1
|
Zhang P, Liu W, Wang S, Wang Y, Han H. Ferroptosisand Its Role in the Treatment of Sepsis-Related Organ Injury: Mechanisms and Potential Therapeutic Approaches. Infect Drug Resist 2024; 17:5715-5727. [PMID: 39720615 PMCID: PMC11668052 DOI: 10.2147/idr.s496568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024] Open
Abstract
Sepsis is a complicated clinical disease caused by a defective host response to infection, leading to elevated morbidity and fatality globally. Sepsis patients have a significant risk of life-threatening organ damage, including hearts, brains, lungs, kidneys, and livers. Nevertheless, the molecular pathways driving organ injury in sepsis are not well known. Ferroptosis, a non-apoptotic cell death, occurs due to iron metabolism disturbance and lipid peroxide buildup. Multiple studies indicate that ferroptosis has a significant role in decreasing inflammation and lipid peroxidation during sepsis. Ferroptosis inhibitors and medications, aimed at the most studied ferroptosis process, including Xc-system, Nrf2/GPX4 axis, and NCOA4-FTH1-mediated ferritinophagy, alleviating sepsis effectively. However, few clinical trials demonstrated ferroptosis-targeted drugs's effectiveness in sepsis. Our study examines ferroptosis-targeted medicinal agents and their potential benefits for treating sepsis-associated organ impairment. This review indicates that ferroptosis suppression by pharmaceutical means may be a useful therapy for sepsis-associated organ injury.
Collapse
Affiliation(s)
- Pengyu Zhang
- The Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Wendi Liu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Shu Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yuan Wang
- Department of Histology and Embryology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Han Han
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
2
|
Bibi M, Baboo I, Majeed H, Kumar S, Lackner M. Molecular Docking of Key Compounds from Acacia Honey and Nigella sativa Oil and Experimental Validation for Colitis Treatment in Albino Mice. BIOLOGY 2024; 13:1035. [PMID: 39765702 PMCID: PMC11673436 DOI: 10.3390/biology13121035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Colitis, an inflammatory condition of the colon that encompasses ulcerative colitis (UC) and Crohn's disease, presents significant challenges due to the limitations and side effects of current treatments. This study investigates the potential of natural products, specifically AH and NSO, as organic therapeutic agents for colitis. Molecular docking studies were conducted to identify the binding affinities and interaction mechanisms between the bioactive compounds in AH and NSO and proteins implicated in colitis, such as those involved in inflammation and oxidative stress pathways. An in vivo experiment was performed using an albino mouse model of colitis, with clinical symptoms, histopathological assessments, and biochemical analyses conducted to evaluate the therapeutic effects of the compounds both individually and in combination. Results from the molecular docking studies revealed promising binding interactions between fructose and Prostaglandin G/H synthase 2 (Ptgs2) and between fructose and cellular tumor antigen p53, with docking energy measured at -6.0 kcal/mol and -5.1 kcal/mol, respectively. Meanwhile, the presence of glucose molecule glucokinase chain A (-6.3 kcal/mol) and chain B (-5.8 kcal/mol) indicated potential efficacy in modulating inflammatory pathways. Experimental data demonstrated that treatment with AH and NSO significantly reduced inflammation, improved gut health, and ameliorated colitis symptoms. Histopathological evaluations confirmed reduced mucosal damage and immune cell infiltration, while biochemical analyses showed normalization of inflammatory markers and oxidative stress levels. This study provides compelling evidence for the potential of AH and NSO as natural, complementary treatments for colitis, suggesting their future role in integrative therapeutic strategies. However, further research into long-term safety, optimal dosing, and mechanisms of action is warranted to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Mehwish Bibi
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.B.); (S.K.)
| | - Irfan Baboo
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.B.); (S.K.)
| | - Hamid Majeed
- Department of Food Science and Technology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan;
| | - Santosh Kumar
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.B.); (S.K.)
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, 17 Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
3
|
Wang W, Li J, Pan C, Wang D, Dong J. miR-328-3p suppresses hepatocellular carcinoma progression by regulating HMOX1 expression. Discov Oncol 2024; 15:735. [PMID: 39617834 PMCID: PMC11609136 DOI: 10.1007/s12672-024-01610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025] Open
Abstract
INTRODUCTION Most oncogenic genes contribute to cancer progression, but their role and regulatory mechanisms are not yet fully understood in hepatocellular carcinoma (HCC). This study aimed to explore the role of miR-328-3p and the regulatory relationship between miR-328-3p and HMOX1 in HCC. METHODS We utilized Cox and LASSO regression to identify a panel of oncogenic genes associated with hepatocellular carcinoma (HCC) progression within the TCGA-LIHC cohort and the GSE104580 dataset. The expression levels of the hub gene, HMOX1, were assessed in HCC cell lines using qPCR. The functional roles of miR-328-3p and HMOX1 were evaluated through a series of in vitro assays, including CCK-8 for proliferation, colony formation, wound healing, and Transwell assays for migration and invasion. The direct interaction between miR-328-3p and HMOX1 was explored using a luciferase reporter assay, Western blot (WB) for protein expression analysis, and functional assays to determine the impact on cell proliferation and migration. RESULTS Eight candidate genes (BIRC5, TNSF4, SPP1, HMOX1, ADM, RBP2, IGF1, and LECT2) were screen out. The hub gene HMOX1 among had high expression level in HCC cell lines. High HMOX1 expressing cell line had significantly increased proliferation and migration capacities. Moreover, HMOX1 was identified as a target of miR-328-3p, which regulated the HMOX1 expression in qPCR and WB assays. High miR-328-3p expressing HCC cell had diminished capacities for proliferation and migration. However, concurrent upregulation of HMOX1 expression resulted in enhanced proliferative and migratory abilities in these cells. CONCLUSION Our study has advanced our understanding of the roles of miR-328-3p and HMOX1 in HCC, demonstrating the inhibitory effect of miR-328-3p on the oncogenic activity of HMOX1. Hence, these results revealed the function of miR-328-3p and a novel mechanistic pathway for HCC and suggested the potential therapeutic targeting of miR-328-3p and HMOX1 for HCC intervention strategies.
Collapse
Affiliation(s)
- Weixing Wang
- Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Jiaotong University, Shanghai, 201600, China
| | - Jun Li
- Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Jiaotong University, Shanghai, 201600, China
| | - Changjun Pan
- Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Jiaotong University, Shanghai, 201600, China
| | - Deguo Wang
- Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Jiaotong University, Shanghai, 201600, China.
| | - Jian Dong
- Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Jiaotong University, Shanghai, 201600, China.
| |
Collapse
|
4
|
Li N, Hao L, Li S, Deng J, Yu F, Zhang J, Nie A, Hu X. The NRF-2/HO-1 Signaling Pathway: A Promising Therapeutic Target for Metabolic Dysfunction-Associated Steatotic Liver Disease. J Inflamm Res 2024; 17:8061-8083. [PMID: 39512865 PMCID: PMC11542495 DOI: 10.2147/jir.s490418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder with a rising prevalence. It begins with lipid accumulation in hepatocytes and gradually progresses to Metabolic-associated steatohepatitis (MASH), fibrosis, cirrhosis, and potentially hepatocellular carcinoma (HCC). The pathophysiology of MASLD is complex and involves multiple factors, with oxidative stress playing a crucial role. Oxidative stress drives the progression of MASLD by causing cellular damage, inflammatory responses, and fibrosis, making it a key pathogenic mechanism. The Nuclear Factor Erythroid 2-Related Factor 2 / Heme Oxygenase-1 (Nrf2/HO-1) signaling axis provides robust multi-organ protection against a spectrum of endogenous and exogenous insults, particularly oxidative stress. It plays a pivotal role in mediating antioxidant, anti-inflammatory, and anti-apoptotic responses. Many studies indicate that activating the Nrf2/HO-1 signaling pathway can significantly mitigate the progression of MASLD. This article examines the role of the Nrf2/HO-1 signaling pathway in MASLD and highlights natural compounds that protect against MASLD by targeting Nrf2/HO-1 activation. The findings indicate that the Nrf2/HO-1 signaling pathway holds great promise as a therapeutic target for MASLD.
