AGEs, and its levels are elevated in diabetic conditions. Dysfunction of pancreatic beta cells and impairment in insulin secretion are the hallmarks of diabetic progression. Exposure to methylglyoxal-induced AGEs alters the function and maintenance of pancreatic beta cells. Hence, trapping methylglyoxal could be an ideal approach to alleviate AGE formation and its influence on beta cell proliferation and insulin secretion, thereby curbing the progression of diabetes to its complications. METHODS AND RESULTS In the present study, we have explored the mechanism of action of (+)-Catechin against methylglyoxal-induced disruption in pancreatic beta cells via molecular biology techniques, mainly western blot. Methylglyoxal treatment decreased insulin synthesis (41.5%) via downregulating the glucose-stimulated insulin secretion pathway (GSIS). This was restored upon co-treatment with (+)-Catechin (29.9%) in methylglyoxal-induced Beta-TC-6 cells. Also, methylglyoxal treatment affected the autocrine function of insulin by disrupting the IRS1/PI3k/Akt pathway. Methylglyoxal treatment suppresses Pdx-1 and Maf A levels, which are responsible for beta cell maintenance and cell proliferation. (+)-Catechin could significantly augment the levels of these transcription factors. CONCLUSION This is the first study to examine the impact of a natural compound on methylglyoxal with the insulin-mediated autocrine and paracrine activities of pancreatic beta cells. The results indicate that (+)-Catechin exerts a protective effect against methylglyoxal exposure in pancreatic beta cells and can be considered a potential anti-glycation agent in further investigations on ameliorating diabetic complications.
Collapse
Affiliation(s)
- Nair Anaga
- Department of Biochemistry, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Krishnan Lekshmy
- Department of Biochemistry, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - Jayamurthy Purushothaman
- Department of Biochemistry, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Alhujaily M. Molecular Assessment of Methylglyoxal-Induced Toxicity and Therapeutic Approaches in Various Diseases: Exploring the Interplay with the Glyoxalase System. Life (Basel) 2024; 14:263. [PMID: 38398772 PMCID: PMC10890012 DOI: 10.3390/life14020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive exploration delves into the intricate interplay of methylglyoxal (MG) and glyoxalase 1 (GLO I) in various physiological and pathological contexts. The linchpin of the narrative revolves around the role of these small molecules in age-related issues, diabetes, obesity, cardiovascular diseases, and neurodegenerative disorders. Methylglyoxal, a reactive dicarbonyl metabolite, takes center stage, becoming a principal player in the development of AGEs and contributing to cell and tissue dysfunction. The dual facets of GLO I-activation and inhibition-unfold as potential therapeutic avenues. Activators, spanning synthetic drugs like candesartan to natural compounds like polyphenols and isothiocyanates, aim to restore GLO I function. These molecular enhancers showcase promising outcomes in conditions such as diabetic retinopathy, kidney disease, and beyond. On the contrary, GLO I inhibitors emerge as crucial players in cancer treatment, offering new possibilities in diseases associated with inflammation and multidrug resistance. The symphony of small molecules, from GLO I activators to inhibitors, presents a nuanced understanding of MG regulation. From natural compounds to synthetic drugs, each element contributes to a molecular orchestra, promising novel interventions and personalized approaches in the pursuit of health and wellbeing. The abstract concludes with an emphasis on the necessity of rigorous clinical trials to validate these findings and acknowledges the importance of individual variability in the complex landscape of health.
