1
|
Rafiq M, Ahmed J, Alturaifi HA, Awwad NS, Ibrahium HA, Mir S, Maalik A, Sabahat S, Hassan S, Khan ZUH. Recent developments in the biomedical and anticancer applications of chitosan derivatives. Int J Biol Macromol 2024; 283:137601. [PMID: 39549805 DOI: 10.1016/j.ijbiomac.2024.137601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Chitosan is a natural polymer derived from chitin. It has significant applications in various fields due to its unique physicochemical properties, biocompatibility, and biodegradability. These important properties of chitosan make it an attractive candidate for various anti-cancer activities and biomedical applications, including tissue engineering. This review emphasizes the latest literature on anticancer applications of chitosan derivatives and in-depth study of biomedical applications. This review highlights the importance of biomedical applications and anti-cancer activities like breast, liver, colon, gastric, melanoma, colorectal, cervical, oral, and lymphoma cancer. Currently, there is a notable absence of recent reviews that comprehensively address these aspects such as Alejandro Elizalde-Cárdenas, et al. 2024, focuses only on Biomedical applications of Cs and its derivatives (Elizalde-Cárdenas et al., 2024). Jingxian Ding, et al. 2022 discussed the applications of Cs in some Cancer treatments (Mabrouk et al., 2024). However, our article aims to provide a comprehensive overview of the latest advancements in Cs derivatives in both fields. This manuscript is designed with proper diagrams, flow sheets and summarized tables to enhance the understanding of the reader. It also highlights recent advancements in the development of various chitosan derivatives, offering a comprehensive perspective for researchers and practitioners to further progress in biomedical and anticancer technologies.
Collapse
Affiliation(s)
- Muqadas Rafiq
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Jalal Ahmed
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Huriyyah A Alturaifi
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Sadullah Mir
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan.
| | - Aneela Maalik
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sana Sabahat
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Safia Hassan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Zia Ul Haq Khan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| |
Collapse
|
2
|
Dmour I. Absorption enhancement strategies in chitosan-based nanosystems and hydrogels intended for ocular delivery: Latest advances for optimization of drug permeation. Carbohydr Polym 2024; 343:122486. [PMID: 39174104 DOI: 10.1016/j.carbpol.2024.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Ophthalmic diseases can be presented as acute diseases like allergies, ocular infections, etc., or chronic ones that can be manifested as a result of systemic disorders, like diabetes mellitus, thyroid, rheumatic disorders, and others. Chitosan (CS) and its derivatives have been widely investigated as nanocarriers in the delivery of drugs, genes, and many biological products. The biocompatibility and biodegradability of CS made it a good candidate for ocular delivery of many ingredients, including immunomodulating agents, antibiotics, ocular hypertension medications, etc. CS-based nanosystems have been successfully reported to modulate ocular diseases by penetrating biological ocular barriers and targeting and controlling drug release. This review provides guidance to drug delivery formulators on the most recently published strategies that can enhance drug permeation to the ocular tissues in CS-based nanosystems, thus improving therapeutic effects through enhancing drug bioavailability. This review will highlight the main ocular barriers to drug delivery observed in the nano-delivery system. In addition, the CS physicochemical properties that contribute to formulation aspects are discussed. It also categorized the permeation enhancement strategies that can be optimized in CS-based nanosystems into four aspects: CS-related physicochemical properties, formulation components, fabrication conditions, and adopting a novel delivery system like implants, inserts, etc. as described in the published literature within the last ten years. Finally, challenges encountered in CS-based nanosystems and future perspectives are mentioned.
