1
|
Raja M, Ramamurthy K, Sudhakaran G, Guru A, Arockiaraj J. Exploring the potential of bacterial-derived EVs for targeted enzyme replacement therapy: mechanisms, applications, and future directions. Arch Microbiol 2025; 207:118. [PMID: 40208336 DOI: 10.1007/s00203-025-04294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/18/2025] [Accepted: 03/02/2025] [Indexed: 04/11/2025]
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles produced by cells which promote intercellular communication by delivering different contents such as DNA, RNA, and proteins. These vesicles, nano-sized and released into the extracellular space, are present everywhere under both normal and pathological conditions. Probiotic-derived EVs can serve as nanocarriers for therapeutic cargo, particularly in enzyme replacement therapy (ERT). Traditional ERT for lysosomal storage diseases (LSDs) faces significant challenges, including the inability of enzymes to cross the blood-brain barrier (BBB) and their susceptibility to degradation. Studies show EVs can transport enzyme cargoes across the BBB, accurately delivering them to tissues affected by LSDs. Probiotic EVs also possess immunomodulatory properties, providing therapeutic benefits in inflammatory conditions. However, their potential for delivering deficient enzymes in LSDs remains unclear. This review discusses using probiotic EVs in ERT for targeted enzyme delivery to treat LSDs more efficiently than other exosomes. This novel strategy minimizes off-target delivery and enhances immunomodulatory effects, making it more advantageous than live probiotic bacteria. Probiotic EVs show promise for therapeutic approaches, especially in treating LSDs and inflammatory diseases, by modulating immune responses and delivering enzymes across biological barriers like the BBB. Future research should optimize production, engineer targeted therapies, and confirm safety and efficacy through clinical trials. Expanding studies to include diverse probiotic strains could uncover new therapeutic applications, enhancing their versatility and effectiveness.
Collapse
Affiliation(s)
- Mohanakrishna Raja
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, 603203, Tamil Nadu, India
| | - Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, 603203, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, 603203, Tamil Nadu, India.
| |
Collapse
|
2
|
Lusta KA, Churov AV, Beloyartsev DF, Golovyuk AL, Lee AA, Sukhorukov VN, Orekhov AN. The two coin sides of bacterial extracellular membrane nanovesicles: atherosclerosis trigger or remedy. DISCOVER NANO 2024; 19:179. [PMID: 39532781 PMCID: PMC11557815 DOI: 10.1186/s11671-024-04149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Among the numerous driving forces that cause the atherosclerotic cardiovascular disease (ASCVD), pathogenic bacterial extracellular membrane nanovesicles (BEMNs) containing toxins and virulence factors appear to be the key trigger of inflammation and atherogenesis, the major processes involved in the pathogenesis of ASCVD. Since BEMNs are the carriers of nanosized biomolecules to distant sites, they are now being considered as a novel drug delivery system. Nowadays, many therapeutic strategies are used to treat ASCVD. However, the conventional anti-atherosclerotic therapies are not effective enough. This primarily due to the inefficiency of non-targeted drug delivery systems to tissue affected areas, which, in turn, leads to numerous side effects, as well as faulty pharmacokinetics. In this regard, nanomedicine methods using nanoparticles (NPs) as targeted drug delivery vehicles proved to be extremely useful. Bioengineered BEMNs equipped with disease-specific ligand moieties and loaded with corresponding drugs represent a promising tool in nanomedicine, which can be used as a novel drug delivery system for a successful therapy of ASCVD. In this review, we outline the involvement of pathogenic BEMNs in the triggering of ASCVD, the conventional therapeutic strategies for the treatment of ASCVD, and the recent trends in nanomedicine using BEMNs and NPs as a vehicle for targeted drug delivery.
