1
|
Zhang J, Wu H. Valorization of bioactive compounds from food by-products using supercritical fluid extraction: A technological and industrial perspective. Food Chem 2025; 484:144277. [PMID: 40252440 DOI: 10.1016/j.foodchem.2025.144277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/27/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
Food loss and waste (FLW) present significant challenges worldwide, affecting food supply, economic efficiency, and environmental sustainability. Supercritical fluid extraction (SFE) offers a promising solution for valorizing food by-products, addressing challenges related to FLW through efficient extraction of bioactive compounds. This review evaluates SFE's efficacy in extracting high-value compounds, including phenolics, terpenes, terpenoids, essential fatty acids, and dietary fibers, from food by-products. In addition, recent technological advancements are explored, with a focus on optimizing processing parameters, pretreatment methods, and integrating sequential extraction techniques to improve SFE efficiency. Industrial applications and the potential for broader commercial adoption are discussed, with attention to scalability, economic feasibility, and regulatory considerations. In conclusion, SFE is presented as a sustainable approach for converting food by-products into high-value bioactives. The integration of complementary technologies and further research on scalability are crucial for overcoming current limitations.
Collapse
Affiliation(s)
- Jingnan Zhang
- Hubei Technology Innovation Center for Meat Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Haizhou Wu
- Hubei Technology Innovation Center for Meat Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; College of Animal Science & Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
2
|
Pyrzynska K. Spent Coffee Grounds as a Source of Chlorogenic Acid. Molecules 2025; 30:613. [PMID: 39942717 PMCID: PMC11820191 DOI: 10.3390/molecules30030613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Spent coffee grounds generated from the brewing of coffee cherries are rich in chlorogenic acids that are associated, to a certain extent, with a delay in the development of various chronic diseases and age-related disorders. These natural antioxidants are applied in the pharmaceutical, cosmetic, and food industries. This brief overview describes recently proposed procedures for the extraction and recovery of chlorogenic acids from spent coffee grounds, which is a low-cost and easily accessible by-product. Solvent selection and temperature control seem to be the main factors due to the thermolabile nature of these compounds. Advanced extraction technologies are generally faster and enhance extraction efficiency. Procedures for the valorization of coffee waste are the goal of a sustainable and circular bioeconomy that seeks to increase their added benefits and reduce environmental pollution.
Collapse
|
3
|
Gomes JM, Mariz J, Rodrigues C, Alves AL, Moreira J, Vieira B, Silva RM, Zille A, Silva CJ. Bioactive Compounds from Banana Leaf Extracts: Influence of Extraction Methodologies and Their Integration into Knitted Hemp Fabrics. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5884. [PMID: 39685320 DOI: 10.3390/ma17235884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
This study explores the bioactive potential of banana leaf extracts and their innovative integration into knitted hemp fabrics. To obtain the extracts, distinct extraction methodologies were employed, namely conventional extraction, ultrasound-assisted extraction, and pressurized-liquid extraction. Aqueous and hydroethanolic solvents, namely 20% (v/v) and 50% (v/v), were employed during the extraction process. Furthermore, the cationization and functionalization of knitted hemp fabrics with the banana leaf extracts was achieved through padding. The extracts' phenolic content and antioxidant activity were evaluated using the Folin-Ciocalteu (FC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, respectively. The results indicated that both ultrasound-assisted extraction and pressurized-assisted extraction substantially enhanced the yield of phenolic compounds in comparison to conventional extraction, while employing 50% EtOH as a solvent also improved extraction yields for all extraction methodologies. The functionalized knits were further characterized concerning their antioxidant activity by DPPH, assessing their antimicrobial properties through ATCC TM-100 standard against three microorganisms (Staphylococcus aureus, Candida Krusei, and Candida albicans), and UV protection according to the standard AS/NZS 4399:2017. Antioxidant activity was highest in knits functionalized with extracts obtained via ultrasound-assisted extraction, while antimicrobial properties were most pronounced in knits treated with hydroalcoholic extracts, particularly those derived from assisted methods. The UV protection was enhanced in extracts with higher ethanol concentrations obtained through ultrasound-assisted extraction, with these knits exhibiting the highest Ultraviolet Protection Factor (UPF). This research not only highlights the efficacy of the alternative extraction technologies but also offers valuable insights for the development of innovative, biocompatible materials with enhanced bioactive properties for diverse applications in the textile and healthcare sectors, paving the way for sustainable applications.
