1
|
Park J, Yun H, Choi S, Kim MK, Zoh KD. Target and suspect screening of per- and polyfluoroalkyl substances (PFASs) in consumer products using ion mobility separation high resolution mass spectrometry (IMS-HRMS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126400. [PMID: 40345370 DOI: 10.1016/j.envpol.2025.126400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/11/2025]
Abstract
This study aims to investigate the distribution of per- and polyfluoroalkyl substances (PFAS) and their precursors in 55 consumer products, including 27 personal care products (PCPs) from 7 categories and 28 household products (HPs) from 6 categories and analyze the correlation between them, by measuring PFASs using target analysis with LC-MS/MS and suspect screening using high-resolution mass spectrometry (HRMS) combined with ion mobility separation (IMS). In most products, perfluorocarboxylic acid (PFCA) concentrations (0.036-25.2 ng/g) exceeded perfluorosulfonic acid concentrations (n.d.-0.566 ng/g). In PCPs, the median concentrations of 12 PFASs and two fluorinated precursors (0.053-139 ng/g) were significantly higher than in HPs (0.012-76.0 ng/g) (p < 0.05). Across all PCP and HP types, short-chain PFASs (PFCAs ≤ C7; PFSAs ≤ C6) (1.68-46.9 ng/g) were also significantly higher than long-chain PFASs (0.071-6.86 ng/g) (p < 0.05). Suspect screening identified a total of 9 candidate PFASs, including the four PFCA precursors, all of which were assigned a confidence level of 3 or higher. The observed positive correlation between precursors and PFCAs (p < 0.05) suggests that precursors may be converted into PFCAs, thereby increasing PFCA concentrations, although the specific transformation pathways require further investigation. This study provides insights into the distribution of PFAS and their precursors in consumer products and demonstrates that IMS-HRMS-based suspect screening can be useful for distinguishing false positives in PFAS identification.
Collapse
Affiliation(s)
- Jeonghoon Park
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Hyejin Yun
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Soobin Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Moon-Kyung Kim
- Institute of Health & Environment, Seoul National University, Seoul, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health & Environment, Seoul National University, Seoul, South Korea.
| |
Collapse
|
2
|
Chambial P, Thakur N, Kushawaha J, Kumar R. Per- and polyfluoroalkyl substances in environment and potential health impacts: Sources, remediation treatment and management, policy guidelines, destructive technologies, and techno-economic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178803. [PMID: 40020591 DOI: 10.1016/j.scitotenv.2025.178803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 03/03/2025]
Abstract
Per- and polyfluoroalkyl Substances (PFAS), also known as forever chemicals and ubiquitous persistence, pose significant public health challenges due to their potential toxicity, particularly in drinking water and soil contamination. However, PFAS occurrence and their concentrations in different environmental matrices vary globally, but factors influencing trends, transport, fate, toxicity, and interactions with co-contaminants remain largely unexplored. Therefore, this review critically examines the state-of-the-art worldwide PFAS sources, distribution, and pathways, and evaluates how PFASs are processed in wastewater treatment, generally, which causes severe problems with the quality and safety of drinking water. Importantly, the review also underscores health issues due to PFAS consumption and recent research trends on developing effective treatment strategies to manage PFAS contamination. Potential effects of PFAS were linked to urban land use and the proportion of wastewater effluent in streamflow. Besides, major emphasis was provided on challenges for conventional treatment, destructive technologies, environmental accumulation, precursor transformation, and cost-investment related to PFAS removal technologies. To combat PFAS contamination, this review proposes a framework that promotes the comprehensive identification of prevalent compounds, with a focus on their eradication through knowledge-based and targeted analysis. Additionally, it explores the ongoing debate surrounding PFAS laws and legal frameworks, offering ideas for enhancing contamination management. Lastly, this review provides a strategic plan for improving response and preparedness, serving as a foundation for addressing future environmental challenges and informing health risk assessments.