Collapse
Affiliation(s)
- Konstantin A Lusta
- Institute for Atherosclerosis Research, Ltd, Osennyaya Street 4-1-207, Moscow, Russia, 121609.
| | - Alexey V Churov
- Institute on Aging Research, Russian Gerontology Clinical Research Center, Pirogov Russian National Research Medical University, Moscow, Russia, 129226
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315
| | - Dmitry F Beloyartsev
- Vascular Surgery Department, A.V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, Moscow, Russia, 117997
| | - Alexander L Golovyuk
- Vascular Surgery Department, A.V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, Moscow, Russia, 117997
| | - Arthur A Lee
- Insitute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, Moscow, Russia, 119991
| | - Vasily N Sukhorukov
- Insitute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, Moscow, Russia, 119991
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315
| | - Alexander N Orekhov
- Insitute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, Moscow, Russia, 119991
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315
| |
Collapse
|
3
|
Yeh YH, Kelly VW, Rahman Pour R, Sirk SJ. A molecular toolkit for heterologous protein secretion across Bacteroides species. Nat Commun 2024; 15:9741. [PMID: 39528443 PMCID: PMC11554821 DOI: 10.1038/s41467-024-53845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Bacteroides species are abundant, prevalent, and stable members of the human gut microbiota, making them a promising chassis for developing long-term interventions for chronic diseases. Engineering Bacteroides as in situ bio-factories, however, requires efficient protein secretion tools, which are currently lacking. Here, we systematically investigate methods to enable heterologous protein secretion in Bacteroides. We identify a collection of secretion carriers that can export functional proteins across multiple Bacteroides species at high titers. To understand the mechanistic drivers of Bacteroides secretion, we characterize signal peptide sequence features, post-secretion extracellular fate, and the size limit of protein cargo. To increase titers and enable flexible control of protein secretion, we develop a strong, self-contained, inducible expression circuit. Finally, we validate the functionality of our secretion carriers in vivo in a mouse model. This toolkit promises to enable expanded development of long-term living therapeutic interventions for chronic gastrointestinal disease.
Collapse
Affiliation(s)
- Yu-Hsuan Yeh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Chan Zuckerberg Biohub, Chicago, IL, USA
| | - Vince W Kelly
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Rahman Rahman Pour
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Perlumi, Berkeley, CA, USA
| | - Shannon J Sirk
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Chan Zuckerberg Biohub, Chicago, IL, USA.
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL, USA.
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Ahmed AAQ, McKay TJM. Environmental and ecological importance of bacterial extracellular vesicles (BEVs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168098. [PMID: 37884154 DOI: 10.1016/j.scitotenv.2023.168098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/24/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Extracellular vesicles are unique structures released by the cells of all life forms. Bacterial extracellular vesicles (BEVs) were found in various ecosystems and natural habitats. They are associated with bacterial-bacterial interactions as well as host-bacterial interactions in the environment. Moreover, BEVs facilitate bacterial adaptation to a variety of environmental conditions. BEVs were found to be abundant in the environment, and therefore they can regulate a broad range of environmental processes. In the environment, BEVs can serve as tools for cell-to-cell interaction, secreting mechanism of unwanted materials, transportation, genetic materials exchange and storage, defense and protection, growth support, electron transfer, and cell-surface interplay regulation. Thus, BEVs have a great potential to be used in a variety of environmental applications such as serving as bioremediating reagents for environmental disaster mitigation as well as removing problematic biofilms and waste treatment. This research area needs to be investigated further to disclose the full environmental and ecological importance of BEVs as well as to investigate how to harness BEVs as effective tools in a variety of environmental applications.
Collapse
Affiliation(s)
- Abeer Ahmed Qaed Ahmed
- Department of Environmental Sciences, School of Ecological and Human Sustainability, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, Johannesburg 1710, South Africa.
| | - Tracey Jill Morton McKay
- Department of Environmental Sciences, School of Ecological and Human Sustainability, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, Johannesburg 1710, South Africa
| |
Collapse
|
5
|
Thakur M, Dean SN. Engineering Outer Membrane Vesicles to Carry Enzymes: Encapsulation, Isolation, Characterization, and Modification. Methods Mol Biol 2024; 2843:177-194. [PMID: 39141301 DOI: 10.1007/978-1-0716-4055-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Outer membrane vesicles (OMVs) are small, spherical, nanoscale proteoliposomes released from Gram-negative bacteria that play an important role in cellular defense, pathogenesis, and signaling, among other functions. The functionality of OMVs can be enhanced by engineering developed for biomedical and biochemical applications. Here, we describe methods for directed packaging of enzymes into bacterial OMVs of E. coli using engineered molecular systems, such as localizing proteins to the inner or outer surface of the vesicle. Additionally, we detail some modification strategies for OMVs such as lyophilization and surfactant conjugation that enable the protection of activity of the packaged enzyme when exposed to non-physiological conditions such as elevated temperature, organic solvents, and repeated freeze/thaw that otherwise lead to a substantial loss in the activity of the free enzyme.