Collapse
Affiliation(s)
- Joana Mota Gomes
- CITEVE-Technological Centre for Textile and Clothing of Portugal, 4760-034 Vila Nova de Famalicão, Portugal
| | - João Mariz
- CITEVE-Technological Centre for Textile and Clothing of Portugal, 4760-034 Vila Nova de Famalicão, Portugal
| | - Catarina Rodrigues
- CITEVE-Technological Centre for Textile and Clothing of Portugal, 4760-034 Vila Nova de Famalicão, Portugal
| | - Ana Luísa Alves
- CeNTI-Centre for Nanotechnology and Advanced Materials, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Joana Moreira
- CeNTI-Centre for Nanotechnology and Advanced Materials, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Bárbara Vieira
- Centre for Textile Science and Technology (2C2T), University of Minho Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Rosa Maria Silva
- CITEVE-Technological Centre for Textile and Clothing of Portugal, 4760-034 Vila Nova de Famalicão, Portugal
| | - Andrea Zille
- Centre for Textile Science and Technology (2C2T), University of Minho Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Carla Joana Silva
- CITEVE-Technological Centre for Textile and Clothing of Portugal, 4760-034 Vila Nova de Famalicão, Portugal
| |
Collapse
|
4
|
Weyya G, Belay A, Tadesse E. Passion fruit ( Passiflora edulis Sims) by-products as a source of bioactive compounds for non-communicable disease prevention: extraction methods and mechanisms of action: a systematic review. Front Nutr 2024; 11:1340511. [PMID: 38903622 PMCID: PMC11187344 DOI: 10.3389/fnut.2024.1340511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction The review titled Passion fruit by-products as a source of bioactive compounds for non-communicable disease prevention: extraction methods and mechanisms provide valuable insights into the health benefits and industrial applications of passion fruit waste. Passion fruits are a tropical and subtropical vine species, which produces edible fruits. Many food product types can be made from passion fruits. However, during passion fruit processing, large amounts of waste are released in to the environment. This review focuses on extraction methods of bioactive compounds from passion fruit by-products such as leaves, peels, seeds, and bagasse. Methods This comprehensive review focuses on the bioactive compounds present in passion fruit by-products, emphasis on their mechanisms of action on non-communicable diseases. It also provides a detailed analysis of the extraction methods used to obtain these bioactive compounds, their potential industrial applications, and the factors that affect extraction efficiency. Results This review encourages further research and innovation in utilization of passion fruit waste as a source of bioactive compounds for non- communicable disease prevention and their mechanisms of action. This can advance the circular economy. It also highlights the importance of sustainable and green extraction methods, which have gained attention due to environmental concerns. Discussion Unlike previous reviews, this comprehensive article explores the potential health benefits of multiple passion fruit waste products. It also examines the possible applications of these extracts for industrial goods such as food additives, colorants, nutraceuticals, natural antioxidants, and antimicrobial agents. Overall, it contributes new information emphasizing the potential of passion fruit by-products as a source of bioactive, and the findings have implications for the scientific community and industry, promoting a deeper understanding of the health benefits and sustainable practices associated with passion fruit waste utilization.