Collapse
Affiliation(s)
- Na Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Liyuan Hao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Shenghao Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jiali Deng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Fei Yu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junli Zhang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Aiyu Nie
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
5
|
Choi Y, Kim N, Lee DH. The Efficacy and Safety of NOVAponin ( Dolichos lablab Linne Extract Powder) in Mild Functional Dyspepsia: A Single-center, Randomized, Double-Blind, Placebo-controlled Study. J Neurogastroenterol Motil 2024; 30:468-479. [PMID: 39397624 PMCID: PMC11474556 DOI: 10.5056/jnm23180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 10/15/2024] Open
Abstract
Background/Aims NOVAponin, a functional health food derived from Dolichos lablab Linne extract improves gastric mucosal injury and increases regeneration and proliferation. This study aims to investigate the efficacy and safety of NOVAponin in individuals with mild functional dyspepsia (FD). Methods In this single-center, double-blind, randomized clinical trial, 131 patients with FD meeting the Rome IV criteria were enrolled. Changes in the gastrointestinal symptom rating scale (GSRS), FD-related quality of life (FD-QoL), gastrointestinal symptom (GIS) scores, inflammatory and anti-inflammatory markers, and adverse effects before and after administration were compared. Results After 12 weeks of administration, GSRS upper abdominal symptom scores were significantly improved in the test group compared to the control group (-5.30 ± 0.60 vs -2.35 ± 0.56, P < 0.001). GSRS upper abdominal symptom scores (-5.13 ± 0.55 vs -1.92 ± 0.44, P < 0.001), GSRS total scores (-7.02 ± 0.91 vs -3.33 ± 0.73, P < 0.001), GIS total scores (-11.21 ± 0.53 vs -6.65 ± 0.70, P < 0.001) after 6 weeks of administration, GSRS total scores (-7.54 ± 0.94 v. -3.31 ± 0.85, P < 0.001), GIS total scores (-11.90 ± 0.52 vs -7.61 ± 0.73, P < 0.001), and FD-QoL total scores (-11.41 ± 1.75 vs -5.55 ± 1.20, P = 0.007) after 12 weeks of administration also showed significant differences between groups. The differences were slightly more pronounced in epigastric pain syndrome subtypes and in females than the others, although more females were assigned to the test group. There were no significant changes in inflammatory and anti-inflammatory markers or adverse reactions. Conclusion NOVAponin significantly improved mild FD symptoms especially in epigastric pain syndrome subtype and in females, and was found to be safe.
Collapse
Affiliation(s)
- Yonghoon Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Alamoudi JA, El-Masry TA, El-Nagar MMF, El Zahaby EI, Elmorshedy KE, Gaballa MMS, Alshawwa SZ, Alsunbul M, Alharthi S, Ibrahim HA. Chitosan/hesperidin nanoparticles formulation: a promising approach against ethanol-induced gastric ulcers via Sirt1/FOXO1/PGC-1α/HO-1 pathway. Front Pharmacol 2024; 15:1433793. [PMID: 39314751 PMCID: PMC11417028 DOI: 10.3389/fphar.2024.1433793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Hesperidin (Hes) protects different organs from damage by acting as a potent antioxidant and anti-inflammatory. This study aims to evaluate the gastroprotective effects of free hesperidin and its chitosan nanoparticles (HNPs) against ethanol-induced gastric ulcers in rats, hypothesizing that HNPs will enhance bioavailability and therapeutic efficacy due to improved solubility and targeted delivery. HNPs were synthesized via ion gelation and characterized using TEM, SEM, and zeta potential analyses. Key assessments included gastric acidity, histological analysis, and markers of inflammation, oxidative stress, and apoptosis. HNPs significantly decreased gastric acidity, reduced inflammatory and apoptotic markers, and enhanced antioxidant enzyme activities compared to free hesperidin and esomeprazole. Furthermore, Sirt-1, PGC-1α, HO-1, and FOXO1 gene expression were also evaluated. HNPs raised Sirt-1, PGC-1α, HO-1, and downregulated FOXO1, and they suppressed the activities of NF-κB p65, COX-2, IL-1β, CD86, FOXO1 P53, and caspase-3 and increased Sirt-1 activity. HNPs treatment notably restored antioxidant enzyme activity, reduced oxidative stress and inflammatory markers, and improved histological outcomes more effectively than free hesperidin and esomeprazole. These results indicate that chitosan nanoparticles significantly enhance the gastroprotective effects of hesperidin against ethanol-induced gastric ulcers, potentially offering a more effective therapeutic strategy. Further research should explore the clinical applications of HNPs in human subjects.
Collapse
Affiliation(s)
- Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Kadreya E. Elmorshedy
- Department of Anatomy, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Anatomy, King Khaled College of Medicine, Riyadh, Saudi Arabia
| | - Mohamed M. S. Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maha Alsunbul
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sitah Alharthi
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | - Hanaa A. Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
7
|
Wang Z, Zhou W, Zhang Z, Zhang L, Li M. Metformin alleviates spinal cord injury by inhibiting nerve cell ferroptosis through upregulation of heme oxygenase-1 expression. Neural Regen Res 2024; 19:2041-2049. [PMID: 38227534 DOI: 10.4103/1673-5374.390960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/18/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00037/figure1/v/2024-01-16T170235Z/r/image-tiff Previous studies have reported upregulation of heme oxygenase-1 in different central nervous system injury models. Heme oxygenase-1 plays a critical anti-inflammatory role and is essential for regulating cellular redox homeostasis. Metformin is a classic drug used to treat type 2 diabetes that can inhibit ferroptosis. Previous studies have shown that, when used to treat cardiovascular and digestive system diseases, metformin can also upregulate heme oxygenase-1 expression. Therefore, we hypothesized that heme oxygenase-1 plays a significant role in mediating the beneficial effects of metformin on neuronal ferroptosis after spinal cord injury. To test this, we first performed a bioinformatics analysis based on the GEO database and found that heme oxygenase-1 was upregulated in the lesion of rats with spinal cord injury. Next, we confirmed this finding in a rat model of T9 spinal cord compression injury that exhibited spinal cord nerve cell ferroptosis. Continuous intraperitoneal injection of metformin for 14 days was found to both upregulate heme oxygenase-1 expression and reduce neuronal ferroptosis in rats with spinal cord injury. Subsequently, we used a lentivirus vector to knock down heme oxygenase-1 expression in the spinal cord, and found that this significantly reduced the effect of metformin on ferroptosis after spinal cord injury. Taken together, these findings suggest that metformin inhibits neuronal ferroptosis after spinal cord injury, and that this effect is partially dependent on upregulation of heme oxygenase-1.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhixiong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Lulu Zhang
- Department of Nephrology, Nanchang People's Hospital Affiliated to Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
8
|
Yuan L, Wang Y, Li N, Yang X, Sun X, Tian H, Zhang Y. Mechanism of Action and Therapeutic Implications of Nrf2/HO-1 in Inflammatory Bowel Disease. Antioxidants (Basel) 2024; 13:1012. [PMID: 39199256 PMCID: PMC11351392 DOI: 10.3390/antiox13081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress (OS) is a key factor in the generation of various pathophysiological conditions. Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) is a major transcriptional regulator of antioxidant reactions. Heme oxygenase-1 (HO-1), a gene regulated by Nrf2, is one of the most critical cytoprotective molecules. In recent years, Nrf2/HO-1 has received widespread attention as a major regulatory pathway for intracellular defense against oxidative stress. It is considered as a potential target for the treatment of inflammatory bowel disease (IBD). This review highlights the mechanism of action and therapeutic significance of Nrf2/HO-1 in IBD and IBD complications (intestinal fibrosis and colorectal cancer (CRC)), as well as the potential of phytochemicals targeting Nrf2/HO-1 in the treatment of IBD. The results suggest that the therapeutic effects of Nrf2/HO-1 on IBD mainly involve the following aspects: (1) Controlling of oxidative stress to reduce intestinal inflammation and injury; (2) Regulation of intestinal flora to repair the intestinal mucosal barrier; and (3) Prevention of ferroptosis in intestinal epithelial cells. However, due to the complex role of Nrf2/HO-1, a more nuanced understanding of the exact mechanisms involved in Nrf2/HO-1 is the way forward for the treatment of IBD in the future.