Collapse
Affiliation(s)
- Isra Dmour
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| |
Collapse
|
3
|
Wang TJ, Rethi L, Ku MY, Nguyen HT, Chuang AEY. A review on revolutionizing ophthalmic therapy: Unveiling the potential of chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer in eye disease treatments. Int J Biol Macromol 2024; 273:132700. [PMID: 38879998 DOI: 10.1016/j.ijbiomac.2024.132700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
Ocular disorders, encompassing both common ailments like dry eye syndrome and more severe situations for instance age-related macular degeneration, present significant challenges to effective treatment due to the intricate architecture and physiological barriers of the eye. Polysaccharides are emerging as potential solutions for drug delivery to the eyes due to their compatibility with living organisms, natural biodegradability, and adhesive properties. In this review, we explore not only the recent advancements in polysaccharide-based technologies and their transformative potential in treating ocular illnesses, offering renewed optimism for both patients and professionals but also anatomy of the eye and the significant obstacles hindering drug transportation, followed by an investigation into various drug administration methods and their ability to overcome ocular-specific challenges. Our focus lies on biological adhesive polymers, including chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer, known for their adhesive characteristics enhancing drug retention on ocular surfaces and increasing bioavailability. A detailed analysis of material designs used in ophthalmic formulations, such as gels, lenses, eye drops, nanofibers, microneedles, microspheres, and nanoparticles, their advantages and limitations, the potential of formulations in improving therapeutic outcomes for various eye conditions. Moreover, we underscore the discovery of novel polysaccharides and their potential uses in ocular drug delivery.
Collapse
Affiliation(s)
- Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Min-Yi Ku
- School of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
4
|
Wu KY, Khan S, Liao Z, Marchand M, Tran SD. Biopolymeric Innovations in Ophthalmic Surgery: Enhancing Devices and Drug Delivery Systems. Polymers (Basel) 2024; 16:1717. [PMID: 38932068 PMCID: PMC11207407 DOI: 10.3390/polym16121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The interface between material science and ophthalmic medicine is witnessing significant advances with the introduction of biopolymers in medical device fabrication. This review discusses the impact of biopolymers on the development of ophthalmic devices, such as intraocular lenses, stents, and various prosthetics. Biopolymers are emerging as superior alternatives due to their biocompatibility, mechanical robustness, and biodegradability, presenting an advance over traditional materials with respect to patient comfort and environmental considerations. We explore the spectrum of biopolymers used in ophthalmic devices and evaluate their physical properties, compatibility with biological tissues, and clinical performances. Specific applications in oculoplastic and orbital surgeries, hydrogel applications in ocular therapeutics, and polymeric drug delivery systems for a range of ophthalmic conditions were reviewed. We also anticipate future directions and identify challenges in the field, advocating for a collaborative approach between material science and ophthalmic practice to foster innovative, patient-focused treatments. This synthesis aims to reinforce the potential of biopolymers to improve ophthalmic device technology and enhance clinical outcomes.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrook, QC J1G 2E8, Canada; (K.Y.W.); (M.M.)
| | - Sameer Khan
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Zhuoying Liao
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Marchand
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrook, QC J1G 2E8, Canada; (K.Y.W.); (M.M.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
5
|
Thambiliyagodage C, Jayanetti M, Mendis A, Ekanayake G, Liyanaarachchi H, Vigneswaran S. Recent Advances in Chitosan-Based Applications-A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2073. [PMID: 36903188 PMCID: PMC10004736 DOI: 10.3390/ma16052073] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Chitosan derived from chitin gas gathered much interest as a biopolymer due to its known and possible broad applications. Chitin is a nitrogen-enriched polymer abundantly present in the exoskeletons of arthropods, cell walls of fungi, green algae, and microorganisms, radulae and beaks of molluscs and cephalopods, etc. Chitosan is a promising candidate for a wide variety of applications due to its macromolecular structure and its unique biological and physiological properties, including solubility, biocompatibility, biodegradability, and reactivity. Chitosan and its derivatives have been known to be applicable in medicine, pharmaceuticals, food, cosmetics, agriculture, the textile and paper industries, the energy industry, and industrial sustainability. More specifically, their use in drug delivery, dentistry, ophthalmology, wound dressing, cell encapsulation, bioimaging, tissue engineering, food packaging, gelling and coating, food additives and preservatives, active biopolymeric nanofilms, nutraceuticals, skin and hair care, preventing abiotic stress in flora, increasing water availability in plants, controlled release fertilizers, dye-sensitised solar cells, wastewater and sludge treatment, and metal extraction. The merits and demerits associated with the use of chitosan derivatives in the above applications are elucidated, and finally, the key challenges and future perspectives are discussed in detail.
