1
|
Chen W, Xian W, He G, Xue Z, Li S, Li W, Li Y, Zhang Y, Yang X. Occurrence and spatiotemporal distribution of PAHs and OPAHs in urban agricultural soils from Guangzhou City, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114767. [PMID: 36917879 DOI: 10.1016/j.ecoenv.2023.114767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The occurrence of polycyclic aromatic hydrocarbon (PAH) derivatives in the environment is of growing concern because they exhibit higher toxicity than their parent PAHs. This study evaluated the large-scale occurrence and spatiotemporal distribution of 16 PAHs and 14 oxygenated PAHs (OPAHs) in urban agricultural soils from seven districts of Guangzhou City, China. Linear correlation analysis was conducted to explore the relationship between PAH and OPAH occurrence and a series of parameters. The compositional analysis, principal component analysis, diagnostic ratios, and principal component analysis coupled with a multiple linear regression model were used to identify the sources of PAHs and OPAHs in the soils. The average concentrations of ΣPAHs and ΣOPAHs (59.6 ± 31.1-213 ± 115.5 μg/kg) during the flood season were significantly higher than those during the dry season (42.1 ± 13.3-157.2 ± 98.2 μg/kg), which were due to relatively strong wet deposition during the flood season and weak secondary reactions during the dry season. Linear correlation analysis showed that soil properties, industrial activities, and agricultural activities (r = 0.27-0.96, p < 0.05) were responsible for the spatial distribution of PAHs during the dry season. The PAH distribution was mainly affected by precipitation during the flood season. The concentrations of ΣOPAHs were only related to the soil properties during the dry season because their occurrence was sensitive to secondary reactions, climate and meteorological conditions, and their water solubility. Our results further showed that coal combustion and traffic emissions were the dominant origins of PAHs and OPAHs during both the seasons. Wet deposition and runoff-induced transport also contributed to PAH and OPAH occurrence during the flood season. The results of this study can improve our understanding of the environmental risks posed by PAHs and OPAHs.
Collapse
Affiliation(s)
- Weisong Chen
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Weixuan Xian
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Guiying He
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhongye Xue
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Shaomin Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Wenyan Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yulong Zhang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China.
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
2
|
Dong Z, Jiang N, Zhang R, Xu Q, Ying Q, Li Q, Li S. Molecular characteristics, source contributions, and exposure risks of polycyclic aromatic hydrocarbons in the core city of Central Plains Economic Region, China: Insights from the variation of haze levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143885. [PMID: 33310581 DOI: 10.1016/j.scitotenv.2020.143885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
In this study, molecular characteristics, source contributions, and health risks of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 for four haze levels in Zhengzhou, a megacity in central China with severe air pollution problems, have been analyzed. The concentrations of PAHs and PM2.5 on heavy haze (HH) days were 63% and 122% higher than non-haze (NH) days. The occurrence of high PAH concentration was often accompanied by the northwest wind along with adverse meteorological conditions that limit regional dispersion. The source apportionment results indicated that almost all sources contributed more PAH concentration on haze days. In particular, coal combustion and vehicle emissions contributions were almost doubled on HH days. The incremental lifetime cancer risk (ILCR) of PAHs has been assessed. BaP and DahA showed relatively high contributions to ILCR, and 31%-48% of ILCR is due to exposure to PAHs on high HH days.
Collapse
Affiliation(s)
- Zhe Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Nan Jiang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Ruiqin Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Qixiang Xu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Qi Ying
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| | - Qiang Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shengli Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Cave MR, Wragg J, Beriro DJ, Vane C, Thomas R, Riding M, Taylor C. An overview of research and development themes in the measurement and occurrences of polyaromatic hydrocarbons in dusts and particulates. JOURNAL OF HAZARDOUS MATERIALS 2018; 360:373-390. [PMID: 30130696 DOI: 10.1016/j.jhazmat.2018.08.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds consisting of two or more fused aromatic rings and are probably one of the most studied groups of organic chemicals in environmental research. PAHs originate mainly from anthropogenic processes, particularly from incomplete combustion of organic fuels. PAHs are distributed widely in particulate matter. Due to widespread sources and persistent characteristics, PAHs disperse through atmospheric transport and exist almost everywhere. Human beings are exposed to PAH mixtures in gaseous or particulate phases in ambient air. Long-term exposure to high concentrations of PAHs is associated with adverse health problems. This review identifies the main research and development themes in the measurement and occurrences of PAHs in dusts and particulates using a new approach to carrying out a literature review where many peer-review publications have been produced. The review extracts the most important research themes from a literature search using a combination of text mining and a more detailed review of selected papers from within the identified themes.
Collapse
Affiliation(s)
- Mark R Cave
- British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK.
| | - Joanna Wragg
- British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK
| | - Darren J Beriro
- British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK
| | - Chistopher Vane
- British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK
| | | | | | - Christopher Taylor
- National Grid Property Holdings Ltd, National Grid House, Warwick Technology Park, Gallows Hill, Warwick, CV34 6DA, UK
| |
Collapse
|
4
|
Ya M, Xu L, Wu Y, Li Y, Zhao S, Wang X. Fossil Fuel-Derived Polycyclic Aromatic Hydrocarbons in the Taiwan Strait, China, and Fluxes across the Air-Water Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7307-7316. [PMID: 29856922 DOI: 10.1021/acs.est.8b01331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
On the basis of the application of compound-specific radiocarbon analysis (CSRA) and air-water exchange models, the contributions of fossil fuel and biomass burning derived polycyclic aromatic hydrocarbons (PAHs) as well as their air-water transport were elucidated. The results showed that fossil fuel-derived PAHs (an average contribution of 89%) presented the net volatilization process at the air-water interface of the Taiwan Strait in summer. Net volatile fluxes of the dominant fluorene and phenanthrene (>58% of the total PAHs) were 27 ± 2.8 μg m-2 day-1, significantly higher than the dry deposition fluxes (average 0.43 μg m-2 day-1). The Δ14C contents of selected PAHs (fluorene, phenanthrene plus anthracene, fluoranthene, and pyrene) determined by CSRA in the dissolved seawater ranged from -997 ± 4‰ to -873 ± 6‰, indicating that 89-100% (95 ± 4%) of PAHs were supplied by fossil fuels. The South China Sea warm current originating from the southwest China in summer (98%) and the Min-Zhe coastal current originating from the north China in winter (97%) input more fossil fuel PAHs than the Jiulong River estuary (90%) and Xiamen harbor water (93%). The more radioactive decayed 14C of fluoranthene (a 4-ring PAH) than that of phenanthrene and anthracene (3-ring PAHs) represented a greater fossil fuel contribution to the former in dissolved seawater.
Collapse
Affiliation(s)
- Miaolei Ya
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology , Xiamen University , Xiamen , 361102 , China
- National Ocean Sciences Accelerator Mass Spectrometry Facility, Department of Geology and Geophysics , Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02543 , United States
| | - Li Xu
- National Ocean Sciences Accelerator Mass Spectrometry Facility, Department of Geology and Geophysics , Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02543 , United States
| | - Yuling Wu
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology , Xiamen University , Xiamen , 361102 , China
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology , Xiamen University , Xiamen , 361102 , China
| | - Songhe Zhao
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology , Xiamen University , Xiamen , 361102 , China
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology , Xiamen University , Xiamen , 361102 , China
| |
Collapse
|