Collapse
Affiliation(s)
- Priyanka Chambial
- Department of Biosciences (UIBT), Chandigarh University, Ludhiana, Punjab 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College, Mandi, Himachal Pradesh 175001, India.
| | - Jyoti Kushawaha
- Department of Environmental Studies, Ramanujan College, University of Delhi, New Delhi 110019, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
3
|
Zorigt N, Zarei A, Auras F, Khazdooz L, Khosropour A, Abbaspourrad A. Synthesis of Homoallylamine Covalent Organic Frameworks Via Hosomi-Sakurai Reaction Under Mild Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406805. [PMID: 39529562 DOI: 10.1002/smll.202406805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/18/2024] [Indexed: 11/16/2024]
Abstract
One-pot multicomponent reactions (MCRs) are a valuable strategy to synthesize functional covalent organic frameworks (COFs) in a single step. Most reported COF syntheses involve solvothermal processes, and because of the harsh reaction conditions, such as high temperature or high pressure, large-scale production of COFs has been limited. The synthesis of homoallylamine substituted COFs via a one-pot Hosomi-Sakurai reaction is reported. At room temperature the reaction of allyltriethylgermane with either terephthalaldehyde or [1,1'-biphenyl]-4,4'-dicarbaldehyde, and 1,3,5-tris(4-aminophenyl)benzene (TAPB) is catalyzed by Sc(OTf)3 to produce two COFs: TAPB-1P-Allyl COF and TAPB-BP-Allyl COF. The allyl functionalized COFs shows high crystallinity, with micropores ranging from 3.2 to 3.9 nm, for TAPB-1P-Allyl COF and TAPB-BP-Allyl COF respectively, and both COFs are hydrolytically stable at different pH levels. Post-synthetic modification of these COFs with iodomethane produces methylated cationic COFs that demonstrates >98% adsorption efficiencies below the detection limit of perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) from aqueous solutions. After four cycles adsorption efficiency remains high with concentrations of PFOA below the detection limit.
Collapse
Affiliation(s)
| | - Amin Zarei
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Florian Auras
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, 01217, Dresden, Germany
| | - Leila Khazdooz
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | | | | |
Collapse
|
4
|
Zhi Y, Lu X, Munoz G, Yeung LWY, De Silva AO, Hao S, He H, Jia Y, Higgins CP, Zhang C. Environmental Occurrence and Biotic Concentrations of Ultrashort-Chain Perfluoroalkyl Acids: Overlooked Global Organofluorine Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21393-21410. [PMID: 39535433 DOI: 10.1021/acs.est.4c04453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a large group of anthropogenic fluorinated chemicals. Ultrashort-chain perfluoroalkyl acids (PFAAs) have recently gained attention due to their prevalence in the environment and increasing environmental concerns. In this review, we established a literature database from 1990 to 2024, encompassing environmental and biological concentrations (>3,500 concentration records) of five historically overlooked ultrashort-chain PFAAs (perfluoroalkyl carboxylic and sulfonic acids with less than 4 carbons): trifluoroacetic acid (TFA), perfluoropropanoic acid (PFPrA), trifluoromethanesulfonic acid (TFMS), perfluoroethanesulfonate (PFEtS), and perfluoropropanesulfonate (PFPrS). Our data mining and analysis reveal that (1) ultrashort-chain PFAAs are globally distributed in various environments including water bodies, solid matrices, and air, with concentrations usually higher than those of longer-chain compounds; (2) TFA, the most extensively studied ultrashort-chain PFAA, shows a consistent upward trend in concentrations in surface water, rainwater, and air over the past three decades; and (3) ultrashort-chain PFAAs are present in various organisms, including plants, wildlife, and human blood, serum, and urine, with concentrations sometimes similar to those of longer-chain compounds. The current state of knowledge regarding the sources and fate of TFA and other ultrashort-chain PFAAs is also reviewed. Amid the global urgency to regulate PFASs, particularly as countries worldwide have intensified such efforts, this critical review will inform scientific research and regulatory policies.
Collapse
Affiliation(s)
- Yue Zhi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiongwei Lu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Gabriel Munoz
- Centre d'expertise en analyse environnementale du Québec (CEAEQ), Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, QC G1P 3W8, Canada
| | - Leo W Y Yeung
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro 701 82, Sweden
| | - Amila O De Silva
- Aquatic Contaminants Research Division, Environment Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Shilai Hao
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Huan He
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yonghui Jia
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Chuhui Zhang
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100084, China
| |
Collapse
|
5
|
Zadehnazari A, Khosropour A, Zarei A, Khazdooz L, Amirjalayer S, Auras F, Abbaspourrad A. Viologen-Derived Covalent Organic Frameworks: Advancing PFAS Removal Technology with High Adsorption Capacity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405176. [PMID: 39115339 DOI: 10.1002/smll.202405176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Indexed: 11/21/2024]
Abstract
The escalating presence of per- and polyfluoroalkyl substances (PFAS) in drinking water poses urgent public health concerns, necessitating effective removal. This study presents a groundbreaking approach, using viologen to synthesize covalent organic framework nanospheres: MELEM-COF and MEL-COF. Characterized by highly crystalline features, these nanospheres exhibit exceptional affinity for diverse anionic PFAS compounds, achieving simultaneous removal of multiple contaminants within 30 min. Investigating six anionic PFAS compounds, MEL- and MELEM-COFs achieved 90.0-99.0% removal efficiency. The integrated analysis unveils the synergistic contributions of COF morphology and functional properties to PFAS adsorption. Notably, MELEM-COF, with cationic surfaces, exploits electrostatic and dipole interactions, with a 2500 mg g-1 adsorption capacity-surpassing all reported COFs to date. MELEM-COF exhibits rapid exchange kinetics, reaching equilibrium within 30 min. These findings deepen the understanding of COF materials and promise avenues for refining COF-based adsorption strategies.
