1
|
Vasilyeva T, Kadyshev V, Khalanskaya O, Kuznetsova S, Ionova S, Marakhonov A, Zinchenko R. Clinical and Molecular Findings in Patients with Knobloch Syndrome 1: Case Series Report. Genes (Basel) 2024; 15:1295. [PMID: 39457419 PMCID: PMC11506921 DOI: 10.3390/genes15101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Knobloch syndrome 1 (KS) is an autosomal recessive inherited ocular syndrome characterized by a combination of high myopia, vitreoretinal degeneration, and occipital encephalocele. KS is caused by biallelic pathogenic variants in the COL18A1 gene. Diagnosing KS can be challenging due to its clinical heterogeneity and the rarity of the syndrome. METHODS We conducted comprehensive clinical and instrumental ophthalmological examinations, whole-exome sequencing, Sanger sequencing, and segregation analysis to evaluate affected families. RESULTS Two patients presenting with high myopia, low visual acuity, chorioretinal atrophy, and occipital skin/skull defects were diagnosed with Knobloch syndrome 1 (KS). In Case 1, a 14-year-old boy, the COL18A1 variants identified were c.2673dup and c.3523_3524del in a compound heterozygous state. Case 2 involved a 3-year-old girl, the c.1637_1638dup and c.3523_3524del variants were identified in a compound heterozygous state. In Case 3, a retrospectively observed boy of 3 y.o. with KS, the variants c.929-2A>G and c.3523_3524del were defined earlier. CONCLUSIONS We confirmed KS molecularly in two novel families. Additionally, in Case 3 of a retrospectively analyzed third family and in both novel cases, one of the biallelic causative variants was the same known 2bp deletion in exon 40 of the collagen XVIII gene. Cases 1 and 3 were characterized by connective tissue dysplasia features and a pathognomonic Knobloch triad. No neurological manifestations and no trends in the genotype-phenotype relationship were found. The heterogeneity of phenotype in the case series is likely to be the result of further factors and/or genetic background.
Collapse
Affiliation(s)
- Tatyana Vasilyeva
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.K.); (S.K.); (S.I.); (A.M.); (R.Z.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Brodzka S, Baszyński J, Rektor K, Hołderna-Bona K, Stanek E, Kurhaluk N, Tkaczenko H, Malukiewicz G, Woźniak A, Kamiński P. The Role of Glutathione in Age-Related Macular Degeneration (AMD). Int J Mol Sci 2024; 25:4158. [PMID: 38673745 PMCID: PMC11050487 DOI: 10.3390/ijms25084158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Age-related macular degeneration (AMD) is a chronic disease that usually develops in older people. Pathogenetic changes in this disease include anatomical and functional complexes. Harmful factors damage the retina and macula. These changes may lead to partial or total loss of vision. The disease can occur in two clinical forms: dry (the progression is slow and gentle) and exudative (wet-progression is acute and severe), which usually starts in the dry form; however, the coexistence of both forms is possible. The etiology of AMD is not fully understood, and the precise mechanisms of the development of this illness are still unknown. Extensive genetic studies have shown that AMD is a multi-factorial disease and that genetic determinants, along with external and internal environmental and metabolic-functional factors, are important risk factors. This article reviews the role of glutathione (GSH) enzymes engaged in maintaining the reduced form and polymorphism in glutathione S-transferase theta-1 (GSTT1) and glutathione S-transferase mu-1 (GSTM1) in the development of AMD. We only chose papers that confirmed the influence of the parameters on the development of AMD. Because GSH is the most important antioxidant in the eye, it is important to know the influence of the enzymes and genetic background to ensure an optimal level of glutathione concentration. Numerous studies have been conducted on how the glutathione system works till today. This paper presents the current state of knowledge about the changes in GSH, GST, GR, and GPx in AMD. GST studies clearly show increased activity in ill people, but for GPx, the results relating to activity are not so clear. Depending on the research, the results also suggest higher and lower GPx activity in patients with AMD. The analysis of polymorphisms in GST genes confirmed that mutations lead to weaker antioxidant barriers and may contribute to the development of AMD; unfortunately, a meta-analysis and some research did not confirm that connection. Unspecific results of many of the parameters that make up the glutathione system show many unknowns. It is so important to conduct further research to understand the exact mechanism of defense functions of glutathione against oxidative stress in the human eye.