Collapse
Affiliation(s)
- Lingling Yuan
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Yingyi Wang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Na Li
- Department of Infection, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China;
| | - Xuli Yang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Xuhui Sun
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Huai’e Tian
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Yi Zhang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| |
Collapse
|
9
|
Liu HH, Zhang L, Yang F, Qian LL, Wang RX. The role and mechanism of heme oxygenase-1 in arrhythmias. J Mol Med (Berl) 2024; 102:1001-1007. [PMID: 38937302 DOI: 10.1007/s00109-024-02462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
The global incidence and prevalence of arrhythmias are continuously increasing. However, the precise mechanisms of underlying arrhythmogenesis and the optimal measures for effective treatment remain incompletely understood. The inducible form of heme oxygenase, known as heme oxygenase-1 (HO-1), is recognized as a potent antioxidant molecule capable of exerting anti-inflammatory and anti-apoptotic effects. Recent research indicates that HO-1 plays a role in preventing arrhythmias by mitigating cardiac remodeling, including electrical remodeling, ion remodeling, and structural remodeling. This review aimed to consolidate current knowledge regarding the involvement of HO-1 in arrhythmias and elucidate its underlying mechanisms of action.
Collapse
Affiliation(s)
- Huan-Huan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Lei Zhang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Fan Yang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Ru-Xing Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
10
|
van Gorp C, de Lange IH, Hütten MC, López-Iglesias C, Massy KRI, Kessels L, Knoops K, Cuijpers I, Sthijns MMJPE, Troost FJ, van Gemert WG, Spiller OB, Birchenough GMH, Zimmermann LJI, Wolfs TGAM. Antenatal Ureaplasma Infection Causes Colonic Mucus Barrier Defects: Implications for Intestinal Pathologies. Int J Mol Sci 2024; 25:4000. [PMID: 38612809 PMCID: PMC11011967 DOI: 10.3390/ijms25074000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Chorioamnionitis is a risk factor for necrotizing enterocolitis (NEC). Ureaplasma parvum (UP) is clinically the most isolated microorganism in chorioamnionitis, but its pathogenicity remains debated. Chorioamnionitis is associated with ileal barrier changes, but colonic barrier alterations, including those of the mucus barrier, remain under-investigated, despite their importance in NEC pathophysiology. Therefore, in this study, the hypothesis that antenatal UP exposure disturbs colonic mucus barrier integrity, thereby potentially contributing to NEC pathogenesis, was investigated. In an established ovine chorioamnionitis model, lambs were intra-amniotically exposed to UP or saline for 7 d from 122 to 129 d gestational age. Thereafter, colonic mucus layer thickness and functional integrity, underlying mechanisms, including endoplasmic reticulum (ER) stress and redox status, and cellular morphology by transmission electron microscopy were studied. The clinical significance of the experimental findings was verified by examining colon samples from NEC patients and controls. UP-exposed lambs have a thicker but dysfunctional colonic mucus layer in which bacteria-sized beads reach the intestinal epithelium, indicating undesired bacterial contact with the epithelium. This is paralleled by disturbed goblet cell MUC2 folding, pro-apoptotic ER stress and signs of mitochondrial dysfunction in the colonic epithelium. Importantly, the colonic epithelium from human NEC patients showed comparable mitochondrial aberrations, indicating that NEC-associated intestinal barrier injury already occurs during chorioamnionitis. This study underlines the pathogenic potential of UP during pregnancy; it demonstrates that antenatal UP infection leads to severe colonic mucus barrier deficits, providing a mechanistic link between antenatal infections and postnatal NEC development.
Collapse
Affiliation(s)
- Charlotte van Gorp
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.v.G.); (M.C.H.); (K.R.I.M.); (L.K.); (L.J.I.Z.)
| | - Ilse H. de Lange
- Department of Pediatrics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Matthias C. Hütten
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.v.G.); (M.C.H.); (K.R.I.M.); (L.K.); (L.J.I.Z.)
- Neonatology, Department of Pediatrics, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Carmen López-Iglesias
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, 6211 LK Maastricht, The Netherlands; (C.L.-I.); (K.K.)
| | - Kimberly R. I. Massy
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.v.G.); (M.C.H.); (K.R.I.M.); (L.K.); (L.J.I.Z.)
| | - Lilian Kessels
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.v.G.); (M.C.H.); (K.R.I.M.); (L.K.); (L.J.I.Z.)
| | - Kèvin Knoops
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, 6211 LK Maastricht, The Netherlands; (C.L.-I.); (K.K.)
| | - Iris Cuijpers
- Food Innovation and Health, Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 5911 BV Venlo, The Netherlands; (I.C.); (M.M.J.P.E.S.); (F.J.T.)
| | - Mireille M. J. P. E. Sthijns
- Food Innovation and Health, Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 5911 BV Venlo, The Netherlands; (I.C.); (M.M.J.P.E.S.); (F.J.T.)
| | - Freddy J. Troost
- Food Innovation and Health, Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 5911 BV Venlo, The Netherlands; (I.C.); (M.M.J.P.E.S.); (F.J.T.)
| | - Wim G. van Gemert
- Department of Surgery, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Owen B. Spiller
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XW, UK;
| | - George M. H. Birchenough
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Luc J. I. Zimmermann
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.v.G.); (M.C.H.); (K.R.I.M.); (L.K.); (L.J.I.Z.)
| | - Tim G. A. M. Wolfs
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands; (C.v.G.); (M.C.H.); (K.R.I.M.); (L.K.); (L.J.I.Z.)
- Department of Biomedical Engineering (BMT), School for Cardiovascular Diseases (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
11
|
Jayanti S, Vitek L, Verde CD, Llido JP, Sukowati C, Tiribelli C, Gazzin S. Role of Natural Compounds Modulating Heme Catabolic Pathway in Gut, Liver, Cardiovascular, and Brain Diseases. Biomolecules 2024; 14:63. [PMID: 38254662 PMCID: PMC10813662 DOI: 10.3390/biom14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The crucial physiological process of heme breakdown yields biliverdin (BV) and bilirubin (BR) as byproducts. BV, BR, and the enzymes involved in their production (the "yellow players-YP") are increasingly documented as endogenous modulators of human health. Mildly elevated serum bilirubin concentration has been correlated with a reduced risk of multiple chronic pro-oxidant and pro-inflammatory diseases, especially in the elderly. BR and BV per se have been demonstrated to protect against neurodegenerative diseases, in which heme oxygenase (HMOX), the main enzyme in the production of pigments, is almost always altered. HMOX upregulation has been interpreted as a tentative defense against the ongoing pathologic mechanisms. With the demonstration that multiple cells possess YP, their propensity to be modulated, and their broad spectrum of activity on multiple signaling pathways, the YP have assumed the role of an adjustable system that can promote health in adults. Based on that, there is an ongoing effort to induce their activity as a therapeutic option, and natural compounds are an attractive alternative to the goal, possibly requiring only minimal changes in the life style. We review the most recent evidence of the potential of natural compounds in targeting the YP in the context of the most common pathologic condition of adult and elderly life.
Collapse
Affiliation(s)
- Sri Jayanti
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 12000 Prague, Czech Republic;
| | - Camilla Dalla Verde
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
| | - John Paul Llido
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
- Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City 1631, Philippines
| | - Caecilia Sukowati
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Claudio Tiribelli
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
| | - Silvia Gazzin
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
| |
Collapse
|
12
|
Song J, Fang X, Zhou K, Bao H, Li L. Sepsis‑induced cardiac dysfunction and pathogenetic mechanisms (Review). Mol Med Rep 2023; 28:227. [PMID: 37859613 PMCID: PMC10619129 DOI: 10.3892/mmr.2023.13114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023] Open
Abstract
Sepsis is a manifestation of the immune and inflammatory response to infection, which may lead to multi‑organ failure. Health care advances have improved outcomes in critical illness, but it still remains the leading cause of death. Septic cardiomyopathy is heart dysfunction brought on by sepsis. Septic cardiomyopathy is a common consequence of sepsis and has a mortality rate of up to 70%. There is a lack of understanding of septic cardiomyopathy pathogenesis; knowledge of its pathogenesis and the identification of potential therapeutic targets may reduce the mortality rate of patients with sepsis and lead to clinical improvements. The present review aimed to summarize advances in the pathogenesis of cardiac dysfunction in sepsis, with a focus on mitochondrial dysfunction, metabolic changes and cell death modalities and pathways. The present review summarized diagnostic criteria and outlook for sepsis treatment, with the goal of identifying appropriate treatment methods for this disease.