Collapse
Affiliation(s)
- Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Madara Jayanetti
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Amavin Mendis
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Geethma Ekanayake
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Heshan Liyanaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering and Information Technology, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
6
|
Santra M, Liu YC, Jhanji V, Yam GHF. Human SMILE-Derived Stromal Lenticule Scaffold for Regenerative Therapy: Review and Perspectives. Int J Mol Sci 2022; 23:ijms23147967. [PMID: 35887309 PMCID: PMC9315730 DOI: 10.3390/ijms23147967] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
A transparent cornea is paramount for vision. Corneal opacity is one of the leading causes of blindness. Although conventional corneal transplantation has been successful in recovering patients’ vision, the outcomes are challenged by a global lack of donor tissue availability. Bioengineered corneal tissues are gaining momentum as a new source for corneal wound healing and scar management. Extracellular matrix (ECM)-scaffold-based engineering offers a new perspective on corneal regenerative medicine. Ultrathin stromal laminar tissues obtained from lenticule-based refractive correction procedures, such as SMall Incision Lenticule Extraction (SMILE), are an accessible and novel source of collagen-rich ECM scaffolds with high mechanical strength, biocompatibility, and transparency. After customization (including decellularization), these lenticules can serve as an acellular scaffold niche to repopulate cells, including stromal keratocytes and stem cells, with functional phenotypes. The intrastromal transplantation of these cell/tissue composites can regenerate native-like corneal stromal tissue and restore corneal transparency. This review highlights the current status of ECM-scaffold-based engineering with cells, along with the development of drug and growth factor delivery systems, and elucidates the potential uses of stromal lenticule scaffolds in regenerative therapeutics.
Collapse
Affiliation(s)
- Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Vishal Jhanji
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Gary Hin-Fai Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
7
|
Mihailovici R, Croitoriu A, Nedeff F, Nedeff V, Ochiuz L, Vasincu D, Popa O, Agop M, Moraru A, Costin D, Costuleanu M, Verestiuc L. Drug-Loaded Polymeric Particulated Systems for Ophthalmic Drugs Release. Molecules 2022; 27:molecules27144512. [PMID: 35889383 PMCID: PMC9323211 DOI: 10.3390/molecules27144512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Drug delivery to the anterior or posterior segments of the eye is a major challenge due to the protection barriers and removal mechanisms associated with the unique anatomical and physiological nature of the ocular system. The paper presents the preparation and characterization of drug-loaded polymeric particulated systems based on pre-emulsion coated with biodegradable polymers. Low molecular weight biopolymers (chitosan, sodium hyaluronate and heparin sodium) were selected due to their ability to attach polymer chains to the surface of the growing system. The particulated systems with dimensions of 190–270 nm and a zeta potential varying from −37 mV to +24 mV depending on the biopolymer charges have been obtained. Current studies show that particles release drugs (dexamethasone/pilocarpine/bevacizumab) in a safe and effective manner, maintaining therapeutic concentration for a longer period of time. An extensive modeling study was performed in order to evaluate the drug release profile from the prepared systems. In a multifractal paradigm of motion, nonlinear behaviors of a drug delivery system are analyzed in the fractal theory of motion, in order to correlate the drug structure with polymer. Then, the functionality of a SL(2R) type ”hidden symmetry” implies, through a Riccati type gauge, different ”synchronization modes” (period doubling, damped oscillations, quasi-periodicity and intermittency) during the drug release process. Among these, a special mode of Kink type, better reflects the empirical data. The fractal study indicated more complex interactions between the angiogenesis inhibitor Bevacizumab and polymeric structure.