Collapse
Affiliation(s)
- Sylwia Brodzka
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland;
| | - Jędrzej Baszyński
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
| | - Katarzyna Rektor
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland;
| | - Karolina Hołderna-Bona
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
| | - Emilia Stanek
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, PL 76-200 Słupsk, Poland; (N.K.); (H.T.)
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, PL 76-200 Słupsk, Poland; (N.K.); (H.T.)
| | - Grażyna Malukiewicz
- Department of Eye Diseases, University Hospital No. 1, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Karłowicz St. 24, PL 85-092 Bydgoszcz, Poland;
| | - Piotr Kamiński
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland;
| |
Collapse
|
3
|
Oh S, Jeong J, Kim M, Jin X, Zheng S, Kim YM, Yi TH. A study of anti-wrinkle functions and improvement of cream with Phaseolus angularis. Int J Cosmet Sci 2024; 46:318-332. [PMID: 38083804 DOI: 10.1111/ics.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 04/04/2024]
Abstract
Chronic exposure to ultraviolet (UV) radiation from sunlight accelerates skin ageing, which is followed by harsh, thick, dry and loose conditions. One of the most demonstrative symptoms is deep wrinkles induced by skin barrier disruption. Our previous research showed that Phaseolus angularis seed extract (PASE) effectively inhibits skin ageing through UVB protection in HaCaT cells by suppressing skin damage. However, its efficacy has not been evaluated in clinical trials so far. PASE cream's effectiveness was initially tested on the artificial skin model, revealing an increase in filaggrin and defence against skin damage. Based on these results, in this single-centred, randomized, double-blind study, we investigated the anti-ageing effect of PASE in human eye wrinkle areas. For these 21 healthy adult women aged 30 to 59, a PASE cream was applied to the right eye wrinkle area and a placebo to the left eye wrinkle area twice a day (morning and evening) for 12 weeks. The change in thick, deep crease wrinkles around the eyes was confirmed by visual evaluation, skin measurements and a questionnaire. As a result, the surface roughness (R1), maximum roughness (R2), average roughness (R3), smoothness depth (R4) and arithmetic mean roughness (R5) values in the group using the PASE cream all decreased. Particularly, R1, R4 and R5 significantly decreased by 18.1%, 18.6% and 25.0%, respectively. Subjects who applied PASE cream also experienced an improvement in skin moisture nearly twice the time compared to the placebo group. In addition, no participants reported side effects. Our study showed that PASE cream led to clinically significant levels of wrinkle improvement. In conclusion, as PASE is a natural, safe food with no side effects, it can be a good resource for natural anti-wrinkle functional cosmetics in the future.
Collapse
Affiliation(s)
- Sarang Oh
- College of Life Science, Kyung Hee University, Yongin-si, Korea
- Snowwhitefactory Co., Ltd., Seoul, Korea
| | | | - Myeongju Kim
- College of Life Science, Kyung Hee University, Yongin-si, Korea
| | - Xiangji Jin
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Shengdao Zheng
- College of Life Science, Kyung Hee University, Yongin-si, Korea
- Snowwhitefactory Co., Ltd., Seoul, Korea
| | - Yong-Min Kim
- School of Industrial Bio-pharmaceutical Science, Semyung University, Jecheon-si, Korea
| | - Tae-Hoo Yi
- College of Life Science, Kyung Hee University, Yongin-si, Korea
| |
Collapse
|
4
|
Brahma D, Sarangi AN, Kaushik R, Gupta AN. Oxidative stress induced conformational changes of human serum albumin. Phys Chem Chem Phys 2024; 26:8528-8538. [PMID: 38411624 DOI: 10.1039/d4cp00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Oxidative stress, generated by reactive oxygen species (ROS), is responsible for the loss of structure and functionality of proteins and is associated with several aging-related diseases. Here, we report an in vitro study to gauge the effect of ROS on the structural rearrangement of human serum albumin (HSA), a plasma protein, through metal-catalyzed oxidation (MCO) at physiological temperature through various biophysical techniques like UV-vis absorption, circular dichroism (CD), differential scanning calorimetry (DSC), MALDI-TOF, FTIR, and Raman spectroscopy. The UV-vis spectra of oxidized HSA show an early blueshift, signifying the unfolding of the protein because of ROS followed by the broadening of the absorption peak at a longer time. The DSC data corroborate the observation, revealing an exothermic transition for the oxidized sample at a longer time, suggesting in situ aggregation. The CD and FTIR spectra indicate the associated secondary structural changes occurring with time, depicting the variation of the helical content of HSA. The amide-III analysis of Raman data also complements the structural changes, and MALDI-TOF data show the mass distribution with time. Overall, this work might help determine the effect of oxidation on the biological activity of serum albumin as it can impact the physiological properties of HSA.