Collapse
Affiliation(s)
- Jiayu Song
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Xiaolei Fang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Kaixuan Zhou
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Huiwei Bao
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Lijing Li
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| |
Collapse
|
13
|
Afsar A, Chen M, Xuan Z, Zhang L. A glance through the effects of CD4 + T cells, CD8 + T cells, and cytokines on Alzheimer's disease. Comput Struct Biotechnol J 2023; 21:5662-5675. [PMID: 38053545 PMCID: PMC10694609 DOI: 10.1016/j.csbj.2023.10.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Unfortunately, despite numerous studies, an effective treatment for AD has not yet been established. There is remarkable evidence indicating that the innate immune mechanism and adaptive immune response play significant roles in the pathogenesis of AD. Several studies have reported changes in CD8+ and CD4+ T cells in AD patients. This mini-review article discusses the potential contribution of CD4+ and CD8+ T cells reactivity to amyloid β (Aβ) protein in individuals with AD. Moreover, this mini-review examines the potential associations between T cells, heme oxygenase (HO), and impaired mitochondria in the context of AD. While current mathematical models of AD have not extensively addressed the inclusion of CD4+ and CD8+ T cells, there exist models that can be extended to consider AD as an autoimmune disease involving these T cell types. Additionally, the mini-review covers recent research that has investigated the utilization of machine learning models, considering the impact of CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Min Chen
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
14
|
Cicek B, Danısman B, Yildirim S, Yuce N, Nikitovic D, Bolat I, Kuzucu M, Ceyran E, Bardas E, Golokhvast KS, Tsatsakis A, Taghizadehghalehjoughi A. Flavonoid-Rich Sambucus nigra Berry Extract Enhances Nrf2/HO-1 Signaling Pathway Activation and Exerts Antiulcerative Effects In Vivo. Int J Mol Sci 2023; 24:15486. [PMID: 37895164 PMCID: PMC10607857 DOI: 10.3390/ijms242015486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Sambucus nigra (SN) berry extract is characterized by high antioxidant and anti-inflammatory activity. The current study aimed to investigate the effect of SN berry extract against indomethacin (IND)-induced gastric ulcer in rats and the mechanism involved. SN berry extract alleviated IND-induced gastric ulcers, as shown by assessing pathological manifestations in the gastric mucosa. These protective effects are attributed to attenuated oxidative damage to the gastric mucosa, correlated to increased activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), enhanced glutathione (GSH) levels, total antioxidant capacity (TAC), and upregulation of the Nrf2/HO-1 cascade. Moreover, oxidative stress markers, including malondialdehyde (MDA) and total oxidant status (TOS), were downregulated in SN-extract-treated animals. Furthermore, SN berry extract suppressed gastric mucosal inflammation by downregulating interleukin (IL)-33, IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels, and attenuating myeloperoxidase (MPO) activity. The protective effects of SN berry extract were similar to those exerted by esomeprazole (ESO), an acid-secretion-suppressive drug. In conclusion, SN berry extract has antiulcerative effects, alleviating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100 Erzincan, Turkey; (B.C.); (E.B.)
| | - Betul Danısman
- Department of Biophysics, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey;
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, 25240 Erzurum, Turkey; (S.Y.); (I.B.)
| | - Neslihan Yuce
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey;
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, 25240 Erzurum, Turkey; (S.Y.); (I.B.)
| | - Mehmet Kuzucu
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yildirim University, 24100 Erzincan, Turkey;
| | - Ertuğrul Ceyran
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, 41000 Agri, Turkey;
| | - Ebru Bardas
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100 Erzincan, Turkey; (B.C.); (E.B.)
| | - Kirill S. Golokhvast
- Siberian Federal Scientific Centre of Agrobiotechnology RAS, 2B Centralnaya Street, 630501 Krasnoobsk, Russia;
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Ali Taghizadehghalehjoughi
- Department of Medical Pharmacology, Faculty of Medicine, Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey;
| |
Collapse
|
15
|
Silva LDD, Pinheiro JLS, Rodrigues LHM, Santos VMRD, Borges JLF, Oliveira RRD, Maciel LG, Araújo TDSL, Martins CDS, Gomes DA, Lira EC, Souza MHLP, Medeiros JVR, Damasceno ROS. Crucial role of carbon monoxide as a regulator of diarrhea caused by cholera toxin: Evidence of direct interaction with toxin. Biochem Pharmacol 2023; 216:115791. [PMID: 37689274 DOI: 10.1016/j.bcp.2023.115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The present study evaluated the role of heme oxygenase 1 (HO-1)/carbon monoxide (CO) pathway in the cholera toxin-induced diarrhea and its possible action mechanism. The pharmacological modulation with CORM-2 (a CO donor) or Hemin (a HO-1 inducer) decreased the intestinal fluid secretion and Cl- efflux, altered by cholera toxin. In contrast, ZnPP (a HO-1 inhibitor) reversed the antisecretory effect of Hemin and potentiated cholera toxin-induced intestinal secretion. Moreover, CORM-2 also prevented the alteration of intestinal epithelial architecture and local vascular permeability promoted by cholera toxin. The intestinal absorption was not altered by any of the pharmacological modulators. Cholera toxin inoculation also increased HO-1 immunoreactivity and bilirubin levels, a possible protective physiological response. Finally, using fluorometric technique, ELISA assay and molecular docking simulations, we show evidence that CO directly interacts with cholera toxin, forming a complex that affects its binding to GM1 receptor, which help explain the antisecretory effect. Thus, CO is an essential molecule for protection against choleric diarrhea and suggests its use as a possible therapeutic tool.
Collapse
Affiliation(s)
- Lorena Duarte da Silva
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | | | | | | | | - Dayane Aparecida Gomes
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | - Eduardo Carvalho Lira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Jand Venes Rolim Medeiros
- Biotechnology and Biodiversity Center Research, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | | |
Collapse
|
16
|
Fan C, Chu G, Yu Z, Ji Z, Kong F, Yao L, Wang J, Geng D, Wu X, Mao H. The role of ferroptosis in intervertebral disc degeneration. Front Cell Dev Biol 2023; 11:1219840. [PMID: 37576601 PMCID: PMC10413580 DOI: 10.3389/fcell.2023.1219840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Nucleus pulposus, annulus fibrosus, and cartilage endplate constitute an avascular intervertebral disc (IVD), which is crucial for spinal and intervertebral joint mobility. As one of the most widespread health issues worldwide, intervertebral disc degeneration (IVDD) is recognized as a key contributor to back and neck discomfort. A number of degenerative disorders have a strong correlation with ferroptosis, a recently identified novel regulated cell death (RCD) characterized by an iron-dependent mechanism and a buildup of lipid reactive oxygen species (ROS). There is growing interest in the part ferroptosis plays in IVDD pathophysiology. Inhibiting ferroptosis has been shown to control IVDD development. Several studies have demonstrated that in TBHP-induced oxidative stress models, changes in ferroptosis marker protein levels and increased lipid peroxidation lead to the degeneration of intervertebral disc cells, which subsequently aggravates IVDD. Similarly, IVDD is significantly relieved with the use of ferroptosis inhibitors. The purpose of this review was threefold: 1) to discuss the occurrence of ferroptosis in IVDD; 2) to understand the mechanism of ferroptosis and its role in IVDD pathophysiology; and 3) to investigate the feasibility and prospect of ferroptosis in IVDD treatment.