Collapse
Affiliation(s)
- Amin Zadehnazari
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Ahmadreza Khosropour
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Amin Zarei
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Leila Khazdooz
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Saeed Amirjalayer
- Institute for Solid State Theory, Center for Nanotechnology and Center for Multiscale Theory and Computation, University of Münster, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
| | - Florian Auras
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, 01217, Dresden, Germany
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
6
|
Shin J, An B. Effect of ligand interactions within modified granular activated carbon (GAC) on mixed perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) adsorption. CHEMOSPHERE 2024; 357:142025. [PMID: 38614400 DOI: 10.1016/j.chemosphere.2024.142025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
A new adsorbent based on commercial granular activated carbon (GAC) and loaded with Cu(II) (GAC-Cu) was prepared to enhance the adsorption capacity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). The surface area (SA) and pore volume of GAC-Cu decreased by ∼15% compared to those of pristine GAC. The scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) and leaching test results indicated that, compared with GAC, the Cu atomic ratio and Cu amount in GAC-Cu increased by 2.91 and 2.43 times, respectively. The point of zero charge (PZC) measured using a salt addition method obtained a pH of 6.0 (GAC) and 5.0 (GAC-Cu). According to the isotherm models obtaining highest coefficient of determination (R2), GAC-Cu exhibited a 20.4% and 35.2% increase for PFOA and PFOS in maximum uptake (qm), respectively, compared to those of GAC. In addition, the adsorption affinity (b) for GAC-Cu increased by 1045% and 175% for PFOA and PFOS, respectively. The pH effect on the adsorption capacity of GAC-Cu was investigated. The uptake of PFOA and PFOS decreased with an increase in pH for both GAC and GAC-Cu. GAC-Cu exhibited higher uptake than GAC at pH 6 and 7, but no enhanced uptake was observed at pH 4.0, 5.0, and 8.5. Therefore, ligand interaction was effective at weak acid or neutral pH.
Collapse
Affiliation(s)
- Jeongwoo Shin
- Department of Civil, Environmental, and Biomedical Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea
| | - Byungryul An
- Department of Civil Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea.
| |
Collapse
|
7
|
Lu M, Liu Y, Zheng X, Liu W, Liu Y, Bao J, Feng A, Bao Y, Diao J, Liu H. Amino Group-Driven Adsorption of Sodium p-Perfluorous Nonenoxybenzene Sulfonate in Water by the Modified Graphene Oxide. TOXICS 2024; 12:343. [PMID: 38787122 PMCID: PMC11125578 DOI: 10.3390/toxics12050343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Sodium p-perfluorous nonenoxybenzene sulfonate (OBS) is one of the key alternatives to perfluoroalkyl substances (PFASs). Its widespread tendency has increased extensive contamination in the aquatic environment. However, the present treatment technology for OBS exhibited insignificant adsorption capacity and long adsorption time. In this study, three proportions (1:5, 3:5, and 10:1) of chitosan-modified amino-driven graphene oxide (CS-GO) were innovated to strengthen the OBS adsorption capacity, compared with graphene oxide (GO) and graphene (GH). Through the characterization of SEM, BET, and FTIR, it was discovered that CS was synthetized on GO surfaces successfully with a low specific surface area. Subsequently, batch single influence factor studies on OBS removal from simulated wastewater were investigated. The optimum removal efficiency of OBS could be achieved up to 95.4% within 2 h when the adsorbent was selected as CS-GO (10:1), the dosage was 2 mg, and the pH was 3. The addition of inorganic ions could promote the adsorption efficiency of OBS. In addition, CS-GO presented the maximum adsorption energy due to additional functional groups of -NH3, and electrostatic interaction was the foremost motive for improving the adsorption efficiency of OBS. Moreover, OBS exhibited the fastest diffusion coefficient in the CS-GO-OBS solution, which is consistent with the fitting results of adsorption kinetics.