Collapse
Affiliation(s)
- Debdip Brahma
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur, 721302, India.
| | - Akshay Narayan Sarangi
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur, 721302, India.
| | - Rupal Kaushik
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur, 721302, India.
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur, 721302, India.
| |
Collapse
|
5
|
Brahma D, Sarkar T, Kaushik R, Sarangi AN, Gupta AN. Structural rearrangement of elastin under oxidative stress. Colloids Surf B Biointerfaces 2024; 233:113663. [PMID: 38008014 DOI: 10.1016/j.colsurfb.2023.113663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/11/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Reactive oxygen species (ROS) are key elements in several physiological processes. A high level of ROS leads to oxidative stress that damages biomolecules and is linked to many diseases like type-2 diabetes, cancer, inflammation, and many more. Here, our in-vitro study aimed to gauge the effect of ROS on the structural rearrangement of elastin through metal-catalyzed oxidation (MCO) at physiological temperature through laser light scattering, UV-vis, FTIR, and FESEM imaging. Light scattering data show a decrease in the hydrodynamic radius of elastin upon oxidation for the first hour. The rate of size reduction of ROS-treated elastin and the rate for self-assembly of bare elastin in the first two hours is found to be almost the same. However, the rate of association of ROS-treated is one order slower than the bare elastin after one hour. UV-vis absorption shows a blue shift accompanied by increased absorption, followed by a redshift and broadening of peak. FTIR data reveal changes in the secondary structures for both bare and oxidized elastin with time. While bare elastin coacervation increases unordered structure, the corresponding case of oxidized elastin saw a rise in β-sheet. FESEM images show the morphological changes occurring with time. Thus, we conclude that oxidative stress leads to structural rearrangement of the protein through interaction with the polar and hydrophobic domains, followed by aggregation. This study might be helpful for therapeutics focusing on preventing elastin degradation against aging.
Collapse
Affiliation(s)
- Debdip Brahma
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Tamal Sarkar
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rupal Kaushik
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Akshay Narayan Sarangi
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
6
|
Radeva L, Stefanova D, Yordanov Y, Kamenova K, Petrov PD, Marinova MK, Simeonov SP, Kondeva-Burdina M, Tzankova V, Yoncheva K. Incorporation of Resveratrol in Polymeric Nanogel for Improvement of Its Protective Effects on Cellular and Microsomal Oxidative Stress Models. Gels 2023; 9:450. [PMID: 37367121 DOI: 10.3390/gels9060450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Nanogels are attractive drug delivery systems that provide high loading capacity for drug molecules, improve their stability, and increase cellular uptake. Natural antioxidants, especially polyphenols such as resveratrol, are distinguished by low aqueous solubility, which hinders therapeutic activity. Thus, in the present study, resveratrol was incorporated into nanogel particles, aiming to improve its protective effects in vitro. The nanogel was prepared from natural substances via esterification of citric acid and pentane-1,2,5-triol. High encapsulation efficiency (94.5%) was achieved by applying the solvent evaporation method. Dynamic light scattering, atomic force microscopy, and transmission electron microscopy revealed that the resveratrol-loaded nanogel particles were spherical in shape with nanoscopic dimensions (220 nm). In vitro release tests showed that a complete release of resveratrol was achieved for 24 h, whereas at the same time the non-encapsulated drug was poorly dissolved. The protective effect of the encapsulated resveratrol against oxidative stress in fibroblast and neuroblastoma cells was significantly stronger compared to the non-encapsulated drug. Similarly, the protection in a model of iron/ascorbic acid-induced lipid peroxidation on rat liver and brain microsomes was higher with the encapsulated resveratrol. In conclusion, embedding resveratrol in this newly developed nanogel improved its biopharmaceutical properties and protective effects in oxidative stress models.