Collapse
Affiliation(s)
- Chunyang Fan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zilin Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhongwei Ji
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Pain Management, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fanchen Kong
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lingye Yao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiale Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xiexing Wu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Haiqing Mao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
17
|
Seika P, Janikova M, Asokan S, Janovicova L, Csizmadia E, O’Connell M, Robson SC, Glickman J, Wegiel B. Free heme exacerbates colonic injury induced by anti-cancer therapy. Front Immunol 2023; 14:1184105. [PMID: 37342339 PMCID: PMC10277564 DOI: 10.3389/fimmu.2023.1184105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Gastrointestinal inflammation and bleeding are commonly induced by cancer radiotherapy and chemotherapy but mechanisms are unclear. We demonstrated an increased number of infiltrating heme oxygenase-1 positive (HO-1+) macrophages (Mø, CD68+) and the levels of hemopexin (Hx) in human colonic biopsies from patients treated with radiation or chemoradiation versus non-irradiated controls or in the ischemic intestine compared to matched normal tissues. The presence of rectal bleeding in these patients was also correlated with higher HO-1+ cell infiltration. To functionally assess the role of free heme released in the gut, we employed myeloid-specific HO-1 knockout (LysM-Cre : Hmox1flfl), hemopexin knockout (Hx-/-) and control mice. Using LysM-Cre : Hmox1flfl conditional knockout (KO) mice, we showed that a deficiency of HO-1 in myeloid cells led to high levels of DNA damage and proliferation in colonic epithelial cells in response to phenylhydrazine (PHZ)-induced hemolysis. We found higher levels of free heme in plasma, epithelial DNA damage, inflammation, and low epithelial cell proliferation in Hx-/- mice after PHZ treatment compared to wild-type mice. Colonic damage was partially attenuated by recombinant Hx administration. Deficiency in Hx or Hmox1 did not alter the response to doxorubicin. Interestingly, the lack of Hx augmented abdominal radiation-mediated hemolysis and DNA damage in the colon. Mechanistically, we found an altered growth of human colonic epithelial cells (HCoEpiC) treated with heme, corresponding to an increase in Hmox1 mRNA levels and heme:G-quadruplex complexes-regulated genes such as c-MYC, CCNF, and HDAC6. Heme-treated HCoEpiC cells exhibited growth advantage in the absence or presence of doxorubicin, in contrast to poor survival of heme-stimulated RAW247.6 Mø. In summary, our data indicate that accumulation of heme in the colon following hemolysis and/or exposure to genotoxic stress amplifies DNA damage, abnormal proliferation of epithelial cells, and inflammation as a potential etiology for gastrointestinal syndrome (GIS).
Collapse
Affiliation(s)
- Philippa Seika
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Monika Janikova
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Sahana Asokan
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Lubica Janovicova
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Eva Csizmadia
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mckenzie O’Connell
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Simon C. Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jonathan Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Barbara Wegiel
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Gao Y, Li M, Wang B, Ma Y. Prognostic value of Nrf2/HO-1 expression and its correlation with occurrence in esophageal squamous cell carcinoma. Genes Genomics 2023; 45:723-739. [PMID: 37043130 DOI: 10.1007/s13258-023-01371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/16/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is thought to be started and developed by genes associated with inflammation. A cancer's ability to spread and grow can be aided by nuclear factor erythroid-2 related factor 2 (Nrf2) hyperactivation, which can also make a tumor more resistant to chemotherapy and radiation treatment. However, it is still unknown how Nrf2 gene expression affects ESCC prognosis and controls function throughout ESCC advancement. OBJECTIVE The expression of Nrf2 and HO-1 in ESCC and precancerous esophageal precancerous lesions was analyzed, and their relationship with esophageal squamous cell carcinoma was analyzed. METHODS Immunohistochemistry (IHC) was used to confirm the expression of Nrf2 and heme oxygenase-1 (HO-1) proteins in tissue microarrays from Chinese populations with ESCC. We looked at the connections between Nrf2/HO-1 expression and invading immune cells using the TIMER database. RESULTS Ethnicity and N stage are associated with Nrf2 overexpression. Differentiation, N stage, vascular invasion, distant metastasis, and American Joint Committee on Cancer (AJCC) staging are all associated with HO-1 overexpression. The expression of Nrf2 and HO-1 had a favorable correlation. Patients with elevated Nrf2 and HO-1 expression had lower progression-free survival (PFS) and overall survival (OS). In high-grade intraepithelial neoplasia, Nrf2 and HO-1 expression generally occurred, partially in low-grade intraepithelial neoplasia specimens, and rarely in normal mucosa. We further show that Nrf2 suppression is linked to higher immunological marker expression and lower immune cell infiltration. CONCLUSION The prognosis of ESCC may be improved by inhibiting the expression of Nrf2 and HO-1. A lack of immune cells was seen in ESCC with Nrf2 impairment.
Collapse
Affiliation(s)
- Yongmei Gao
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mengyan Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bo Wang
- Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yuqing Ma
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
19
|
Xiong Y, Wei H, Chen C, Jiao L, Zhang J, Tan Y, Zeng L. Coptisine attenuates post‑infectious IBS via Nrf2‑dependent inhibition of the NLPR3 inflammasome. Mol Med Rep 2022; 26:362. [PMID: 36281933 DOI: 10.3892/mmr.2022.12879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
Inhibition of the activation of the NLR family pyrin domain‑containing 3 (NLRP3) inflammasome has previously been reported to confer protection against post‑infectious irritable bowel syndrome (PI‑IBS). Coptisine, the second most abundant isoquinoline alkaloid in Coptis chinensis, can inhibit NLRP3 inflammasome activation; however, whether coptisine exhibits protective effects against PI‑IBS remains unclear. In the present study, coptisine significantly reduced gastrointestinal motility and abdominal withdrawal reflex scores in a PI‑IBS rat model that was induced using intragastric administration of Trichinella spiralis larvae. Coptisine treatment significantly decreased the protein levels of oxidative stress markers, 4‑hydroxynonenal, protein carbonyl and 8‑hydroxy‑2'deoxyguanosine, and proinflammatory cytokines, TNF‑α, IL‑1β and IL‑18 in the colon of PI‑IBS rats. Moreover, coptisine treatment significantly increased nuclear factor erythroid 2‑related factor 2 (Nrf2) nuclear translocation and heme oxygenase‑1 protein expression levels, while significantly downregulating the protein expression levels of NLRP3, apoptosis‑associated speck‑like protein containing a CARD and caspase‑1 in the colons of PI‑IBS rats. It is important to note that the anti‑inflammatory effects of coptisine were blocked by the Nrf2 inhibitor ML385. In summary, the present study indicated that coptisine potentially attenuated PI‑IBS in rats via Nrf2‑dependent inhibition of the NLPR3 inflammasome.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, P.R. China
| | - Hong Wei
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Chong Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Lu Jiao
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Juan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Yonggang Tan
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Li Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
20
|
Xie L, Luo M, Li J, Huang W, Tian G, Chen X, Ai Y, Zhang Y, He H, Jinyang He. Gastroprotective mechanism of modified lvdou gancao decoction on ethanol-induced gastric lesions in mice: Involvement of Nrf-2/HO-1/NF-κB signaling pathway. Front Pharmacol 2022; 13:953885. [PMID: 36120337 PMCID: PMC9475313 DOI: 10.3389/fphar.2022.953885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Modified Lvdou Gancao decoction (MLG), a traditional Chinese medicine formula, has been put into clinical use to treat the diseases of the digestive system for a long run, showing great faculty in gastric protection and anti-inflammatory, whereas its protective mechanisms have not been determined. The current study puts the focus on the protective effect and its possible mechanisms of MLG on ethanol-induced gastric lesions in mice. In addition to various gastric lesion parameters and histopathology analysis, the activities of a list of relevant indicators in gastric mucosa were explored including ALDH, ADH, MDA, T-SOD, GSH-Px, and MPO, and the mechanisms were clarified using RT-qPCR, ELISA Western Blot and immunofluorescence staining. The results showed that MLG treatment induced significant increment of ADH, ALDH, T-SOD, GSH-Px, NO, PGE2 and SS activities in gastric tissues, while MPO, MDA, TNF-α and IL-1β levels were on the decline, both in a dose-dependent manner. In contrast to the model group, the mRNA expression of Nrf-2 and HO-1 in the MLG treated groups showed an upward trend while the NF-κB, TNFα, IL-1β and COX2 in the MLG treated groups had a downward trend simultaneously. Furthermore, the protein levels of p65, p-p65, IκBα, p-IκBα, iNOS, COX2 and p38 were inhibited, while Nrf2, HO-1, SOD1, SOD2 and eNOS were ramped up in MLG treatment groups. Immunofluorescence intensities of Nrf2 and HO-1 in the MLG treated groups were considerably enhanced, with p65 and IκBα diminished simultaneously, exhibiting similar trends to that of qPCR and western blot. To sum up, MLG could significantly ameliorate ethanol-induced gastric mucosal lesions in mice, which might be put down to the activation of alcohol metabolizing enzymes, attenuation of the oxidative damage and inflammatory response to maintain the gastric mucosa. The gastroprotective effect of MLG might be achieved through the diminution of damage factors and the enhancement of defensive factors involving NF-κB/Nrf2/HO-1 signaling pathway. We further confirmed that MLG has strong potential in preventing and treating ethanol-induced gastric lesions.