Collapse
Affiliation(s)
- Getu Weyya
- Department of Food Science and Applied Nutrition, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Abera Belay
- Department of Food Science and Applied Nutrition, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Eneyew Tadesse
- Department of Food Science and Applied Nutrition, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Francisco AP, Sganzerla WG, Nochi Castro LE, Cruz Tabosa Barroso TL, da Silva APG, da Rosa CG, Nunes MR, Forster-Carneiro T, Rostagno MA. Pressurized liquid extraction of bioactive compounds from grape peel and application in pH-sensing carboxymethyl cellulose films: A promising material to monitor the freshness of pork and milk. Food Res Int 2024; 179:114017. [PMID: 38342539 DOI: 10.1016/j.foodres.2024.114017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
This study produced pH-sensing carboxymethyl cellulose (CMC) films functionalized with bioactive compounds obtained by pressurized liquid extraction (PLE) of grape peel to monitor the freshness of pork and milk. A semi-continuous PLE was conducted using hydroethanolic solution (70:30, v/v) at a flow rate of 5 mL/min, 15 MPa, and 60 °C. The films were produced by the casting technique using CMC (2.5 %, w/v), glycerol (1 %, v/v), and functionalized with 10, 30, and 50 % (v/v) grape peel extract. From the results obtained, LC-MS/MS revealed that PLE extracted twenty-seven phenolic compounds. The main phenolic compounds were kaempferol-3-glucoside (367.23 ± 25.88 µg/mL), prunin (270.23 ± 3.62 µg/mL), p-coumaric acid (236.43 ± 26.02 µg/mL), and procyanidin B1 (117.17 ± 7.29 µg/mL). The CMC films presented suitable color and mechanical properties for food packaging applications. The addition of grape peel extract promoted the pH-sensing property, showing the sensitivity of anthocyanins to pH changes. The films functionalized with grape peel extract presented good release control of bioactive compounds, making them suitable for food packaging applications. When applied to monitor the freshness of pork and milk, the films exhibited remarkable color changes associated with the pH of the food during storage. In conclusion, PLE is a sustainable approach to obtaining bioactive compounds from the grape peel, which can be applied in the formulation of pH-sensing films as a promising sustainable material to monitor food freshness during storage.
Collapse
Affiliation(s)
- Ana Paula Francisco
- University of Campinas (UNICAMP), School of Food Engineering (FEA), Monteiro Lobato St., 80, Campinas, SP, Brazil; School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - William Gustavo Sganzerla
- School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Luiz Eduardo Nochi Castro
- University of Campinas (UNICAMP), School of Food Engineering (FEA), Monteiro Lobato St., 80, Campinas, SP, Brazil
| | | | | | - Cleonice Gonçalves da Rosa
- University of Planalto Catarinense (UNIPLAC), Graduate Program in Environment and Health, Av. Mal. Castelo Branco, 170 Lages, SC, Brazil
| | - Michael Ramos Nunes
- Federal Institute of Education, Science and Technology of Santa Catarina (IFSC), Campus Lages, Rua Heitor Villa Lobos, 222, Lages, SC, Brazil
| | - Tânia Forster-Carneiro
- University of Campinas (UNICAMP), School of Food Engineering (FEA), Monteiro Lobato St., 80, Campinas, SP, Brazil
| | - Mauricio A Rostagno
- School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil.
| |
Collapse
|
6
|
Afraz MT, Xu X, Adil M, Manzoor MF, Zeng XA, Han Z, Aadil RM. Subcritical and Supercritical Fluids to Valorize Industrial Fruit and Vegetable Waste. Foods 2023; 12:2417. [PMID: 37372628 DOI: 10.3390/foods12122417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The valorization of industrial fruit and vegetable waste has gained significant attention due to the environmental concerns and economic opportunities associated with its effective utilization. This review article comprehensively discusses the application of subcritical and supercritical fluid technologies in the valorization process, highlighting the potential benefits of these advanced extraction techniques for the recovery of bioactive compounds and unconventional oils from waste materials. Novel pressurized fluid extraction techniques offer significant advantages over conventional methods, enabling effective and sustainable processes that contribute to greener production in the global manufacturing sector. Recovered bio-extract compounds can be used to uplift the nutritional profile of other food products and determine their application in the food, pharmaceutical, and nutraceutical industries. Valorization processes also play an important role in coping with the increasing demand for bioactive compounds and natural substitutes. Moreover, the integration of spent material in biorefinery and biorefining processes is also explored in terms of energy generation, such as biofuels or electricity, thus showcasing the potential for a circular economy approach in the management of waste streams. An economic evaluation is presented, detailing the cost analysis and potential barriers in the implementation of these valorization strategies. The article emphasizes the importance of fostering collaboration between academia, industry, and policymakers to enable the widespread adoption of these promising technologies. This, in turn, will contribute to a more sustainable and circular economy, maximizing the potential of fruit and vegetable waste as a source of valuable products.