Collapse
Affiliation(s)
- Lyubomira Radeva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Denitsa Stefanova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Yordan Yordanov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Katya Kamenova
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Petar D Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Maya K Marinova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Svilen P Simeonov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | | | - Virginia Tzankova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | | |
Collapse
|
7
|
Aragoneses-Cazorla G, Vallet-Regí M, Gómez-Gómez MM, González B, Luque-Garcia JL. Integrated transcriptomics and metabolomics analysis reveals the biomolecular mechanisms associated to the antitumoral potential of a novel silver-based core@shell nanosystem. Mikrochim Acta 2023; 190:132. [PMID: 36914921 PMCID: PMC10011303 DOI: 10.1007/s00604-023-05712-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
A combination of omics techniques (transcriptomics and metabolomics) has been used to elucidate the mechanisms responsible for the antitumor action of a nanosystem based on a Ag core coated with mesoporous silica on which transferrin has been anchored as a targeting ligand against tumor cells (Ag@MSNs-Tf). Transcriptomics analysis has been carried out by gene microarrays and RT-qPCR, while high-resolution mass spectrometry has been used for metabolomics. This multi-omics strategy has enabled the discovery of the effect of this nanosystem on different key molecular pathways including the glycolysis, the pentose phosphate pathway, the oxidative phosphorylation and the synthesis of fatty acids, among others.
Collapse
Affiliation(s)
- Guillermo Aragoneses-Cazorla
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (I+12), 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Saragossa, Spain
| | - Ma Milagros Gómez-Gómez
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Blanca González
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (I+12), 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Saragossa, Spain
| | - Jose L Luque-Garcia
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
8
|
Amponsah-Offeh M, Diaba-Nuhoho P, Speier S, Morawietz H. Oxidative Stress, Antioxidants and Hypertension. Antioxidants (Basel) 2023; 12:281. [PMID: 36829839 PMCID: PMC9952760 DOI: 10.3390/antiox12020281] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
As a major cause of morbidity and mortality globally, hypertension remains a serious threat to global public health. Despite the availability of many antihypertensive medications, several hypertensive individuals are resistant to standard treatments, and are unable to control their blood pressure. Regulation of the renin-angiotensin-aldosterone system (RAAS) controlling blood pressure, activation of the immune system triggering inflammation and production of reactive oxygen species, leading to oxidative stress and redox-sensitive signaling, have been implicated in the pathogenesis of hypertension. Thus, besides standard antihypertensive medications, which lower arterial pressure, antioxidant medications were tested to improve antihypertensive treatment. We review and discuss the role of oxidative stress in the pathophysiology of hypertension and the potential use of antioxidants in the management of hypertension and its associated organ damage.
Collapse
Affiliation(s)
- Michael Amponsah-Offeh
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Patrick Diaba-Nuhoho
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Paediatric and Adolescent Medicine, Paediatric Haematology and Oncology, University Hospital Münster, 48149 Münster, Germany
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at University Clinic Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
9
|
Rodríguez-Rovira I, Arce C, De Rycke K, Pérez B, Carretero A, Arbonés M, Teixidò-Turà G, Gómez-Cabrera MC, Campuzano V, Jiménez-Altayó F, Egea G. Allopurinol blocks aortic aneurysm in a mouse model of Marfan syndrome via reducing aortic oxidative stress. Free Radic Biol Med 2022; 193:538-550. [PMID: 36347404 DOI: 10.1016/j.freeradbiomed.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Increasing evidence indicates that redox stress participates in MFS aortopathy, though its mechanistic contribution is little known. We reported elevated reactive oxygen species (ROS) formation and NADPH oxidase NOX4 upregulation in MFS patients and mouse aortae. Here we address the contribution of xanthine oxidoreductase (XOR), which catabolizes purines into uric acid and ROS in MFS aortopathy. METHODS AND RESULTS In aortic samples from MFS patients, XOR protein expression, revealed by immunohistochemistry, increased in both the tunicae intima and media of the dilated zone. In MFS mice (Fbn1C1041G/+), aortic XOR mRNA transcripts and enzymatic activity of the oxidase form (XO) were augmented in the aorta of 3-month-old mice but not in older animals. The administration of the XOR inhibitor allopurinol (ALO) halted the progression of aortic root aneurysm in MFS mice. ALO administrated before the onset of the aneurysm prevented its subsequent development. ALO also inhibited MFS-associated endothelial dysfunction as well as elastic fiber fragmentation, nuclear translocation of pNRF2 and increased 3'-nitrotyrosine levels, and collagen maturation remodeling, all occurring in the tunica media. ALO reduced the MFS-associated large aortic production of H2O2, and NOX4 and MMP2 transcriptional overexpression. CONCLUSIONS Allopurinol interferes in aortic aneurysm progression acting as a potent antioxidant. This study strengthens the concept that redox stress is an important determinant of aortic aneurysm formation and progression in MFS and warrants the evaluation of ALO therapy in MFS patients.