Collapse
Affiliation(s)
- Mengyuan Lu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Yang Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Xinning Zheng
- Shenyang Zhenxing Sewage Treatment Co., Ltd., Shenyang 110143, China;
| | - Wenjuan Liu
- Dalian Xigang District Center for Disease Control and Prevention, Dalian 116021, China;
| | - Yang Liu
- Shenyang Hoper Group Co., Ltd., Shenyang 110112, China;
| | - Jia Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Ao Feng
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Yueyao Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Jiangyong Diao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (J.D.); (H.L.)
| | - Hongyang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (J.D.); (H.L.)
| |
Collapse
|
8
|
Zarei A, Khosropour A, Khazdooz L, Amirjalayer S, Khojastegi A, Zadehnazari A, Zhao Y, Abbaspourrad A. Substitution and Orientation Effects on the Crystallinity and PFAS Adsorption of Olefin-Linked 2D COFs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9483-9494. [PMID: 38319251 DOI: 10.1021/acsami.3c17188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Solid phase adsorbents with high removal affinity for per- and polyfluoroalkyl substances (PFAS) in aqueous environments are sought. We report the synthesis and investigation of COF-I, a new covalent organic framework (COF) with a good affinity for PFAS adsorption. COF-I was synthesized by the condensation reaction between 2,4,6-trimethyl-1,3,5-triazine and 2,3-dimethoxyterephthaldehyde and fully characterized. In addition to the high crystallinity and surface area, COF-I showed high hydrolytic and thermal stability. Further, we converted its hydrophobic surface to a hydrophilic surface by converting the ortho-methoxy groups to hydroxyl derivatives and produced a new hydrophilic olefin-linked two-dimensional (2D) COF. We experimentally measured the crystallinity of both COFs by X-ray diffraction and used atomistic simulations coupled with cross-polarization/magic angle spinning solid-state nuclear magnetic resonance (CP/MAS ssNMR) to determine the relative amounts of AA-stacking and AB-stacking present. COF-I, with its hydrophobic surface and methoxy groups in the ortho positions, showed the best PFAS adsorption. COF-I reduced the concentration of perfluorooctanoic acid from 20 to 0.069 μg L-1 and to 0.052 μg L-1 for perfluorooctanesulfonic acid. These amounts are lower than the U.S. Environmental Protection Agency advisory level (0.070 μg L-1). High efficiency, fast kinetic adsorption, and reusability of COF-I are advantages of COF-I for PFAS removal from water.
Collapse
Affiliation(s)
- Amin Zarei
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Ahmadreza Khosropour
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Leila Khazdooz
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Saeed Amirjalayer
- Westfälische Wilhelms-Universität Münster, Institute for Solid State Theory, Center for Nanotechnology and Center for Multiscale Theory and Computation, Wilhelm-Klemm-Straße 10, Münster 48149, Germany
| | - Anahita Khojastegi
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Amin Zadehnazari
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Yu Zhao
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Ulrich H, Macherius A, Kunkel U, Sengl M, Letzel T. Novel PFAS-specific monitoring approach for highly impacted surface waters. CHEMOSPHERE 2024; 349:140893. [PMID: 38072205 DOI: 10.1016/j.chemosphere.2023.140893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023]
Abstract
In regulatory environmental monitoring programs, only a very small fraction of the vast number of per- and polyfluoroalkyl substances (PFAS) are investigated by target analysis. Therefore, non-target analysis (NTA) studies are increasingly conducted to detect unknown or unnoticed PFAS. These studies are often based on a few grab samples. Thus, discontinuously emitted PFAS from industrial batch processes might be easily overlooked. To address this deficiency and obtain in-depth information on the occurrence and temporal trend of PFAS in surface water impacted by treated industrial waste water, a comprehensive target and NTA study was implemented for 29 months. Elevated PFAS concentrations with up to 10.8 μg L-1 were detected in the river water by target analysis. In addition to PFAS target analysis, the water samples were analyzed by liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS). Data processing strategies and various filtering steps were applied to prioritize PFAS. Substances were identified by comparing data to available internal and external PFAS suspect lists, a fragment ion and neutral loss list, and spectral libraries. Several compounds were unequivocally identified based on reference standards. Fifty-five PFAS were (tentatively) identified using NTA. Of those, 43 could be assigned to 13 different homologous series. Partly fluorinated short-chain carboxylic acids (H-PFCA) and sulfonic acids (H-PFSA) were predominantly found in addition to perfluoroalkyl carboxylic acids (PFCA) and the alkyl ether carboxylic acid DONA. To the best of our knowledge, 12 PFAS were reported in surface water for the first time. Signal intensities of individual PFAS and signal ratios varied widely over time, which may indicate batch operations leading to discontinuous emission. Results and insights from this screening approach on PFAS can be used to optimize forthcoming surface water monitoring programs by including newly identified PFAS and selecting appropriate sampling intervals.