Collapse
Affiliation(s)
- Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| |
Collapse
|
6
|
Coccini T, Schicchi A, Locatelli CA, Caloni F, Negri S, Grignani E, De Simone U. Methylglyoxal-induced neurotoxic effects in primary neuronal-like cells transdifferentiated from human mesenchymal stem cells: Impact of low concentrations. J Appl Toxicol 2023; 43:1819-1839. [PMID: 37431083 DOI: 10.1002/jat.4515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
In the last decades, advanced glycation end-products (AGEs) have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes including various neurological disorders and cognitive decline age related. Methylglyoxal (MG) is one of the reactive dicarbonyl precursors of AGEs, mainly generated as a by-product of glycolysis, whose accumulation induces neurotoxicity. In our study, MG cytotoxicity was evaluated employing a human stem cell-derived model, namely, neuron-like cells (hNLCs) transdifferentiated from mesenchymal stem/stromal cells, which served as a source of human based species-specific "healthy" cells. MG increased ROS production and induced the first characteristic apoptotic hallmarks already at low concentrations (≥10 μM), decreased the cell growth (≥5-10 μM) and viability (≥25 μM), altered Glo-1 and Glo-2 enzymes (≥25 μM), and markedly affected the neuronal markers MAP-2 and NSE causing their loss at low MG concentrations (≥10 μM). Morphological alterations started at 100 μM, followed by even more marked effects and cell death after few hours (5 h) from 200 μM MG addition. Substantially, most effects occurred as low as 10 μM, concentration much lower than that reported from previous observations using different in vitro cell-based models (e.g., human neuroblastoma cell lines, primary animal cells, and human iPSCs). Remarkably, this low effective concentration approaches the level range measured in biological samples of pathological subjects. The use of a suitable cellular model, that is, human primary neurons, can provide an additional valuable tool, mimicking better the physiological and biochemical properties of brain cells, in order to evaluate the mechanistic basis of molecular and cellular alterations in CNS.
Collapse
Affiliation(s)
- Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Azzurra Schicchi
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Francesca Caloni
- Dipartimento di Scienze e Politiche Ambientali (ESP), Università degli Studi di Milano, Milan, Italy
| | - Sara Negri
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Elena Grignani
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
7
|
Zhang Y, Zhan L, Wen Q, Feng Y, Luo Y, Tan T. Trapping Methylglyoxal by Taxifolin and Its Metabolites in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5026-5038. [PMID: 35420027 DOI: 10.1021/acs.jafc.2c02189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Trapping of methylglyoxal (MGO), an important precursor of advanced glycation end products (AGEs), is considered an effective therapy for alleviating AGE-induced chronic metabolic diseases. In this paper, taxifolin (Tax) was first found to effectively trap MGO by forming mono- and di-MGO adducts under in vitro conditions. In addition, the mechanism of trapping MGO by Tax was also studied in vivo. Tax was demonstrated to efficiently trap endogenous MGO via formation of mono-MGO adducts in urine and fecal samples of C57BL/6J mice after oral administration of Tax and MGO. Mono-MGO adducts of Tax metabolites, including methylated Tax, aromadendrin, quercetin, and isorhamnetin, were identified in C57BL/6J mice urine and fecal samples by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS). One mono-MGO-Tax was purified from the in vitro reaction mixture, and its structure was elucidated as 6-MGO-Tax based on the analysis of UHPLC-QTOF-MS/MS and detailed nuclear magnetic resonance (NMR) data. Quantification studies demonstrated that Tax and its metabolites trapped MGO in a dose-dependent manner in C57BL/6J mice urine and fecal samples. Furthermore, we also detected mono-MGO adducts of Tax and methylated Tax in urine and fecal samples of diabetic db/db mice after oral administration of Tax. Taken together, our results demonstrated that dietary Tax has the potential to detoxify MGO and treat AGE-associated chronic diseases.
Collapse
Affiliation(s)
- Yiming Zhang
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Yangming Road 56, Nanchang 330006, Jiangxi, China
| | - Lanlan Zhan
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Yangming Road 56, Nanchang 330006, Jiangxi, China
| | - Quan Wen
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Yangming Road 56, Nanchang 330006, Jiangxi, China
| | - Yulin Feng
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Yangming Road 56, Nanchang 330006, Jiangxi, China
| | - Yun Luo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Meiling Road 1688, Nanchang 330004, China
| | - Ting Tan
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Yangming Road 56, Nanchang 330006, Jiangxi, China
| |
Collapse
|
8
|
Cheng Y, Yao XM, Zhou SM, Sun Y, Meng XJ, Wang Y, Xing YJ, Wan SJ, Hua Q. The m 6A Methyltransferase METTL3 Ameliorates Methylglyoxal-Induced Impairment of Insulin Secretion in Pancreatic β Cells by Regulating MafA Expression. Front Endocrinol (Lausanne) 2022; 13:910868. [PMID: 35872977 PMCID: PMC9304699 DOI: 10.3389/fendo.2022.910868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/06/2022] [Indexed: 01/13/2023] Open