Collapse
Affiliation(s)
- Isaac Rodríguez-Rovira
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
| | - Cristina Arce
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
| | - Karo De Rycke
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
| | - Belén Pérez
- Department of Pharmacology, Toxicology and Therapeutics, Neuroscience Institute, School of Medicine, Autonomous University of Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Aitor Carretero
- Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Marc Arbonés
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
| | - Gisela Teixidò-Turà
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER-CV, Vall d'Hebrón Institut de Recerca (VHIR), Barcelona, Spain
| | - Mari Carmen Gómez-Cabrera
- Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Victoria Campuzano
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain
| | - Francesc Jiménez-Altayó
- Department of Pharmacology, Toxicology and Therapeutics, Neuroscience Institute, School of Medicine, Autonomous University of Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Gustavo Egea
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain.
| |
Collapse
|
10
|
Yan Z, Liu S, Liu Y, Zheng M, Peng J, Chen Q. Effects of dietary superoxide dismutase on growth performance,
antioxidant capacity and digestive enzyme activity
of yellow-feather broilers during the early breeding period (1–28d). JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/149331/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Chen J, Luo Y, Li Y, Chen D, Yu B, He J. Chlorogenic Acid Attenuates Oxidative Stress-Induced Intestinal Epithelium Injury by Co-Regulating the PI3K/Akt and IκBα/NF-κB Signaling. Antioxidants (Basel) 2021; 10:antiox10121915. [PMID: 34943017 PMCID: PMC8750628 DOI: 10.3390/antiox10121915] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/26/2022] Open
Abstract
Chlorogenic acid (CGA) is a natural polyphenol compound abundant in green plants with antioxidant and anti-inflammatory activities. Here, we explore its protective effects and potential mechanisms of action on intestinal epithelium exposure to oxidative stress (OS). We show that CGA attenuated OS-induced intestinal inflammation and injury in weaned pigs, which is associated with elevated antioxidant capacity and decreases in inflammatory cytokine secretion and cell apoptosis. In vitro study showed that CGA elevated phosphorylation of two critical signaling proteins of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway, Akt and nuclear factor erythroid-derived-related factor 2, leading to the elevated expression of intracellular antioxidant enzymes and heme oxygenase-1 (HO-1). Specific inhibition of HO-1 partially abolished its anti-inflammatory effect in IPEC-J2 cells exposure to OS. Interestingly, CGA suppressed the tumor necrosis factor-α (TNF-α) induced inflammatory responses in IPEC-J2 cells by decreasing phosphorylation of two critical inflammatory signaling proteins, NF-kappa-B inhibitor alpha (IκBα) and nuclear factor-κB (NF-κB). Specific inhibition of HO-1 cannot fully abolish its anti-inflammatory effect on the TNF-α-challenged cells. These results strongly suggested that CGA is a natural anti-inflammatory agent that can attenuate OS-induced inflammation and injury of intestinal epithelium via co-regulating the PI3K/Akt and IκBα/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Yan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Guilin Fengpeng Bio-Tech Co., Ltd., Guilin 541199, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
12
|
Ghaffarian-Bahraman A, Arabnezhad MR, Keshavarzi M, Davani-Davari D, Jamshidzadeh A, Mohammadi-Bardbori A. Influence of cellular redox environment on aryl hydrocarbon receptor ligands induced melanogenesis. Toxicol In Vitro 2021; 79:105282. [PMID: 34856342 DOI: 10.1016/j.tiv.2021.105282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/07/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022]
Abstract