Collapse
Affiliation(s)
- Muhammad Talha Afraz
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China
| | - Xindong Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Muhammad Adil
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- School of Food Science and Engineering, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
7
|
Gil-Martínez L, Mut-Salud N, Ruiz-García JA, Falcón-Piñeiro A, Maijó-Ferré M, Baños A, De la Torre-Ramírez JM, Guillamón E, Verardo V, Gómez-Caravaca AM. Phytochemicals Determination, and Antioxidant, Antimicrobial, Anti-Inflammatory and Anticancer Activities of Blackberry Fruits. Foods 2023; 12:foods12071505. [PMID: 37048326 PMCID: PMC10094647 DOI: 10.3390/foods12071505] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
A comprehensive characterization of the phytochemicals present in a blackberry fruit extract by HPLC-TOF-MS has been carried out. The main compounds in the extract were ursane-type terpenoids which, along with phenolic compounds, may be responsible for the bioactivity of the extract. In vitro antioxidant capacity was assessed through Folin–Ciocalteu (31.05 ± 4.9 mg GAE/g d.w.), FRAP (637.8 ± 3.2 μmol Fe2+/g d.w.), DPPH (IC50 97.1 ± 2.4 μg d.w./mL) and TEAC (576.6 ± 8.3 μmol TE/g d.w.) assays. Furthermore, the extract exerted remarkable effects on in vitro cellular antioxidant activity in HUVEC cells at a concentration of 5 mg/mL. Antimicrobial activity of the extract was also tested. Most sensible microorganisms were Gram-positive bacteria, such as E. faecalis, B. cereus and Gram-negative E. coli (MBC of 12.5 mg/mL). IC50 values against colon tumoral cells HT-29 (4.9 ± 0.2 mg/mL), T-84 (5.9 ± 0.3 mg/mL) and SW-837 (5.9 ± 0.2 mg/mL) were also obtained. Furthermore, blackberry extract demonstrated anti-inflammatory activity inhibiting the secretion of pro-inflammatory IL-8 cytokines in two cellular models (HT-29 and T-84) in a concentration-dependent manner. These results support that blackberry fruits are an interesting source of bioactive compounds that may be useful in the prevention and treatment of different diseases, mainly related to oxidative stress.
Collapse
Affiliation(s)
- Lidia Gil-Martínez
- Department of Analytical Chemistry, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | - Nuria Mut-Salud
- Department of Microbiology, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | - José Antonio Ruiz-García
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Ana Falcón-Piñeiro
- Department of Microbiology, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | | | - Alberto Baños
- Department of Microbiology, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | | | - Enrique Guillamón
- Department of Chemical Engineering, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Centre, University of Granada, Avd. Conocimiento s/n, 18100 Granada, Spain
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Centre, University of Granada, Avd. Conocimiento s/n, 18100 Granada, Spain
| |
Collapse
|
8
|
Juçara Fruit ( Euterpe Edulis Martius) Valorization Combining Emergent Extraction Technologies and Aqueous Solutions of Alkanediols. Molecules 2023; 28:molecules28041607. [PMID: 36838595 PMCID: PMC9966649 DOI: 10.3390/molecules28041607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Anthocyanins from juçara fruits were extracted by pressurized liquid extraction (PLE) or ultrasound-assisted extraction (UAE), using aqueous solutions of 1,2-alkanediols and glycerol ethers as biobased solvents. The PLE (100 bar, 13 min, 1 mL/min flow rate) in the optimal extraction conditions originated 23.1 mganthocyanins·gdry biomass-1. On the other hand, the UAE was 10 min long, and the optimal conditions using 1,2-propanediol were 42.6 wt%, 160 W, and pH 7.0, leading to 50 mganthocyanins·gdry biomass-1. Extractions at the UAE optimized conditions, with aqueous solutions of five different 1,2-alkanediols and three glycerol ethers were performed, and compared to water and ethanolic extracts. The biobased solvent solutions presented anthocyanin yields up to 33% higher than water, and were shown to be as efficient as ethanol/water, but generated extracts with higher antioxidant capacity. The anthocyanin-rich extract of juçara, obtained with 1,2-propanediol, was used in the production of a natural soap and incorporated into a cream, showing that the addition of the juçara extract resulted in an antioxidant capacity in both products.
Collapse
|