Collapse
Affiliation(s)
- H Ulrich
- Bavarian Environment Agency, Demollstr. 31, 82407 Wielenbach, Germany; Technical University of Munich (Chair of Urban Water Systems Engineering), Am Coulombwall 3, 85748 Garching bei München, Germany.
| | - A Macherius
- Bavarian Environment Agency, Buergermeister-Ulrich-Straße 160, 86179 Augsburg, Germany.
| | - U Kunkel
- Bavarian Environment Agency, Buergermeister-Ulrich-Straße 160, 86179 Augsburg, Germany.
| | - M Sengl
- Bavarian Environment Agency, Buergermeister-Ulrich-Straße 160, 86179 Augsburg, Germany.
| | - T Letzel
- Technical University of Munich (Chair of Urban Water Systems Engineering), Am Coulombwall 3, 85748 Garching bei München, Germany; Analytisches Forschungsinstitut fuer Non-Target Screening (AFIN-TS) GmbH, Augsburg, Germany.
| |
Collapse
|
10
|
Liu Y, Lu MY, Bao J, Shao LX, Yu WJ, Hu XM, Zhao X. Periodically reversing electrocoagulation technique for efficient removal of short-chain perfluoroalkyl substances from contaminated groundwater around a fluorochemical facility. CHEMOSPHERE 2023:138953. [PMID: 37196788 DOI: 10.1016/j.chemosphere.2023.138953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/06/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Widespread distributions of short-chain perfluoroalkyl substances (PFASs) has been recognized as a crucial environmental issue. However, multiple treatment techniques were ineffective due to their high polarity and mobility, contributing to a never-ending existence in the aquatic environment ubiquitously. The present study revealed potential technique of periodically reversing electrocoagulation (PREC) to perform efficient removal of short-chain PFASs including experimental factors (in the conditions of 9 V for voltage, 600 r/min of stirring speed, 10 s of reversing period, and 2 g/L of NaCl electrolyte), orthogonal experiments, actual application, and removal mechanism. Accordingly, based upon the orthogonal experiments, the removal efficiencies of perfluorobutane sulfonate (PFBS) in simulated solution could achieve 81.0% with the optimal parameters of Fe-Fe electrode materials, addition of 665 μL H2O2 per 10 min, and pH at 3.0. The PREC was further applied for treating the actual groundwater around a fluorochemical facility, consequently the removal efficiencies for typical short-chain perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), PFBS, and perfluoropentane sulfonate (PFPeS) were 62.5%, 89.0%, 96.4%, 90.0%, and 97.5%, respectively. The other long-chain PFASs contaminants had superior removal with the removal efficiencies up to 97%-100%. In addition, a comprehensive removal mechanism related to electric attraction adsorption for short-chain PFASs could be verified through the morphological analysis of ultimate flocs composition. The oxidation degradation was further revealed as the other removal mechanism by suspect and nontarget screening of intermediates formed in simulated solution, as well as density functional theory (DFT) calculation theory. Moreover, the degradation pathways about one CF2O molecule or CO2 eliminated with one C atom removed in PFBS by ·OH generated from the PREC oxidation process were further proposed. As a result, the PREC would be a promising technique for the efficient removal of short-chain PFASs from severely contaminated water bodies.
Collapse
Affiliation(s)
- Yang Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| | - Meng-Yuan Lu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Jia Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| | - Li-Xin Shao
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Wen-Jing Yu
- School of Water Resources & Environment, China University of Geosciences, Beijing, 100083, China
| | - Xiao-Min Hu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xin Zhao
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| |
Collapse
|