Many environmental pollutants, natural compounds, as well as endogenous chemicals exert their biological/toxicological effects by reacting with the aryl hydrocarbon receptor (AhR). Previous evidence shed new light on the role of AhR in skin physiology by regulating melanin production. In this study, we investigated the effect of oxidative imbalance induced by AhR ligands on the melanogenesis process in B16 murine melanoma cells. Exposure to 6-formylindolo[3,2-b] carbazole (FICZ) or benzo-α-pyrene (BαP) led to enhanced expression of CTNNB1, MITF, and TYR genes following increased tyrosinase enzyme activity and melanin content in an AhR-dependent manner. Analysis of the presence of reactive oxygen species (ROS) as well as reduced glutathione (GSH) / oxidized glutathione (GSSG) ratio revealed that treatment with AhR ligands is associated with oxidative stress which can be ameliorated with NAC (N-acetyl cysteine) or diphenyleneiodonium chloride (DPI). On the other hand, NAC and DPI enhanced melanogenesis induced by AhR ligands by reducing the level of ROS. We have shown for the first time that a cellular redox status is a critical event during AhR ligand-induced melanogenesis.
Collapse
Affiliation(s)
- Ali Ghaffarian-Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Mohammad-Reza Arabnezhad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Keshavarzi
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Dorna Davani-Davari
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Akram Jamshidzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.
| |
Collapse
|
13
|
Collagen Scaffolds Treated by Hydrogen Peroxide for Cell Cultivation. Polymers (Basel) 2021; 13:polym13234134. [PMID: 34883637 PMCID: PMC8659075 DOI: 10.3390/polym13234134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Collagen in the body is exposed to a range of influences, including free radicals, which can lead to a significant change in its structure. Modeling such an effect on collagen fibrils will allow one to get a native structure in vitro, which is important for modern tissue engineering. The aim of this work is to study the effect of free radicals on a solution of hydrogen peroxide with a concentration of 0.006–0.15% on the structure of collagen fibrils in vitro, and the response of cells to such treatment. SEM measurements show a decrease in the diameter of the collagen fibrils with an increase in the concentration of hydrogen peroxide. Such treatment also leads to an increase in the wetting angle of the collagen surface. Fourier transform infrared spectroscopy demonstrates a decrease in the signal with wave number 1084 cm−1 due to the detachment of glucose and galactose linked to hydroxylysine, connected to the collagen molecule through the -C-O-C- group. During the first day of cultivating ASCs, MG-63, and A-431 cells, an increase in cell adhesion on collagen fibrils treated with H2O2 (0.015, 0.03%) was observed. Thus the effect of H2O2 on biologically relevant extracellular matrices for the formation of collagen scaffolds was shown.
Collapse
|
14
|
Current Trends in Neurodegeneration: Cross Talks between Oxidative Stress, Cell Death, and Inflammation. Int J Mol Sci 2021; 22:ijms22147432. [PMID: 34299052 PMCID: PMC8306752 DOI: 10.3390/ijms22147432] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The human body is highly complex and comprises a variety of living cells and extracellular material, which forms tissues, organs, and organ systems. Human cells tend to turn over readily to maintain homeostasis in tissues. However, postmitotic nerve cells exceptionally have an ability to regenerate and be sustained for the entire life of an individual, to safeguard the physiological functioning of the central nervous system. For efficient functioning of the CNS, neuronal death is essential, but extreme loss of neurons diminishes the functioning of the nervous system and leads to the onset of neurodegenerative diseases. Neurodegenerative diseases range from acute to chronic severe life-altering conditions like Parkinson's disease and Alzheimer's disease. Millions of individuals worldwide are suffering from neurodegenerative disorders with little or negligible treatment available, thereby leading to a decline in their quality of life. Neuropathological studies have identified a series of factors that explain the etiology of neuronal degradation and its progression in neurodegenerative disease. The onset of neurological diseases depends on a combination of factors that causes a disruption of neurons, such as environmental, biological, physiological, and genetic factors. The current review highlights some of the major pathological factors responsible for neuronal degradation, such as oxidative stress, cell death, and neuroinflammation. All these factors have been described in detail to enhance the understanding of their mechanisms and target them for disease management.