Collapse
Affiliation(s)
- Ruxandra Mihailovici
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
| | - Alexandra Croitoriu
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Florin Nedeff
- Department of Industrial Systems Engineering and Management, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 600115 Bacau, Romania
- Correspondence: (F.N.); (M.A.); (A.M.)
| | - Valentin Nedeff
- Department of Environmental Engineering and Mechanical Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 600115 Bacau, Romania;
| | - Lacramioara Ochiuz
- Department of Pharmaceutical and Biotechnological Drug Industry, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Decebal Vasincu
- Department of Natural, Bioactive and Biocompatible Polymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania;
| | - Ovidiu Popa
- Department of Emergency Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Maricel Agop
- Department of Physics, “Gh. Asachi” Technical University of Iasi, 700050 Iasi, Romania
- Romanian Scientists Academy, 050094 Bucharest, Romania
- Correspondence: (F.N.); (M.A.); (A.M.)
| | - Andreea Moraru
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
- Correspondence: (F.N.); (M.A.); (A.M.)
| | - Danut Costin
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
| | - Marcel Costuleanu
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
| | - Liliana Verestiuc
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
8
|
Recent advances of chitosan-based polymers in biomedical applications and environmental protection. JOURNAL OF POLYMER RESEARCH 2022. [PMCID: PMC9167648 DOI: 10.1007/s10965-022-03121-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interest in polymer-based biomaterials such as chitosan and its modifications and also the methods of their application in various fields of science is uninterruptedly growing. Owing to unique physicochemical, biological, ecological, physiological properties, such as biocompatibility, biodegradability, stability in the natural environment, non-toxicity, high biological activity, economic affordability, chelating of metal ions, high sorption properties, chitosan is used in various biomedical and industrial processes. The reactivity of the amino and hydroxyl groups in the structure makes it more interesting for diverse applications in drug delivery, tissue engineering, wound healing, regenerative medicine, blood anticoagulation and bone, tendon or blood vessel engineering, dentistry, biotechnology, biosensing, cosmetics, water treatment, agriculture. Taking into account the current situation in the world with COVID-19 and other viruses, chitosan is also active in the form of a vaccine system, it can deliver antibodies to the nasal mucosa and load gene drugs that prevent or disrupt the replication of viral DNA/RNA, and deliver them to infected cells. The presented article is an overview of the nowaday state of the application of chitosan, based on literature of recent years, showing importance of fundamental and applied studies aimed to expand application of chitosan-based polymers in many fields of science.
Collapse
|
9
|
Incorporating silver nanoshell-coated mesoporous silica nanoparticles improves physicochemical and antimicrobial properties of chitosan films. Int J Biol Macromol 2021; 189:792-801. [PMID: 34455003 DOI: 10.1016/j.ijbiomac.2021.08.161] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022]
Abstract
Tailoring nanomaterials with tunable properties is of great importance to develop multifunctional candidates in the biomedical field. In the present study, we aimed to develop a promising nano-hybrid system composed of chitosan (CS) and mesoporous silica nanoparticles with a silver nanoshell coat (CS-AgMSNs). The physicochemical properties of CS-AgMSNs films were characterized using various techniques. Further, the mechanical properties of CS-AgMSNs were evaluated and compared with those of undoped CS film. Moreover, the antimicrobial activities of CS-AgMSNs (with different concentrations) were assessed against E-coli, S. aureus, C. albicans, and A. niger. Our results demonstrated that increasing the concentrations of doped AgMSNs (10 to 40 mg) in CS films lowered their transparency and blocked light transmission effectively. The measured elastic modulus of CS-AgMSNs films (20 and 30 mg) showed a decrease in the stiffness of CS films. Also, the elongation at break for CS-AgMSNs (40 mg) indicated a better flexibility. CS-AgMSNs films (10-40 mg) showed an enhanced antimicrobial activity in a concentration-dependent manner compared to undoped CS films. Collectively, the results suggest that our nano-hybrid CS-AgMSNs matrix has unique and promising properties, and holds potential for use in the biomedical field, food packaging, and textile industry.