Abstract
Methylglyoxal, a major precursor of advanced glycation end products, is elevated in the plasma of patients with type 2 diabetes mellitus. Islet β-cell function was recently shown to be regulated by N6-methyladenosine (m6A), an RNA modification consisting of methylation at the N6 position of adenosine. However, the role of m6A methylation modification in methylglyoxal-induced impairment of insulin secretion in pancreatic β cells has not been clarified. In this study, we showed that treatment of two β-cell lines, NIT-1 and β-TC-6, with methylglyoxal reduced m6A RNA content and methyltransferase-like 3 (METTL3) expression levels. We also showed that silencing of METTL3 inhibited glucose-stimulated insulin secretion (GSIS) from NIT-1 cells, whereas upregulation of METTL3 significantly reversed the methylglyoxal-induced decrease in GSIS. The methylglyoxal-induced decreases in m6A RNA levels and METTL3 expression were not altered by knockdown of the receptor for the advanced glycation end product but were further decreased by silencing of glyoxalase 1. Mechanistic investigations revealed that silencing of METTL3 reduced m6A levels, mRNA stability, and the mRNA and protein expression levels of musculoaponeurotic fibrosarcoma oncogene family A (MafA). Overexpression of MafA greatly improved the decrease in GSIS induced by METTL3 silencing; silencing of MafA blocked the reversal of the MG-induced decrease in GSIS caused by METTL3 overexpression. The current study demonstrated that METTL3 ameliorates MG-induced impairment of insulin secretion in pancreatic β cells by regulating MafA.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Xin-Ming Yao
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Si-Min Zhou
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Yue Sun
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Xiang-Jian Meng
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Yong Wang
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Yu-Jie Xing
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
- *Correspondence: Qiang Hua, ; Shu-Jun Wan, ; Yu-Jie Xing,
| | - Shu-Jun Wan
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
- Central Laboratory of Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wannan Medical College, Wuhu, China
- *Correspondence: Qiang Hua, ; Shu-Jun Wan, ; Yu-Jie Xing,
| | - Qiang Hua
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wannan Medical College, Wuhu, China
- *Correspondence: Qiang Hua, ; Shu-Jun Wan, ; Yu-Jie Xing,
| |
Collapse
|
9
|
Wei X, Luo C, He Y, Huang H, Ran F, Liao W, Tan P, Fan S, Cheng Y, Zhang D, Lin J, Han L. Hepatoprotective Effects of Different Extracts From Triphala Against CCl 4-Induced Acute Liver Injury in Mice. Front Pharmacol 2021; 12:664607. [PMID: 34290606 PMCID: PMC8287969 DOI: 10.3389/fphar.2021.664607] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/06/2021] [Indexed: 02/01/2023] Open
Abstract
Background:Triphala is a traditional polyherbal formula used in Indian Ayurvedic and Chinese Tibetan medicine. A wide range of biological activities have been attributed to Triphala, but the impact of various extraction methods on efficacy has not been determined. Purpose: The study aimed to evaluate Triphala extracts obtained by various methods for their hepatoprotective effects and molecular mechanisms in a mouse model of carbon tetrachloride (CCl4)-induced liver injury. Methods: HPLC fingerprinting was used to characterize the chemical characteristics of Triphala extracts obtained by (a) 0.5 h ultrasonication, (b) 2 h reflux, and (c) 4 h reflux. Hepatoprotective efficacy was evaluated in a mouse model of CCl4-induced liver damage. Serum levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) were measured, as well as the liver antioxidant and inflammatory markers malondialdehyde superoxide dismutase glutathione peroxidase (GSH-Px), TNF-α, and IL-6. Gene and protein expression of Nrf-2 signaling components Nrf-2, heme oxygenase (HO-1), and NADPH Quinone oxidoreductase (NQO-1) in liver tissue were evaluated by real-time PCR and western blotting. Results: Chemical analysis showed a clear difference in content between extracts produced by ultrasonic and reflux methods. The pharmacological analysis showed that all three Triphala extracts reduced ALT, AST, MDA, TNF-α, and IL-6 levels and increased SOD and GSH-Px. Triphala extracts also induced transcript and protein expression of Nrf-2, HO-1, and NQO-1. Conclusion: Triphala extract prevents CCl4-induced acute liver injury. The ultrasonic extract of Triphala was most effective, suggesting that hepatoprotection may be related to the larger tannins via activation of Nrf-2 signaling.
Collapse
Affiliation(s)
- Xichuan Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuanhong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haozhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Ran
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Tan
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu, China
| | - Sanhu Fan
- Sanajon Pharmaceutical Group, Chengdu, China
| | - Yuan Cheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|