Collapse
|
15
|
Ferrari M, Stagi S. Oxidative Stress in Down and Williams-Beuren Syndromes: An Overview. Molecules 2021; 26:molecules26113139. [PMID: 34073948 PMCID: PMC8197362 DOI: 10.3390/molecules26113139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is the result of an imbalance in the redox state in a cell or a tissue. When the production of free radicals, which are physiologically essential for signaling, exceeds the antioxidant capability, pathological outcomes including oxidative damage to macromolecules, aberrant signaling, and inflammation can occur. Down syndrome (DS) and Williams-Beuren syndrome (WBS) are well-known and common genetic conditions with multi-systemic involvement. Their etiology is linked to oxidative stress with important causative genes, such as SOD-1 and NCF-1, respectively, of the diseases being primarily involved in the regulation of the redox state. Early aging, dementia, autoimmunity, and chronic inflammation are some of the main characteristics of these conditions that can be associated with oxidative stress. In recent decades, there has been a growing interest in the possible role of oxidative stress and inflammation in the pathology of these conditions. However, at present, few studies have investigated these correlations. We provide an overview of the current literature concerning the role of oxidative stress and oxidative damage in genetic syndromes with a focus on Down syndrome and WBS. We hope to provide new insights to improve the management of complications related to these diseases.
Collapse
|
16
|
Zalba G. Oxidative Stress in Vascular Pathophysiology: Still Much to Learn. Antioxidants (Basel) 2021; 10:antiox10050673. [PMID: 33925889 PMCID: PMC8145863 DOI: 10.3390/antiox10050673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Guillermo Zalba
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; ; Tel.: +34-948425600
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
17
|
FK866 Protects Human Dental Pulp Cells against Oxidative Stress-Induced Cellular Senescence. Antioxidants (Basel) 2021; 10:antiox10020271. [PMID: 33578781 PMCID: PMC7916510 DOI: 10.3390/antiox10020271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/12/2023] Open
Abstract
FK866 possesses various functional properties, such as anti-angiogenic, anti-cancer, and anti-inflammatory activities. We previously demonstrated that premature senescence of human dental pulp cells (hDPCs) was induced by hydrogen peroxide (H2O2). The present study aimed to investigate whether H2O2-induced premature senescence of hDPCs is affected by treatment with FK866. We found that FK866 markedly inhibited the senescent characteristics of hDPCs after exposure to H2O2, as revealed by an increase in the number of senescence-associated β-galactosidase (SA-β-gal)-positive hDPCs and the upregulation of the p21 and p53 proteins, which acts as molecular indicators of cellular senescence. Moreover, the stimulatory effects of H2O2 on cellular senescence are associated with oxidative stress induction, such as excessive ROS production and NADPH consumption, telomere DNA damage induction, and upregulation of senescence-associated secretory phenotype factors (IL-1β, IL-6, IL-8, COX-2, and TNF-α) as well as NF-κB activation, which were all blocked by FK866. Thus, FK866 might antagonize H2O2-induced premature senescence of hDPCs, acting as a potential therapeutic antioxidant by attenuating oxidative stress-induced pathologies in dental pulp, including inflammation and cellular senescence.
Collapse
|
18
|
Paraoxonase Role in Human Neurodegenerative Diseases. Antioxidants (Basel) 2020; 10:antiox10010011. [PMID: 33374313 PMCID: PMC7824310 DOI: 10.3390/antiox10010011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
The human body has biological redox systems capable of preventing or mitigating the damage caused by increased oxidative stress throughout life. One of them are the paraoxonase (PON) enzymes. The PONs genetic cluster is made up of three members (PON1, PON2, PON3) that share a structural homology, located adjacent to chromosome seven. The most studied enzyme is PON1, which is associated with high density lipoprotein (HDL), having paraoxonase, arylesterase and lactonase activities. Due to these characteristics, the enzyme PON1 has been associated with the development of neurodegenerative diseases. Here we update the knowledge about the association of PON enzymes and their polymorphisms and the development of multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Parkinson's disease (PD).
Collapse
|