Collapse
|
10
|
Mijanović O, Pylaev T, Nikitkina A, Artyukhova M, Branković A, Peshkova M, Bikmulina P, Turk B, Bolevich S, Avetisov S, Timashev P. Tissue Engineering Meets Nanotechnology: Molecular Mechanism Modulations in Cornea Regeneration. MICROMACHINES 2021; 12:mi12111336. [PMID: 34832752 PMCID: PMC8618371 DOI: 10.3390/mi12111336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Nowadays, tissue engineering is one of the most promising approaches for the regeneration of various tissues and organs, including the cornea. However, the inability of biomaterial scaffolds to successfully integrate into the environment of surrounding tissues is one of the main challenges that sufficiently limits the restoration of damaged corneal tissues. Thus, the modulation of molecular and cellular mechanisms is important and necessary for successful graft integration and long-term survival. The dynamics of molecular interactions affecting the site of injury will determine the corneal transplantation efficacy and the post-surgery clinical outcome. The interactions between biomaterial surfaces, cells and their microenvironment can regulate cell behavior and alter their physiology and signaling pathways. Nanotechnology is an advantageous tool for the current understanding, coordination, and directed regulation of molecular cell-transplant interactions on behalf of the healing of corneal wounds. Therefore, the use of various nanotechnological strategies will provide new solutions to the problem of corneal allograft rejection, by modulating and regulating host-graft interaction dynamics towards proper integration and long-term functionality of the transplant.
Collapse
Affiliation(s)
- Olja Mijanović
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- Correspondence:
| | - Timofey Pylaev
- Saratov Medical State University N.A. V.I. Razumovsky, 112 Bolshaya Kazachya St., 410012 Saratov, Russia;
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Angelina Nikitkina
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
| | - Margarita Artyukhova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
| | - Ana Branković
- Department of Forensic Engineering, University of Criminal Investigation and Police Studies, 196 Cara Dušana St., Belgrade 11000, Serbia;
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Boris Turk
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sergey Bolevich
- Department of Human Pathology, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia;
| | - Sergei Avetisov
- Department of Eye Diseases, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia;
- Research Institute of Eye Diseases, 11 Rossolimo St., 119021 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
11
|
Burhan AM, Klahan B, Cummins W, Andrés-Guerrero V, Byrne ME, O’Reilly NJ, Chauhan A, Fitzhenry L, Hughes H. Posterior Segment Ophthalmic Drug Delivery: Role of Muco-Adhesion with a Special Focus on Chitosan. Pharmaceutics 2021; 13:1685. [PMID: 34683978 PMCID: PMC8539343 DOI: 10.3390/pharmaceutics13101685] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/04/2023] Open
Abstract
Posterior segment eye diseases (PSEDs) including age macular degeneration (AMD) and diabetic retinopathy (DR) are amongst the major causes of irreversible blindness worldwide. Due to the numerous barriers encountered, highly invasive intravitreal (IVT) injections represent the primary route to deliver drugs to the posterior eye tissues. Thus, the potential of a more patient friendly topical route has been widely investigated. Mucoadhesive formulations can decrease precorneal clearance while prolonging precorneal residence. Thus, they are expected to enhance the chances of adherence to corneal and conjunctival surfaces and as such, enable increased delivery to the posterior eye segment. Among the mucoadhesive polymers available, chitosan is the most widely explored due to its outstanding mucoadhesive characteristics. In this review, the major PSEDs, their treatments, barriers to topical delivery, and routes of topical drug absorption to the posterior eye are presented. To enable the successful design of mucoadhesive ophthalmic drug delivery systems (DDSs), an overview of mucoadhesion, its theory, characterization, and considerations for ocular mucoadhesion is given. Furthermore, chitosan-based DDs that have been explored to promote topical drug delivery to the posterior eye segment are reviewed. Finally, challenges of successful preclinical to clinical translation of these DDSs for posterior eye drug delivery are discussed.
Collapse
Affiliation(s)
- Ayah Mohammad Burhan
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Butsabarat Klahan
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Wayne Cummins
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain;
| | - Mark E. Byrne
- Biomimetic & Biohybrid Materials, Biomedical Devices & Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA;
| | - Niall J. O’Reilly
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Anuj Chauhan
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401, USA;
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| | - Helen Hughes
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (W.C.); (N.J.O.); (L.F.); (H.H.)
| |
Collapse
|