Collapse
Affiliation(s)
- Meghna Thakur
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
- College of Science, George Mason University, Fairfax, VA, USA
| | - Scott N Dean
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA.
| |
Collapse
|
6
|
Yeh YH, Kelly VW, Pour RR, Sirk SJ. A molecular toolkit for heterologous protein secretion across Bacteroides species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571725. [PMID: 38168418 PMCID: PMC10760143 DOI: 10.1101/2023.12.14.571725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Bacteroides species are abundant and prevalent stably colonizing members of the human gut microbiota, making them a promising chassis for developing long-term interventions for chronic diseases. Engineering these bacteria as on-site production and delivery vehicles for biologic drugs or diagnostics, however, requires efficient heterologous protein secretion tools, which are currently lacking. To address this limitation, we systematically investigated methods to enable heterologous protein secretion in Bacteroides using both endogenous and exogenous secretion systems. Here, we report a collection of secretion carriers that can export functional proteins across multiple Bacteroides species at high titers. To understand the mechanistic drivers of Bacteroides secretion, we characterized signal peptide sequence features as well as post-secretion extracellular fate and cargo size limit of protein cargo. To increase titers and enable flexible control of protein secretion, we developed a strong, self-contained, inducible expression circuit. Finally, we validated the functionality of our secretion carriers in vivo in a mouse model. This toolkit should enable expanded development of long-term living therapeutic interventions for chronic gastrointestinal disease.
Collapse
Affiliation(s)
- Yu-Hsuan Yeh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Vince W. Kelly
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Rahman Rahman Pour
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Present address: Perlumi, Berkeley, CA 94704, USA
| | - Shannon J. Sirk
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL 61801, USA
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Lead Contact
| |
Collapse
|
7
|
Thakur M, Dean SN, Caruana JC, Walper SA, Ellis GA. Bacterial Membrane Vesicles for In Vitro Catalysis. Bioengineering (Basel) 2023; 10:1099. [PMID: 37760201 PMCID: PMC10525882 DOI: 10.3390/bioengineering10091099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The use of biological systems in manufacturing and medical applications has seen a dramatic rise in recent years as scientists and engineers have gained a greater understanding of both the strengths and limitations of biological systems. Biomanufacturing, or the use of biology for the production of biomolecules, chemical precursors, and others, is one particular area on the rise as enzymatic systems have been shown to be highly advantageous in limiting the need for harsh chemical processes and the formation of toxic products. Unfortunately, biological production of some products can be limited due to their toxic nature or reduced reaction efficiency due to competing metabolic pathways. In nature, microbes often secrete enzymes directly into the environment or encapsulate them within membrane vesicles to allow catalysis to occur outside the cell for the purpose of environmental conditioning, nutrient acquisition, or community interactions. Of particular interest to biotechnology applications, researchers have shown that membrane vesicle encapsulation often confers improved stability, solvent tolerance, and other benefits that are highly conducive to industrial manufacturing practices. While still an emerging field, this review will provide an introduction to biocatalysis and bacterial membrane vesicles, highlight the use of vesicles in catalytic processes in nature, describe successes of engineering vesicle/enzyme systems for biocatalysis, and end with a perspective on future directions, using selected examples to illustrate these systems' potential as an enabling tool for biotechnology and biomanufacturing.
Collapse
Affiliation(s)
- Meghna Thakur
- College of Science, George Mason University, Fairfax, VA 22030, USA
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Scott N. Dean
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Julie C. Caruana
- American Society for Engineering Education, Washington, DC 20036, USA
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Gregory A. Ellis
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| |
Collapse
|