Collapse
Affiliation(s)
- Lei Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Minyi Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Junlin Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenguan Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guangjun Tian
- Liver Diseases Center, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, Guangdong, China
| | - Xiuyun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Ai
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yan Zhang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haolan He
- Guangzhou Eighth People’s Hospital, Guangzhou, Guangdong, China
| | - Jinyang He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Krukowska K, Magierowski M. Carbon monoxide (CO)/heme oxygenase (HO)-1 in gastrointestinal tumors pathophysiology and pharmacology - possible anti- and pro-cancer activities. Biochem Pharmacol 2022; 201:115058. [PMID: 35490732 DOI: 10.1016/j.bcp.2022.115058] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Gastrointestinal (GI) tract cancers pose a significant pharmacological challenge for researchers in terms of the discovery of molecular agents and the development of targeted therapies. Although many ongoing clinical trials have brought new perspectives, there is still a lack of successful long-term treatment. Several novel pharmacological and molecular agents are being studied in the prevention and treatment of GI cancers. On the other hand, pharmacological tools designed to release an endogenous gaseous mediator, carbon monoxide (CO), were shown to prevent the gastric mucosa against various types of injuries and exert therapeutic properties in the treatment of GI pathologies. In this review, we summarized the current evidence on the role of CO and heme oxygenase 1 (HO-1) as a CO producing enzyme in the pathophysiology of GI tumors. We focused on a beneficial role of HO-1 and CO in biological systems and common pathological conditions. We further discussed the complex and ambiguous function of the HO-1/CO pathway in cancer cells with a special emphasis on molecular and cellular pro-cancerous and anti-cancer mechanisms. We also focused on the role that HO-1/CO plays in GI cancers, especially within upper parts such as esophagus or stomach.
Collapse
Affiliation(s)
- Kinga Krukowska
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Poland
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Poland.
| |
Collapse
|
22
|
Khalaf HM, Ahmed SM, Welson NN, Abdelzaher WY. Rivastigmine ameliorates indomethacin experimentally induced gastric mucosal injury via activating α7nAChR with inhibiting oxidative stress and apoptosis. J Biochem Mol Toxicol 2022; 36:e23147. [PMID: 35702939 DOI: 10.1002/jbt.23147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022]
Abstract
The current study aimed to investigate the potential ameliorative role of Rivastigmine (RIVA), the anti-Alzheimer drug, against the gastric mucosal injury caused by indomethacin (IND). The rats were divided into four groups: group I was given a vehicle as a control, group II was given RIVA (0.3 mg/kg) once daily intraperitoneal (ip) for 2 weeks, group III was given a single IP dose of 30 mg/kg IND, and group IV was given RIVA ip 2 weeks before the administration of IND. The gastric mucosal injury was detected by the estimation of ulcer index, gastric acidity, pepsin, and mucin concentrations. Malondialdehyde (MDA), superoxide dismutase (SOD), reduced glutathione (GSH), total nitrite/nitrate (NOx), and the expression of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), nuclear factor kappa B (NF-κB), Hemoxygenase 1 (HO-1), and caspase-3 were all measured in gastric tissue. In addition, histological assessment and proliferating cell nuclear antigen (PCNA) immuno-expression were studied. Gastric mucosal injury induced by IND was indicated by both biochemical and histopathological assessments. RIVA Pretreatment reduced ulcer index, MDA, TNF-α, IL-6, NF-κB, and caspase-3 and increased SOD, GSH, NOx, and HO-1. RIVA improved the suppressed nuclear immunoreaction for PCNA observed with IND. The current findings provide novel evidence that RIVA possesses a prophylactic action against IND-induced gastric mucosal damage in rats. Despite being a cholinergic drug that is associated with increased pepsin and stomach acidity, RIVA protected against IND-induced gastric mucosal injury via activating α7nAChR and inhibiting oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Hanaa M Khalaf
- Department of Pharmacology, Faculty of Medicine, Minia University, El Minia, Egypt
| | - Sabreen M Ahmed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Minia University, delegated to Deraya University-New Minia City, El Minia, Egypt
| | - Nermeen N Welson
- Department of Forensic medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | | |
Collapse
|
23
|
Condorelli M, Speciale A, Cimino F, Muscarà C, Fazio E, D’Urso L, Corsaro C, Neri G, Mezzasalma AM, Compagnini G, Neri F, Saija A. Nano-Hybrid Au@LCCs Systems Displaying Anti-Inflammatory Activity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3701. [PMID: 35629727 PMCID: PMC9143445 DOI: 10.3390/ma15103701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022]
Abstract
Gold nanoparticles (Au NPs) have received great attention owing to their biocompatible nature, environmental, and widespread biomedical applications. Au NPs are known as capable to regulate inflammatory responses in several tissues and organs; interestingly, lower toxicity in conjunction with anti-inflammatory effects was reported to occur with Au NPs treatment. Several variables drive this benefit-risk balance, including Au NPs physicochemical properties such as their morphology, surface chemistry, and charge. In our research we prepared hybrid Au@LCC nanocolloids by the Pulsed Laser Ablation, which emerged as a suitable chemically clean technique to produce ligand-free or functionalized nanomaterials, with tight control on their properties (product purity, crystal structure selectivity, particle size distribution). Here, for the first time to our knowledge, we have investigated the bioproperties of Au@LCCs. When tested in vitro on intestinal epithelial cells exposed to TNF-α, Au@LCCs sample at the ratio of 2.6:1 showed a significantly reduced TNF gene expression and induced antioxidant heme oxygenase-1 gene expression better than the 1:1 dispersion. Although deeper investigations are needed, these findings indicate that the functionalization with LCCs allows a better interaction of Au NPs with targets involved in the cell redox status and inflammatory signaling.
Collapse
Affiliation(s)
- Marcello Condorelli
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (M.C.); (L.D.); (G.C.)
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (F.C.); (C.M.); (G.N.)
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (F.C.); (C.M.); (G.N.)
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (F.C.); (C.M.); (G.N.)
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (E.F.); (C.C.); (A.M.M.)
| | - Luisa D’Urso
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (M.C.); (L.D.); (G.C.)
| | - Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (E.F.); (C.C.); (A.M.M.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (F.C.); (C.M.); (G.N.)
| | - Angela Maria Mezzasalma
- Department of Mathematical and Computational Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (E.F.); (C.C.); (A.M.M.)
| | - Giuseppe Compagnini
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (M.C.); (L.D.); (G.C.)
| | - Fortunato Neri
- Department of Mathematical and Computational Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (E.F.); (C.C.); (A.M.M.)
| | - Antonina Saija
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (F.C.); (C.M.); (G.N.)
| |
Collapse
|
24
|
卢 一, 吴 俊, 蒋 文, 刘 江, 且 华, 孙 红, 汤 礼. [Abdominal puncture drainage alleviates severe acute pancreatitis in rats by activating Nrf-2/HO-1 pathway and promoting autophagy]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:561-567. [PMID: 35527492 PMCID: PMC9085580 DOI: 10.12122/j.issn.1673-4254.2022.04.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To assess the effect of early abdominal puncture drainage (APD) on autophagy and Nrf-2/HO-1 pathway in rats with severe acute pancreatitis (SAP) and explore the possibile mechanism. METHODS Thirty-two male SD rats were randomly divided into sham-operated (SO) group, SAP group with retrograde injection of 4% sodium taurocholate, APD group with insertion of a drainage tube into the lower right abdomen after SAP induction, and APD + ZnPP group with intraperitoneal injection of 30 mg/kg ZnPP 12 h before APD modeling. Blood samples were collected from the rats 12 h after modeling for analysis of amylase and lipase levels and serum inflammatory factors. The pathological changes of the pancreatic tissue were observed with HE staining. Oxidative stress in the pancreatic tissue was detected with colorimetry, and sub-organelle structure and autophagy in pancreatic acinar cells were observed by transmission electron microscopy. The expressions of autophagy-related proteins and Nrf-2/HO-1 pathway were detected using RT-PCR and Western blotting. RESULTS Compared with those in SAP group, the rats with APD treatment showed significantly alleviated pathologies in the pancreas, reduced serum levels of lipase, amylase and inflammatory factors, lowered levels of oxidative stress, and activated expressions of Nrf-2/HO-1 pathway in the pancreas. The ameliorating effect of ADP was significantly inhibited by ZnPP treatment before modeling. APD obviously reversed mitochondrial and endoplasmic reticulum damages and p62 accumulation induced by SAP. CONCLUSION APD treatment can suppress oxidative stress and repair impaired autophagy in rats with SAP by activating the Nrf-2/HO-1 pathway, thereby reducing the severity of SAP.
Collapse
Affiliation(s)
- 一琛 卢
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 俊 吴
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 文 蒋
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 江涛 刘
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 华吉 且
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 红玉 孙
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 礼军 汤
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|
25
|
Abstract
Ferroptosis is a novel form of cell death characterized by the iron-dependent accumulation of lipid peroxides and is different from other types of cell death. The mechanisms of ferroptosis are discussed in the review, including System Xc-, Glutathione Peroxidase 4 pathway, Ferroptosis Suppressor Protein 1 and Dihydroorotate Dehydrogenase pathway. Ferroptosis is associated with the occurrence of various diseases, including sepsis. Research in recent years has displayed that ferroptosis is involved in sepsis occurrence and development. Iron chelators can inhibit the development of sepsis and improve the survival rate of septic mice. The ferroptotic cells can release damage-associated molecular patterns and lipid peroxidation, which further mediate inflammatory responses. Ferroptosis inhibitors can resist sepsis-induced multiple organ dysfunction and inflammation. Finally, we reviewed ferroptosis, an iron-dependent form of cell death that is different from other types of cell death in biochemistry, morphology, and major regulatory mechanisms, which is involved in multiple organ injuries caused by sepsis. Exploring the relationship between sepsis and ferroptosis may yield new treatment targets for sepsis.
Collapse
Affiliation(s)
- Yanting Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, People's Republic of China
| | - Sichuang Tan
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yongbin Wu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, People's Republic of China
| | - Sipin Tan
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, People's Republic of China
| |
Collapse
|
26
|
Lu C, Tan C, Ouyang H, Chen Z, Yan Z, Zhang M. Ferroptosis in Intracerebral Hemorrhage: A Panoramic Perspective of the Metabolism, Mechanism and Theranostics. Aging Dis 2022; 13:1348-1364. [PMID: 36186133 PMCID: PMC9466971 DOI: 10.14336/ad.2022.01302] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
Iron is one of the most crucial elements in the human body. In recent years, a kind of programmed, non-apoptotic cell death closely related to iron metabolism-called ferroptosis- has aroused much interest among many scientists. Ferroptosis also interacts with other pathways involved in cell death including iron abnormality, the cystine/glutamate antiporter and lipid peroxidation. Together these pathological pathways exert great impacts on intracerebral hemorrhage (ICH), a lethal cerebrovascular disease with a high incidence rate and mortality rate. Furthermore, the ferroptosis also affects different brain cells (neurons and neuroglial cells) and different organelles (mitochondria and endoplasmic reticulum). Clinical treatments for ferroptosis in ICH have been closely investigated recently. This perspective provides a comprehensive summary of ferroptosis mechanisms after ICH and its interaction with other cell death patterns. Understanding the role of ferroptosis in ICH will open new windows for the future treatments and preventions for ICH and other intracerebral diseases.
Collapse
Affiliation(s)
- Chenxiao Lu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya School of Medicine, Central South University, Changsha, 410031, China
| | - Changwu Tan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya School of Medicine, Central South University, Changsha, 410031, China
| | - Hongfei Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya School of Medicine, Central South University, Changsha, 410031, China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
| | - Zhouyi Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Correspondence should be addressed to: Dr. Mengqi Zhang, Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China. ..
| |
Collapse
|
27
|
Sallam AAM, Darwish SF, El-Dakroury WA, Radwan E. Olmesartan niosomes ameliorates the Indomethacin-induced gastric ulcer in rats: Insights on MAPK and Nrf2/HO-1 signaling pathway. Pharm Res 2021; 38:1821-1838. [PMID: 34853982 DOI: 10.1007/s11095-021-03126-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023]
Abstract
AIMS Gastric ulcer is a continuous worldwide threat that inquires protective agents. Olmesartan (OLM) has potent anti-oxidant and anti-inflammatory characters, yet having limited bioavailability. We targeted the gastro-protective potential and probable mechanism of OLM and its niosomal form against indomethacin (IND) induced-gastric ulcer in rats. MAIN METHODS we prepared OLM niosomes (OLM-NIO) with different surfactant: cholesterol molar ratios. We evaluated particle size, zeta-potential, polydispersity, and entrapment efficiency. In-vitro release study, Fourier transform infrared spectroscopy, differential scanning calorimetry, and transmission electron microscopy were performed for selected niosomes. In-vivo, we used oral Omeprazole (30 mg/kg), OLM or OLM-NIO (10 mg/kg) for 3 days before IND (25 mg/kg) ingestion. We assessed gastric lesions, oxidative and inflammatory markers. KEY FINDINGS OLM-NIO prepared with span 60:cholesterol ratio (1:1) showed high entrapment efficiency 93 ± 2%, small particle size 159.3 ± 6.8 nm, low polydispersity 0.229 ± 0.009, and high zeta-potential -35.3 ± 1.2 mV, with sustained release mechanism by release data. In-vivo macroscopical and histological results showed gastro-protective effects of OLM pretreatment, which improved oxidative stress parameters and enhanced the gastric mucosal cyclooxygenase-1 (COX-1) and prostaglandin E2 (PGE2) contents. OLM pretreatment suppressed interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) contents and translocation of p38 mitogen-activated protein kinase (p38-MAPK). Besides, OLM substantially promoted the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) protective pathway. OLM-NIO furtherly improved all previous outcomes. SIGNIFICANCE We explored OLM anti-ulcerative effects, implicating oxidative stress and inflammation improvement, mediated by the Nrf2/HO-1 signaling pathway and p38-MAPK translocation. Meanwhile, the more bioavailable OLM-NIO achieved better gastro-protective effects compared to conventional OLM form.
Collapse
Affiliation(s)
- Al-Aliaa M Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain-Shams University, Abassia, Cairo, 11566, Egypt
- Biochemistry Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Samar F Darwish
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Eman Radwan
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, 71515, Assiut, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut 10, Egypt
| |
Collapse
|
28
|
Yang X, Lu W, Wang M, Tan C, Wang B. "CO in a pill": Towards oral delivery of carbon monoxide for therapeutic applications. J Control Release 2021; 338:593-609. [PMID: 34481027 PMCID: PMC8526413 DOI: 10.1016/j.jconrel.2021.08.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
Along with the impressive achievements in understanding the endogenous signaling roles and mechanism(s) of action of carbon monoxide (CO), much research has demonstrated the potential of using CO as a therapeutic agent for treating various diseases. Because of CO's toxicity at high concentrations and the observed difference in toxicity profiles of CO depending on the route of administration, this review analyzes and presents the benefits of developing orally active CO donors. Such compounds have the potential for improved safety profiles, enhancing the chance for developing CO-based therapeutics. In this review, the difference between inhalation and oral administration in terms of toxicity, CO delivery efficiency, and the potential mechanism(s) of action is analyzed. The evolution from CO gas inhalation to oral administration is also extensively analyzed by summarizing published studies up to date. The concept of "CO in a pill" can be achieved by oral administration of novel formulations of CO gas or appropriate CO donors.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Wen Lu
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Minjia Wang
- Department of Pharmaceutical Sciences, University of Mississippi, MS 38677, USA
| | - Chalet Tan
- Department of Pharmaceutical Sciences, University of Mississippi, MS 38677, USA
| | - Binghe Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
29
|
Basiglio CL, Crocenzi FA, Sánchez Pozzi EJ, Roma MG. Oxidative Stress and Localization Status of Hepatocellular Transporters: Impact on Bile Secretion and Role of Signaling Pathways. Antioxid Redox Signal 2021; 35:808-831. [PMID: 34293961 DOI: 10.1089/ars.2021.0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Most hepatopathies are primarily or secondarily cholestatic in nature. Oxidative stress (OS) is a frequent trait among them, and impairs the machinery to generate bile by triggering endocytic internalization of hepatocellular transporters, thus causing cholestasis. This is critical, since it leads to accelerated transporter degradation, which could explain the common post-transcriptional downregulation of transporter expression in human cholestatic diseases. Recent Advances: The mechanisms involved in OS-induced hepatocellular transporter internalization are being revealed. Filamentous actin (F-actin) cytoskeleton disorganization and/or detachment of crosslinking actin proteins that afford transporter stability have been characterized as causal factors. Activation of redox-sensitive signaling pathways leading to changes in phosphorylation status of these structures is involved, including Ca2+-mediated activation of "classical" and "novel" protein kinase C (PKC) isoforms or redox-signaling cascades downstream of NADPH oxidase. Critical Issues: Despite the well-known occurrence of hepatocellular transporter internalization in human hepatopathies, the cholestatic implications of this phenomenon have been overlooked. Accordingly, no specific treatment has been established in the clinical practice for its prevention/reversion. Future Directions: We need to improve our knowledge on the pro-oxidant triggering factors and the multiple signaling pathways that mediate this oxidative injury in each cholestatic hepatopathy, so as to envisage tailor-made therapeutic strategies for each case. Meanwhile, administration of antioxidants or heme oxygenase-1 induction to elevate the hepatocellular levels of the endogenous scavenger bilirubin are promising alternatives that need to be re-evaluated and implemented. They may complement current treatments in cholestasis aimed to enhance transcriptional carrier expression, by providing membrane stability to the newly synthesized carriers. Antioxid. Redox Signal. 35, 808-831.
Collapse
Affiliation(s)
- Cecilia L Basiglio
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| | - Fernando A Crocenzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| | - Enrique J Sánchez Pozzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| |
Collapse
|
30
|
Kim JY, Choi Y, Leem J, Song JE. Heme Oxygenase-1 Induction by Cobalt Protoporphyrin Ameliorates Cholestatic Liver Disease in a Xenobiotic-Induced Murine Model. Int J Mol Sci 2021; 22:ijms22158253. [PMID: 34361019 PMCID: PMC8347179 DOI: 10.3390/ijms22158253] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cholestatic liver diseases can progress to end-stage liver disease and reduce patients' quality of life. Although their underlying mechanisms are still incompletely elucidated, oxidative stress is considered to be a key contributor to these diseases. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that displays antioxidant action. It has been found that this enzyme plays a protective role against various inflammatory diseases. However, the role of HO-1 in cholestatic liver diseases has not yet been investigated. Here, we examined whether pharmacological induction of HO-1 by cobalt protoporphyrin (CoPP) ameliorates cholestatic liver injury. To this end, a murine model of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet feeding was used. Administration of CoPP ameliorated liver damage and cholestasis with HO-1 upregulation in DDC diet-fed mice. Induction of HO-1 by CoPP suppressed the DDC diet-induced oxidative stress and hepatocyte apoptosis. In addition, CoPP attenuated cytokine production and inflammatory cell infiltration. Furthermore, deposition of the extracellular matrix and expression of fibrosis-related genes after DDC feeding were also decreased by CoPP. HO-1 induction decreased the number of myofibroblasts and inhibited the transforming growth factor-β pathway. Altogether, these data suggest that the pharmacological induction of HO-1 ameliorates cholestatic liver disease by suppressing oxidative stress, hepatocyte apoptosis, and inflammation.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Yongmin Choi
- Department of Rehabilitation Medicine, School of Medicine, Keimyung University, Daegu 42601, Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
- Correspondence: (J.L.); (J.E.S.)
| | - Jeong Eun Song
- Department of Internal Medicine, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea
- Correspondence: (J.L.); (J.E.S.)
| |
Collapse
|
31
|
Ríos-Arrabal S, Puentes-Pardo JD, Moreno-SanJuan S, Szuba Á, Casado J, García-Costela M, Escudero-Feliu J, Verbeni M, Cano C, González-Puga C, Martín-Lagos Maldonado A, Carazo Á, León J. Endothelin-1 as a Mediator of Heme Oxygenase-1-Induced Stemness in Colorectal Cancer: Influence of p53. J Pers Med 2021; 11:jpm11060509. [PMID: 34199777 PMCID: PMC8227293 DOI: 10.3390/jpm11060509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an antioxidant protein implicated in tumor progression, metastasis, and resistance to therapy. Elevated HO-1 expression is associated with stemness in several types of cancer, although this aspect has not yet been studied in colorectal cancer (CRC). Using an in vitro model, we demonstrated that HO-1 overexpression regulates stemness and resistance to 5-FU treatment, regardless of p53. In samples from CRC patients, HO-1 and endothelin converting enzyme-1 (ECE-1) expression correlated significantly, and p53 had no influence on this result. Carbon monoxide (CO) activated the ECE-1/endothelin-1 (ET-1) pathway, which could account for the protumoral effects of HO-1 in p53 wild-type cells, as demonstrated after treatment with bosentan (an antagonist of both ETRA and ETRB endothelin-1 receptors). Surprisingly, in cells with a non-active p53 or a mutated p53 with gain-of-function, ECE-1-produced ET-1 acted as a protective molecule, since treatment with bosentan led to increased efficiency for spheres formation and percentage of cancer stem cells (CSCs) markers. In these cells, HO-1 could activate or inactivate certain unknown routes that could induce these contrary responses after treatment with bosentan in our cell model. However more research is warranted to confirm these results. Patients carrying tumors with a high expression of both HO-1 and ECE-1 and a non-wild-type p53 should be considered for HO-1 based-therapies instead of ET-1 antagonists-based ones.
Collapse
Affiliation(s)
- Sandra Ríos-Arrabal
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - Jose D. Puentes-Pardo
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain
| | - Sara Moreno-SanJuan
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Cytometry and Microscopy Research Service, Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain
| | - Ágata Szuba
- Unidad de Gestión Clínica de Cirugía, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jorge Casado
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - María García-Costela
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - Julia Escudero-Feliu
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - Michela Verbeni
- Departamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S. de Ingenierías Informática y de Telecomunicación, Universidad de Granada, 18014 Granada, Spain; (M.V.); (C.C.)
| | - Carlos Cano
- Departamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S. de Ingenierías Informática y de Telecomunicación, Universidad de Granada, 18014 Granada, Spain; (M.V.); (C.C.)
| | - Cristina González-Puga
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Unidad de Gestión Clínica de Cirugía, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
| | - Alicia Martín-Lagos Maldonado
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
| | - Ángel Carazo
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - Josefa León
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958023199
| |
Collapse
|
32
|
Vona R, Pallotta L, Cappelletti M, Severi C, Matarrese P. The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. Antioxidants (Basel) 2021; 10:201. [PMID: 33573222 PMCID: PMC7910878 DOI: 10.3390/antiox10020201] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence shows that oxidative stress plays an essential role in the pathogenesis and progression of many diseases. The imbalance between the production of reactive oxygen species (ROS) and the antioxidant systems has been extensively studied in pulmonary, neurodegenerative cardiovascular disorders; however, its contribution is still debated in gastrointestinal disorders. Evidence suggests that oxidative stress affects gastrointestinal motility in obesity, and post-infectious disorders by favoring the smooth muscle phenotypic switch toward a synthetic phenotype. The aim of this review is to gain insight into the role played by oxidative stress in gastrointestinal pathologies (GIT), and the involvement of ROS in the signaling underlying the muscular alterations of the gastrointestinal tract (GIT). In addition, potential therapeutic strategies based on the use of antioxidants for the treatment of inflammatory gastrointestinal diseases are reviewed and discussed. Although substantial progress has been made in identifying new techniques capable of assessing the presence of oxidative stress in humans, the biochemical-molecular mechanisms underlying GIT mucosal disorders are not yet well defined. Therefore, further studies are needed to clarify the mechanisms through which oxidative stress-related signaling can contribute to the alteration of the GIT mucosa in order to devise effective preventive and curative therapeutic strategies.
Collapse
Affiliation(s)
- Rosa Vona
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Lucia Pallotta
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (L.P.); (M.C.); (C.S.)
| | - Martina Cappelletti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (L.P.); (M.C.); (C.S.)
| | - Carola Severi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (L.P.); (M.C.); (C.S.)
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|